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Dataflow systems 
vs.

 Recursive-task systems
•

 
Computation in rounds

•
 

Tasks feed input themselves several times 
during the computation

•
 

“Blocking property”
 

does not hold
•

 
Recovery from node failure is not easy

•
 

Need to transfer small files especially 
towards the end of the computation

•
 

Small files incur large overhead 



Dataflow Systems: 
an acyclic network of functions

Not Map
 

and Reduce
 

tasks any more, could be anything.

Clustera

 

–

 

University of Wisconsin.
Hyracks

 

–

 

Univ. of California/Irvine.
Dryad/DryadLINQ

 

– Microsoft.
Nephele/PACT

 

–

 

T. U. Berlin.
BOOM

 

–

 

Berkeley.
epiC

 

–

 

N. U. Singapore.

“Blocking property”
 

holds



Recursive Systems: 
a cyclic network of functions

“Blocking property”
 

does 
not hold

Computation in rounds

Pregel
Giraph
Recursive Hyracks

T3

T1

T2



Recovery from Node Failure: 
Blocking property

•
 

Map-reduce
 

deals
 

with node failures
 

in a 
simple way.

•
 

Both Map tasks
 

and Reduce tasks have 
the blocking property:
A task does not deliver output to any other 
task until

 
it has completely finished its 

work.
•

 
Dataflow systems also have the blocking 
property.



Communication cost of the 
computations

•
 

Individual communication for each task:
 Sum of all its inputs during the 

computation

•
 

Total communication:
 

Sum of all individual 
communication costs over all tasks.



Our focus: The Endgame

•
 

Problem: in a cluster, transmitting small 
files carries much overhead.

•
 

Minimum communication cost per 
transmission.

•
 

Some recursions, like TC, take a large 
number of rounds, but the number of new 
discoveries in later rounds drops.



Transitive closure (TC)

Nonlinear                           O(log n) rounds
p(x,y) <-

 
e(x,y)

p(x,y) <-
 

p(x,z) &
 

p(z,y)

Left-linear                          O(n) rounds
p(x,y) <-

 
e(x,y)

p(x,y) <-
 

p(x,z) &
 

e(z,y)



Comparison

•
 

Linear:
 

5=4+1; 4=3+1; 3=2+1; 2=1+1.

•
 

Nonlinear:
 

5=4+1, 5=3+2, 5=2+3, 5=1+4; 
4=3+1, 4=2+2, 4=1+3; 3=2+1, 3=1+2; 
2=1+1.



Lower Bound on Query Execution 
Cost

 
for Datalog

•
 

Number of Derivations: the sum, over all the rules in the 
program, of

 
the number of ways we can assign values to 

the variables in
 

order to make the entire body (right side 
of the rule) true.

•
 

Key point:
 

An implementation of a Datalog 
program that executes

 
the rules as written must 

take time on a single
 

processor at least as great 
as the number of derivations.

•
 

Seminaive
 

evaluation:
 

time proportional to the number of 
derivations



Number of Derivations for 
Transitive closure

•
 

Nonlinear TC:                                          
the sum over all nodes c of the number of 
nodes that can reach c times the number 
of nodes reachable from c.

•
 

Left-linear TC:                                          
the sum

 
over all nodes c of the in-degree 

of c times the number of
 

nodes reachable 
from c.

Nonlinear TC has more derivations than linear TC



Implementing TC on a Cluster

•
 

Use k tasks.
•

 
Hash function h sends each node of the 
graph to one of the k tasks.

•
 

Task i receives and stores Path(a,b)
 

if 
either h(a) = i or h(b) = i, or both.

•
 

Task i must join Path(a,c)
 

with Path(c,b)
 

if 
h(c) = i.



Another implementation of TC
 (Dup-Elim

 
)

•
 

Join tasks, which perform the join of tuples 
as

 
in earlier slide.

•
 

Dup-elim tasks, whose job is to catch 
duplicate p-tuples before they can

 propagate.



Nonlinear TC
 (Dup-Elim

 
)
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Improved algorithms

•
 

Small number of rounds

•
 

Small number of derivations



Unique decomposition property

•
 

A path is discovered only once.
•

 
Linear TC has this property.

•
 

Nonlinear TC does not have this property.
•

 
Question:

 
Is there a Datalog

 
program with 

the unique decomposition property, which 
can be executed in logarithmic number of 
rounds?

•
 

Answer:
 

This is the Smart Algorithm and 
many others.



Algorithm Smart

•
 

In each round combine paths of length a power 
of 2 with paths of length no greater than that 
power of 2.

•
 

Example: Round 1: paths of length 1.
Round 2: paths of length 1+1=2
Round 3: paths of length 2+1=3 and 2+2=4.
Round 4: paths of length 22

 
+ 1=5, 22

 
+ 2=6, 

22
 

+ 3=7 and 22
 

+ 22 =8 .



Algorithm Smart
•

 
1) q0(X,Y) :-

 
e(X,Y);

•
 

2) p0(X,X) :-
 

;
•

 
3) i := 0;

•
 

4) repeat {
•

 
5) i := i + 1;

•
 

6)
 

pi(X,Y) :-
 

qi-1(X,Z) & pi-1(Z,Y);
•

 
7)

 
pi(X,Y) := pi(X,Y) ∪ pi-1(X,Y);

•
 

8)
 

qi(X,Y) :-
 

qi-1
 

(X,Z) & qi-1(Z,Y);
•

 
9)

 
qi(X,Y) := qi(X,Y) −

 
pi

 
(X,Y);

•
 

}
•

 
10) until (qi

 
== ∅)



Implementation of Algorithm Smart

Join
for p

Dup−elim

Task j

Join
for q

Task j
for q

Task j

Dup−elim
for p

Task j

h(a) = j

p(a,b) if p(c,d) if
g(c,d) = j

p(c,d) and
q(c,d) if

q(a,b) if
h(a) = j or
h(b) = j

New p(c,d)

p(c,d)’s

p(a,b)
if h(a) = j

q(a,b)

h(b) = j
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if h(a) = j
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h(b) = j
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Algorithm Balance

•
 

Balance:
 

We combine two paths if the 
ratio of the lengths of

 
the two paths is as 

close to 1 as possible.
•

 
Balance, Smart, Linear are

 
incomparable

 wrto
 

the number of derivations. 



Comparison

•
 

Linear:
 

5=4+1; 4=3+1; 3=2+1; 2=1+1.
•

 
Nonlinear:

 
5=4+1, 5=3+2, 5=2+3, 5=1+4; 

4=3+1, 4=2+2, 4=1+3; 3=2+1, 3=1+2; 
2=1+1.

•
 

Smart: 5=22
 

+1=4+1; 4=21
 

+2=2+2; 
2=1+1.

•
 

Balance: 5=3+2; 4=2+2; 3=2+1; 2=1+1.
Linear: linear number of rounds
Nonlinear: unique decomposition property lacking



A program that needs to increase 
the arity

•
 

Reachability: 
reach(X) :-

 
source(X)

reach(X) :-
 

reach(Y) & arc(Y,X)



Reachability

•
 

As written the number of rounds equals 
longest path.

•
 

You can have log n rounds but you have 
to implement TC.

•
 

Can square the number of derived facts.
•

 
E.g., reachability

 
on the web is feasible, 

TC on the web is not feasible. 



Proof trees

reach
 

( X)

reach
 

( Y 1)
 

arc ( Y 1 , X )

reach
 

( Y 2)
 

arc ( Y 2 , Y 1 )

source ( Y 2 )

Y1

X

Y2
source

Input graphProof tree
reach(X) :-

 

source(X)
reach(X) :-

 

reach(Y) & arc(Y,X)

arc

arc
Derived 
predicate



Reachability

Theorem: Suppose Π
 

is a Datalog
 

program 
for reachability

 
with derived predicates of 

arity
 

1. 
Then there is a constant c > 0, depending 
on Π, such that when Π

 
is applied to 

relations arc and source, the height of any 
proof tree for the fact reach(a) is at least c 
times the length of the shortest path from 
the source node to a.



Program transformation: 
iteration/arity

 
tradeoff

Theorem: For every linear program Π
 

, there 
is an

 
equivalent program Π′

 
with the 

following properties:
•

 
The maximum arity of IDB predicates in π′

 is twice
 

the maximum arity of IDB 
predicates in Π.

•
 

The program can be evaluated in O(log n) 
rounds on a

 
database of size n.



Polynomial fringe property (beyond 
linear recursion)

•
 

These programs inlcude linear programs 
and are known to have algorithms in NC.

 It is a simple application of known 
techniques to prove that:

•
 

When a program has the PFP then there 
is an equivalent program which can be

 executed in logarithmic number of rounds. 



Open Problems (1)

•
 

Find classes of linear recursions for which one 
can guarantee

 
logarithmic rounds with no 

increase in the arity
 

of recursive predicates.
•

 
For any such class discovered in (1), are there 
unique-decomposition

 
variants of the nonlinear 

recursion? Can
 

we argue that these variants are 
comparable in communication cost to the 
original linear recursions?



Open Problems (2)
•

 
Find general classes of linear recursions for which we

 can prove no equivalent recursion that completes in 
logarithmic rounds can use only predicates of the same

 arity as the linear recursion.
•

 
It is reasonable to assume that when the arity of 
recursive

 
predicates is increased, the number of facts

 deduced during the recursion grows significantly, and
 such is the case in the examples we have examined. Is

 this intuition correct in all cases?
•

 
Note: a

 
probabilistic

 
single-source reachability algorithm  

which achieves a
 

low number of derivations although the 
arity is equal to two.



Thank you


	Transitive Closure and Recursive Datalog Implemented on Clusters 
	Dataflow systems �vs.�Recursive-task systems
	Dataflow Systems: �an acyclic network of functions
	Recursive Systems: �a cyclic network of functions
	Recovery from Node Failure: Blocking property
	Communication cost of the computations
	Our focus: The Endgame
	Transitive closure (TC)
	Comparison
	Lower Bound on Query Execution Cost for Datalog
	Number of Derivations for Transitive closure
	Implementing TC on a Cluster
	Another implementation of TC�(Dup-Elim )
	� Nonlinear TC�(Dup-Elim )
	Improved algorithms
	Unique decomposition property
	Algorithm Smart
	Algorithm Smart
	Implementation of Algorithm Smart
	Algorithm Balance
	Comparison
	A program that needs to increase the arity
	Reachability
	Proof trees
	Reachability
	Program transformation: �iteration/arity tradeoff
	Polynomial fringe property (beyond linear recursion) 
	Open Problems (1)
	Open Problems (2)
	Slide Number 30

