
Transitive Closure and
Recursive Datalog

Implemented on Clusters

Foto

N. Afrati
National Technical University of Athens, Greece

Joint work with Jeff Ullman

Dataflow systems
vs.

 Recursive-task systems
•

Computation in rounds

•

Tasks feed input themselves several times
during the computation

•

“Blocking property”

does not hold
•

Recovery from node failure is not easy

•

Need to transfer small files especially
towards the end of the computation

•

Small files incur large overhead

Dataflow Systems:
an acyclic network of functions

Not Map

and Reduce

tasks any more, could be anything.

Clustera

–

University of Wisconsin.
Hyracks

–

Univ. of California/Irvine.
Dryad/DryadLINQ

– Microsoft.
Nephele/PACT

–

T. U. Berlin.
BOOM

–

Berkeley.
epiC

–

N. U. Singapore.

“Blocking property”

holds

Recursive Systems:
a cyclic network of functions

“Blocking property”

does
not hold

Computation in rounds

Pregel
Giraph
Recursive Hyracks

T3

T1

T2

Recovery from Node Failure:
Blocking property

•

Map-reduce

deals

with node failures

in a
simple way.

•

Both Map tasks

and Reduce tasks have
the blocking property:
A task does not deliver output to any other
task until

it has completely finished its

work.
•

Dataflow systems also have the blocking
property.

Communication cost of the
computations

•

Individual communication for each task:
 Sum of all its inputs during the

computation

•

Total communication:

Sum of all individual
communication costs over all tasks.

Our focus: The Endgame

•

Problem: in a cluster, transmitting small
files carries much overhead.

•

Minimum communication cost per
transmission.

•

Some recursions, like TC, take a large
number of rounds, but the number of new
discoveries in later rounds drops.

Transitive closure (TC)

Nonlinear O(log n) rounds
p(x,y) <-

e(x,y)

p(x,y) <-

p(x,z) &

p(z,y)

Left-linear O(n) rounds
p(x,y) <-

e(x,y)

p(x,y) <-

p(x,z) &

e(z,y)

Comparison

•

Linear:

5=4+1; 4=3+1; 3=2+1; 2=1+1.

•

Nonlinear:

5=4+1, 5=3+2, 5=2+3, 5=1+4;
4=3+1, 4=2+2, 4=1+3; 3=2+1, 3=1+2;
2=1+1.

Lower Bound on Query Execution
Cost

for Datalog

•

Number of Derivations: the sum, over all the rules in the
program, of

the number of ways we can assign values to

the variables in

order to make the entire body (right side
of the rule) true.

•

Key point:

An implementation of a Datalog
program that executes

the rules as written must

take time on a single

processor at least as great
as the number of derivations.

•

Seminaive

evaluation:

time proportional to the number of
derivations

Number of Derivations for
Transitive closure

•

Nonlinear TC:
the sum over all nodes c of the number of
nodes that can reach c times the number
of nodes reachable from c.

•

Left-linear TC:
the sum

over all nodes c of the in-degree

of c times the number of

nodes reachable
from c.

Nonlinear TC has more derivations than linear TC

Implementing TC on a Cluster

•

Use k tasks.
•

Hash function h sends each node of the
graph to one of the k tasks.

•

Task i receives and stores Path(a,b)

if
either h(a) = i or h(b) = i, or both.

•

Task i must join Path(a,c)

with Path(c,b)

if
h(c) = i.

Another implementation of TC
 (Dup-Elim

)

•

Join tasks, which perform the join of tuples
as

in earlier slide.

•

Dup-elim tasks, whose job is to catch
duplicate p-tuples before they can

 propagate.

Nonlinear TC
 (Dup-Elim

)

Join
node
0

Join
node
1

Join
node
i

node
0

Dup−elim

node
1

Dup−elim

node
j

Dup−elim

.

.

.

.

.

.

.

.

.

.

.

.

p(a,b) if
h(a) = i or
h(b) = i

p(c,d) if
g(c,d) = j

p(c,d) if never
seen before

To join node h(d)

To join node h(c)

Improved algorithms

•

Small number of rounds

•

Small number of derivations

Unique decomposition property

•

A path is discovered only once.
•

Linear TC has this property.

•

Nonlinear TC does not have this property.
•

Question:

Is there a Datalog

program with

the unique decomposition property, which
can be executed in logarithmic number of
rounds?

•

Answer:

This is the Smart Algorithm and
many others.

Algorithm Smart

•

In each round combine paths of length a power
of 2 with paths of length no greater than that
power of 2.

•

Example: Round 1: paths of length 1.
Round 2: paths of length 1+1=2
Round 3: paths of length 2+1=3 and 2+2=4.
Round 4: paths of length 22

+ 1=5, 22

+ 2=6,

22

+ 3=7 and 22

+ 22 =8 .

Algorithm Smart
•

1) q0(X,Y) :-

e(X,Y);

•

2) p0(X,X) :-

;
•

3) i := 0;

•

4) repeat {
•

5) i := i + 1;

•

6)

pi(X,Y) :-

qi-1(X,Z) & pi-1(Z,Y);
•

7)

pi(X,Y) := pi(X,Y) ∪ pi-1(X,Y);

•

8)

qi(X,Y) :-

qi-1

(X,Z) & qi-1(Z,Y);
•

9)

qi(X,Y) := qi(X,Y) −

pi

(X,Y);

•

}
•

10) until (qi

== ∅)

Implementation of Algorithm Smart

Join
for p

Dup−elim

Task j

Join
for q

Task j
for q

Task j

Dup−elim
for p

Task j

h(a) = j

p(a,b) if p(c,d) if
g(c,d) = j

p(c,d) and
q(c,d) if

q(a,b) if
h(a) = j or
h(b) = j

New p(c,d)

p(c,d)’s

p(a,b)
if h(a) = j

q(a,b)

h(b) = j
or

if h(a) = j

g(c,d) = j

q(a,b) if
h(b) = j

New q(c,d)

Algorithm Balance

•

Balance:

We combine two paths if the
ratio of the lengths of

the two paths is as

close to 1 as possible.
•

Balance, Smart, Linear are

incomparable

 wrto

the number of derivations.

Comparison

•

Linear:

5=4+1; 4=3+1; 3=2+1; 2=1+1.
•

Nonlinear:

5=4+1, 5=3+2, 5=2+3, 5=1+4;

4=3+1, 4=2+2, 4=1+3; 3=2+1, 3=1+2;
2=1+1.

•

Smart: 5=22

+1=4+1; 4=21

+2=2+2;
2=1+1.

•

Balance: 5=3+2; 4=2+2; 3=2+1; 2=1+1.
Linear: linear number of rounds
Nonlinear: unique decomposition property lacking

A program that needs to increase
the arity

•

Reachability:
reach(X) :-

source(X)

reach(X) :-

reach(Y) & arc(Y,X)

Reachability

•

As written the number of rounds equals
longest path.

•

You can have log n rounds but you have
to implement TC.

•

Can square the number of derived facts.
•

E.g., reachability

on the web is feasible,

TC on the web is not feasible.

Proof trees

reach

(X)

reach

(Y 1)

arc (Y 1 , X)

reach

(Y 2)

arc (Y 2 , Y 1)

source (Y 2)

Y1

X

Y2
source

Input graphProof tree
reach(X) :-

source(X)
reach(X) :-

reach(Y) & arc(Y,X)

arc

arc
Derived
predicate

Reachability

Theorem: Suppose Π

is a Datalog

program
for reachability

with derived predicates of

arity

1.
Then there is a constant c > 0, depending
on Π, such that when Π

is applied to

relations arc and source, the height of any
proof tree for the fact reach(a) is at least c
times the length of the shortest path from
the source node to a.

Program transformation:
iteration/arity

tradeoff

Theorem: For every linear program Π

, there
is an

equivalent program Π′

with the

following properties:
•

The maximum arity of IDB predicates in π′

 is twice

the maximum arity of IDB
predicates in Π.

•

The program can be evaluated in O(log n)
rounds on a

database of size n.

Polynomial fringe property (beyond
linear recursion)

•

These programs inlcude linear programs
and are known to have algorithms in NC.

 It is a simple application of known
techniques to prove that:

•

When a program has the PFP then there
is an equivalent program which can be

 executed in logarithmic number of rounds.

Open Problems (1)

•

Find classes of linear recursions for which one
can guarantee

logarithmic rounds with no

increase in the arity

of recursive predicates.
•

For any such class discovered in (1), are there
unique-decomposition

variants of the nonlinear

recursion? Can

we argue that these variants are
comparable in communication cost to the
original linear recursions?

Open Problems (2)
•

Find general classes of linear recursions for which we

 can prove no equivalent recursion that completes in
logarithmic rounds can use only predicates of the same

 arity as the linear recursion.
•

It is reasonable to assume that when the arity of
recursive

predicates is increased, the number of facts

 deduced during the recursion grows significantly, and
 such is the case in the examples we have examined. Is

 this intuition correct in all cases?
•

Note: a

probabilistic

single-source reachability algorithm

which achieves a

low number of derivations although the
arity is equal to two.

Thank you

	Transitive Closure and Recursive Datalog Implemented on Clusters
	Dataflow systems �vs.�Recursive-task systems
	Dataflow Systems: �an acyclic network of functions
	Recursive Systems: �a cyclic network of functions
	Recovery from Node Failure: Blocking property
	Communication cost of the computations
	Our focus: The Endgame
	Transitive closure (TC)
	Comparison
	Lower Bound on Query Execution Cost for Datalog
	Number of Derivations for Transitive closure
	Implementing TC on a Cluster
	Another implementation of TC�(Dup-Elim)
	� Nonlinear TC�(Dup-Elim)
	Improved algorithms
	Unique decomposition property
	Algorithm Smart
	Algorithm Smart
	Implementation of Algorithm Smart
	Algorithm Balance
	Comparison
	A program that needs to increase the arity
	Reachability
	Proof trees
	Reachability
	Program transformation: �iteration/arity tradeoff
	Polynomial fringe property (beyond linear recursion)
	Open Problems (1)
	Open Problems (2)
	Slide Number 30

