
Bengt Nordström
Chalmers, Göteborg

AIM/DTP Shonan Village, Sept 2011

Towards a basis for
human-computer dialogue

Background
There is a notion of correctness in human-computer (and many
human-human) dialogues which can be captured by dependent
types.

Example of a human-human dialogue:
 A: What do you want to do?
 eat sleep work swim sail ...
 B: I want to eat
 A: Do you want to eat at home?
 restaurant home your place ...
 B: No, in a restaurant.
 A: Fine, I would like to eat in a japanese restaurant
 japanese swedish french korean ...
 B: What about okonomiyaki?
 A: OK

The result of the dialogue is the
construction of a mathematical
object

eat restaurant (japanese, okonomiyaki)

An essential part of the dialogue is
the possibility of changing the object
being constructed:
 A: I want to eat Swedish food
 B: OK, let’s have surströmming at home

We have now changed the object:

eat restaurant (japanese, okonomiyaki)

eat home surströmming

Example of a human-computer
dialogue
A travel agency:

plane rental car hotel boat

When you click on one of these you get some other
alternatives.

plane
from: to: nr of persons: leaving date arrival date

hotel
where: nr of persons: leaving date arrival date

In both these cases the answer to one question
decides the shape of the rest of the dialogue:

• If you know that you are talking about ordering a
hotel, then it doesn't make sense asking about the
departure city.

• If you are filling in a date, the year decides how
many days there are in February and different
months has different number of days.

So, the shape (type) of something depends on the
value of something else.

Example of a datatype for a dialogue:
Place = data
 home restaurant forest : Place
Food : Place -> Set
Food home = SwedishFood
Food restaurant = (x : Nationality, NationalFood x)
NationalFood : Country -> Set
NationalFood japan = JapaneseFood
NationalFood sweden = SwedishFood
NationalFood korea = KoreanFood
Food forest = Forestfood
Action =
 data eat : (where : Place) (food: Food(where)) -> Action
 sleep: Place -> Action
 swim: From -> To -> Manner -> Action
 work: Place -> What -> Action
 sail : From -> To -> Passengers -> Action

Some words to be explained:

• Syntactical correctness of a dialogue

• Top-down vs. bottom-up dialogue

• User driven vs. system-driven dialogue

• sequential vs. random access

Goal

We want to model dialogue systems in which a human
interacts with a computer to build an object.

From Wikipedia:
A dialogue system is a computer system intended to converse with a
human, with a coherent structure. Dialogue systems have employed
text, speech, graphics, haptics, gestures and other modes for
communication on both the input and output channel.

Here I will ignore the problems of speech recognition and
generation and abstract over the mode of interaction.

A dialogue is seen as the building of an
object.
The human fills in information which the computer needs.
Typical examples are:

• Reservation system for trains, concerts, calendars, rooms,
medical doctors, ...

• Navigation systems
• Control center for TV, radio, mp3-players, ...
• Editors for controlled languages like

o restaurant reviews
o recipies
o description of pharmaceuticals
o description of items for sale

• structure oriented editors for programs and formal proofs

Typical structure of a dialogue system

speech input
 |
textual input
 |
syntax tree
 |
semantic representation
 |
system response content
 |
system response utterance
 |
system output

speech recognition

parsing

semantic interpretation

dialogue management

generation

speech synthesis

Checking correctness

In all these systems there is a notion of syntactic correctness,
which should be checked immediately after each input of the
user.

We will use a dependent type system to express the
syntactical correctness.

Some choices:

• System driven dialogue: The system decides the order to
fill in the details.

• User driven dialogue: The user decides.

o sequential access: up, down, left, right...

o random access: any part of the object can be changed.

Objects are treated as directed graphs
In principle, we have a graph like:

where p, q and r are placeholders and c are functional
constants.

q1 = c1 p1 . . . pn
...

qn = cn r1 . . . rm

System driven dialogue

The commands to the system is a list of (functional)
constants:

 c1, …, cn

each command replaces the leftmost placeholder.
Here, each constant has a fixed arity

User driven dialogue

The commands to the system is a list of commands of
the form:

 q = c q1 … qn

The command replaces the placeholder q.

The commands to the system is a list of commands
of the form:

 q = c q1 … qn

Bottom-up:
 The placeholder q is new.

Top-down:
 The placeholder q is already in use.

Sharing:
 Some of the placeholders qi are in use.

A simple example:

We want to define the constant 2 : Nat and we assume that we
have the constant 0 : Nat and s : Nat -> Nat:

two :: Nat -- declare the type of two
two := s q1 -- the system can deduce that q1 : Nat
q1 := s q2 -- the system can deduce that q2 : Nat
q2 := 0

How to introduce Nat, s and 0?
Nat :: Set
z :: Nat
s :: q1 -> q2 -- the system deduces that q1, q2 are types
q1 := Nat
q2 := Nat

The set of expressions are:

Thick expressions

e,t :: = t -> t'
 | (t, t’)
 | e, e’
 | (c e)
 | q
 | c

function types
cartesian product
pair
application
place holder
constant

Thin expressions

e,t :: = q -> q'
 | (q, q’)
 | q, q’
 | (c q)
 | q
 | c

Each thick expression can be represented as a list of thin
expressions

Overview

Starting from a state with expressions with place holders, like:

 c1 : t1; c1 = q1; ...; cn : tn

we want to use a series of commands to build up a new state

c1 : t1; c1 = e1; ...; cn : tn; c1 = en

It is not necessary that all constants have a definiens.

But in the end all holes must be filled in (place holders must be
defined).

Commands

q := e

c :: e

q :: e

Refine the value of the place holder q,
e is a thin expression.

Introduce a new constant with its type.

Introduce a new placeholder and its type.
This is only used in bottom-up editing.
The type e must not be a functional type

Type checking

To type check a command of the shape

 q := e

we always look up the type of q. It is an invariant of the system
that all place holders have an expected type.

Then we type check e:

Type checking an application
q : Q in G
c : C in G
C = A ->B in G
B = Q in G
--
G, q := c q’ |- G ; q’:A; q = c q’

Explanation:
In order to type check the command q := c q’ in G we:
• look up the type of q in G, call it Q.
• look up the type of c in G, it has to have the shape A ->B
• check that B = Q in G

Then we can update the state G with
• q‘ : A (this update must be consistent with G)
• q = c q’ (and make sure that no cycles are introduced)

Type checking a constant/placeholder

q : Q in G
c : C in G
Q = C in G
--
G, q := c |- G ; q = c

Explanation:
In order to type check the command q := c in G we:

• check that the types of q and c are equal in G

Then we can update the state G with

• q = c (this update must be consistent with G)

Type checking a pair
q : Q in G
Q = (R, S) in G
--
G, q := r,s |- G ; q = r,s; r : R; s : S

Explanation:
In order to type check the command q := r,s in G we:

• Lookup the type of q in G. It has to have the shape (R,S).

Then we can update the state G with

• q = r, s (this update must be consistent with G)
• r : R (and make sure that no cycles are introduced)
• s : S

Type checking a type

q : Type in G
--
G, q := r -> s |- G ; q = r -> s; r : Type; s : Type

Explanation:
In order to type check the command q := r -> s in G we:

• check that the type of q is Type in G

Then we can update the state G with

• q = r -> s (this update must be consistent with G)
• r : Type (and make sure that no cycles are introduced)
• t : Type

Consistent updates

The updates must be consistent in the sense that:

• No cycles are introduced
• An update of the shape G; q : A is only possible if q does

not have a type in G or q already has the type A in G.

Summary:

The user issues commands of the form

• q := e refine a place holder
• q :: e introduce a place holder

The expressions e are thin expressions of the form

e,t :: = q -> q'
 | (q, q’)
 | q, q’
 | (c q)
 | q
 | c

Summary (cont'd):

Expressions are represented as directed graphs with
placeholders as names for subexpressions.

This makes it possible to build objects
• top-down
• bottom-up
• a combination of these

This is absolutely essential when trying to mimic human
dialogues.

Applications

A way to structure a dialogue system:

The generic editor (handling objects with dependent

types) works as a framework for different dialogue

systems.

Further work:

Extend the language of objects and types to:

• dependent types

• some notion of a decidable subset type

• strategies for under-specified information (the system

cannot deduce what placeholder to fill in) (Peter

Ljunglöf)

• specification of concrete syntax

Thanks to:

• Aarne Ranta, Computer Science, Chalmers

• Björn Bringert, Google, London

• Peter Ljunglöv, Computer Science, University of Gothenburg

• Robin Cooper, Linguistics, University of Gothenburg

Snail!

Little by little climb up -

Mt. Fuji

- Issa

