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introduction

◮ some old (JFP 2004; EPIGRAM 1) and more recent (CSL
2006; LMCS 2011) work

◮ some extensions/generalisations:
◮ modest extensions to EPIGRAM 1-style intended to reduce

premature commitment
◮ re-designing type theory in sequent calculus style to

support postponed decisions

◮ some (open?) questions; stimulus for discussion

Morrisett: pragmatics as the ‘undiscovered country’ for PL
researchers
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blossom gathered at NII/Shonan

dialogue systems are for the interactive construction of
a mathematical object with a dependent type (Bengt)

smart case: you don’t want to work with the ‘with’ rule
(Thorsten)

extend recursion beyond the non-structural case (Tim)

parametricity: the interpretation of a type is a relation
(Patrik)

functional induction: induction on the graph relation is
partial correctness for a function definition; ‘Below’ is
bad (Matthieu)

you want to turn off the termination checker in Agda
(Stephanie)



perspectives

(intuitionistic) dependent type theory via C-H/de B/M-L" is:
◮ . . . lots of interesting things. . . (deleted )
◮ a very rich syntax for well-orderings
◮ a functional language for proofs: evidence for typing

judgments

hypotheses ⊢ prf : conclusion

harmony between introduction and elimination yields WN
◮ a total functional language for programming: evidence for

meeting a specification

declarations, definitions ⊢ prog : specification
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“we know a proof when we see one” (Kreisel)

Fundamental property:
◮ typing judgment Γ ⊢ M : A is decidable
◮ by reduction to type synthesis Γ ⊢ M ⇒ B
◮ and type conversion Γ ⊢ B ≃ A

Idea: to compute B, look at structure of M!

Modern version: bidirectional typechecking, mixing synthesis
and checking Γ ⊢ M ⇐ A

Trellys, F ∗ take an alternative view (or do they?)
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problems-as-types

programming is interactive,
type-directed,
problem solving



Why Proof Search? How?

Under types as propositions,
◮ type inhabitation Γ ⊢ A ≫ M corresponds to provability
◮ existence of a proof of A is. . . existence of a program
◮ so programming is (the end result of) searching for proofs

Clearly impossible/undecidable in general, but easy heuristics:
◮ to inhabit Π, try λ and recur; otherwise
◮ pick an assumption whose type suitably matches the goal
◮ recursively search for arguments to supply to yield an

application term

For the purely functional fragment:
◮ Dowek: complete for enumeration of inhabitants
◮ Dyckhoff/Hudelmaier: terminating, for simple enough types

So: seek presentations aligned towards proof search
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interaction/implementation styles: identify your
favourite!

◮ programming = program construction
◮ program construction = proof term construction (really?)
◮ proof term construction = . . .
◮ . . . but: we tend to think of this as λ-term construction

◮ direct-style (term editing): ALF, Agda, . . .
◮ indirect-style (tactic scripts): NuPRL, Coq, . . .
◮ semi-indirect (elaboration): Epigram, Agda (?),

Equations. . .
◮ ‘Joe Programmer’ (writes it all, machine maybe typechecks

it): Idris (Brady), F ∗ (?), Trellys (?). . .

Question is this last what people really want?

More serious: how much does the user write? what does the
machine supply?
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programming pragmatics/psychology of programming

obstacles to fully-fledged DTP from opposite directions:
◮ theoretical: desire for an evolutionary path from

Hindley-Milner languages
◮ cognitive: lack of evolutionary path from Hindley-Milner

languages

each an entirely understandable cultural conservatism

HCI/PPoP perspective: Green/Blackwell framework of cognitive
dimensions of notations
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Two views of data and control in programming

Classical view:
◮ data structures consist of structures containing data
◮ general recursion/iteration as universal traversal over such

structure, exposing the data by repeated computation/case
analysis

◮ termination and even correctness (!), analysed post hoc

“Easier” view:
◮ data structures consist of data exposing visible (inductive)

structure
◮ primitive (structural) recursion traverses over such

structure; no need to expose substructure by computation
◮ termination “for free”; correctness easier if you choose

datatypes carefully



Datatype families and programming with DTs

data:
◮ usual (strictly positive) algebraic datatypes from FP
◮ non-context-free syntax, e.g. well-typed terms
◮ inductively-defined relations (incl. partial functions)
◮ sos definitions of your favourite operational semantics
◮ set(oid) theoretic definitions of algebraic structure, so

denotational semantics too

programs:
◮ λ-calculus for contextual/higher-order functional plumbing
◮ case analysis/primitive recursion for well-founded

(inductive) data
◮ . . . for productive infinite computation on co-inductive data



Programming with real data in this style: EPIGRAM 1

Inductive families, with declarations

data
~t : ~T
D~t : ⋆

where ∆1
c1 ∆1 : D ~s1

. . . ∆n
cn ∆n : D ~sn

giving rise to standard Martin-Löf elimination constants D-elim
and corresponding ι-reductions.

Programs are top-level definitions of typed terms in the
underlying type theory, but syntax is “high-level”: typechecker
fills in many details.



EPIGRAM 1: use the programmer to control search

programmer chooses:
◮ left-hand sides: ‘case analysis’ (⇐)
◮ recursion schemes: identify allowable recursive calls (also

⇐!)
◮ right-hand sides: solutions to ‘leaf’ problems (⇒)
◮ intermediate computation (‖, not ‘let’ as such)

Each amounts to supplying (sufficient) evidence to solve the
corresponding problem.

Informal justification by appeal to left-/right-rules in sequent
calculus; ‘with’ is cut)

Problem every program begins with commitment to some rec!
Question what is the right syntax for ‘sufficient evidence’?
Question what evidence is (run-time) erasable?



Eliminator types: what are allowable recursive calls?
Standard case analysis for family D always available:

D-case : ∀~t x : D~t → ∀P : (∀~t x : D~t → ⋆) →
∀m1 : (∀∆1. P (c1 ~s1)) → . . . ∀mn : (∀∆n. P (cn ~sn)) → P x

while a general form of recursion principle:

D-Frec : ∀~t x : D~t → ∀P : (∀~t x : D~t → ⋆) →

(∀~t y : D~t → F(P) y → P y) → P x

may be admissible according to the form of F. Always have:

primitive recursion recursive calls on the immediate subterms
Fpr(P)(ci ~si) ≃ ×j(P sij)

structurally smaller recursive calls on all subterms (‘Below’):
Fss(P)(ci ~si) ≃ (×j((Fss(P)) sij)) × (×j(P sij))

well-founded for provably well-founded relations R
Fwf(P)(y) ≃ ∀z → (R z y) → Pz



Containers, algebras, coalgebras

◮ The predicate transformer (functional) F describes a
container of possible recursive calls F(P) y available for a
given argument y , obtained by lookup. (Bad!)

◮ Allowable recursion/co-recursion given by identifying
suitable algebras/co-algebras for such functors (Uustalu,
Capretta, Vene); modern treatments of data/codata
systematically go via (indexed) containers (Thorsten et al.)

Question: is there a compositional account of such functors?
Question: is there a convenient syntax for such things?
Question: what about size-change termination (SCT)?
Extension: require outermost appeal to Frec, but delay choice
of F



Other sources of premature commitment

◮ functional induction: graph of a higher-order function is a
predicate transformer (cf. parametricity), and the proof that
the function inhabits the graph is a proof transformer

◮ elimination with a motive: not necessarily with respect to
equality, but with resect to an arbitrary reflexive R which
reflects congruences for appropriate constructors (e.g.
permutation on lists)

◮ equality elimination/substitutivity in a type P x : not
necessarily with respect to equality, but with respect to
some R for which given P is ‘good’ (cf. setoid rewriting)

◮ identify your favourites!
◮ failure of syntax-directedness leading to smart case?
◮ computational behaviour of programs defined by

Equations; corresponding choices in EPIGRAM 1, Idris

However, deferral imposes different heavy cognitive burden
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Part II: proof search in type theory

Classical approach to premature commitment in proof search in
natural deduction (NJ): use sequent calculus (LJ)

◮ source of premature commitment: choice of antecedent
formula in →-elim

◮ solution: left-/right rules (LJ), rather than intro-/elim- rules
(NJ)

◮ a calculus for inhabitation of corresponding NJ
formulas-as-types

◮ unification/meta-variables delay choice of term witnesses
to ∀-left instances

Lots of literature, esp. now on extensions to dependent types

Almost none on using this for programming (Wadler, 1990s,
unpublished)
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Type Theory in Sequent Calculus style (CSL 2006)

For arbitrary PTSs, can develop a term calculus with two
judgment forms:

◮ Γ ⊢ M : A corresponding to Γ ⊢ A ≫ M
◮ Γ; A ⊢ l : B corresponding to computing argument lists to

“match” A against B

Key idea: LJ is too permissive, so tighten up to remove
inessential variation (permutation of rules)

Can see this as a rational reconstruction of intros/Refine in
LEGO, intros/apply in COQ
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Adding meta-variables (LMCS 2011)

leads to a calculus in which

◮ Dowek’s complete semi-recursive type inhabitation
procedure can be recovered, hence higher-order
unification

◮ Dyckhoff/Hudelmaier complete search for propositional
sub-languages

Challenge extend analysis to datatypes, thereby

◮ making solid the EPIGRAM 1/sequent calculus informal
connection

◮ modernising, to deal with e.g. bidirectional type checking,
. . .
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Advantages for the implementor?

Such calculi combine
◮ explicit substitutions
◮ spine representations

so hopefully better adapted towards

◮ abstract machines for evaluation
◮ ‘internal’ (inferential mode) and ‘external’ (checking mode)

categories of abstract syntax in recent presentations of
EPIGRAM 2 (Chapman, Alti, McBride . . . )

Metavariables and unification/conversion are baked in from the
start, so there is no separate ‘program construction’ layer
distinct from that of eventually elaborated programs: these are
just terms containing no open meta-variables.



Rules, I

Γ ⊢⊢⊢PE M :A | Σ

C−→∗

Bx s (s′, s) ∈ A

Γ ⊢⊢⊢PE s′ :C | []
sorted

C−→∗

Bx s (s1, s2, s) ∈ R Γ ⊢⊢⊢PE A :s1 | Σ1 Γ, x :A ⊢⊢⊢PE B :s2 | Σ2

Γ ⊢⊢⊢PE ΠxA.B :C | Σ1,Σ2

Π

(x :A) ∈ Γ Γ; A ⊢⊢⊢PE l :C | Σ

Γ ⊢⊢⊢PE x l :C | Σ
Selectx

C−→∗

Bx ΠxA.B Γ, x :A ⊢⊢⊢PE M :B | Σ

Γ ⊢⊢⊢PE λxA.M :C | Σ
Πr



Rules, II

Γ; B ⊢⊢⊢PE l :C | Σ

Γ = x1 :A1, . . . , xn :An

Γ ⊢⊢⊢PE α(x1 [], . . . , xn []) :C | (Γ ⊢⊢⊢ α :C)
Claimα

Γ = x1 :A1, . . . , xn :An

Γ; D ⊢⊢⊢PE β(x1 [], . . . , xn []) :C | (Γ; D ⊢⊢⊢ β :C)
Claimβ

Γ; D ⊢⊢⊢PE [] :C | D Γ
= C

axiom

D−→∗

Bx ΠxA.B Γ ⊢⊢⊢PE M :A | Σ1 Γ; 〈M/x〉B ⊢⊢⊢PE l :C | Σ2

Γ; D ⊢⊢⊢PE M ·l :C | Σ1,Σ2

Πl



Rules, III

Σ =⇒PE σ

Γ; B ⊢⊢⊢PE l :C | Σ′′ Σ, Σ′′, (β 7→ Dom(Γ).l)(Σ′) =⇒PE σΣ, σΣ′′ , σΣ′

Σ, (Γ; B ⊢⊢⊢ β :C), Σ′ =⇒PE σΣ, (β 7→ Dom(Γ).(σΣ, σΣ′′)(l)), σΣ′

Solveβ

Γ ⊢⊢⊢PE M :A | Σ′′ Σ, Σ′′, (α 7→ Dom(Γ).M)(Σ′) =⇒PE σΣ, σΣ′′ , σΣ′

Σ, (Γ ⊢⊢⊢ α :A), Σ′ =⇒PE σΣ, (α 7→ Dom(Γ).(σΣ, σΣ′′)(M)), σΣ′

Solveα

Σ is solved

Σ =⇒PE ∅
Solved



Conclusions

◮ dependent type theory as a nice place to study
correct-by-construction programming

◮ . . . which is type-directed, interactive, proof search
◮ machinery for type-checking/type synthesis/conversion

testing modulo unknowns
◮ unification as a pervasive technology from traditional proof

search
◮ many (?) more places during construction when unknowns

allow progress without over-committing the programmer
◮ outstanding problem: high-level syntax for sufficient

evidence to yield well-typed terms in the underlying theory
◮ outstanding disadvantage: we make the programmer

supply (nearly) everything
◮ no treatment yet of undo



Questions?


