MapReduce Algorithmics

Sergei Vassilvitskii
Yahoo! Research

Based on work with: Bahman Bahmani, Howard Karloff, Ravi Kumar, Silvio Lattanzi, Ben Moseley, Siddharth Suri, Andrea Vattani
Dealing With Massive Data

<table>
<thead>
<tr>
<th>Polynomial</th>
<th>Sublinear</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM</td>
<td>Streaming</td>
</tr>
<tr>
<td></td>
<td>External Memory</td>
</tr>
<tr>
<td></td>
<td>Property Testing</td>
</tr>
</tbody>
</table>

Memory
Dealing With Massive Data

<table>
<thead>
<tr>
<th>Processors</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>Polynomial</td>
</tr>
<tr>
<td>RAM</td>
<td></td>
</tr>
<tr>
<td>Multiple</td>
<td>Sublinear</td>
</tr>
<tr>
<td>PRAM</td>
<td>Streaming</td>
</tr>
<tr>
<td></td>
<td>External Memory</td>
</tr>
<tr>
<td></td>
<td>Property Testing</td>
</tr>
</tbody>
</table>

Notes:
- **PRAM (Parallel Random Access Machine)**
- **Stream**: Processing data in a sequential order
- **External Memory**: Remotely accessed memory
- **Property Testing**: Checking properties of data
Dealing With Massive Data

<table>
<thead>
<tr>
<th>Processors</th>
<th>Memory</th>
<th>Sublinear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>Polynomial</td>
<td>Streaming</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External Memory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Property Testing</td>
</tr>
<tr>
<td>Multiple</td>
<td>PRAM</td>
<td>MapReduce</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distributed Sketches</td>
</tr>
</tbody>
</table>
Modeling MapReduce
Modeling MapReduce

Memory

- Typical datasets 100Gb+
- Cannot store the data in memory
- Insist on sublinear memory
Modeling MapReduce

Memory
- Typical datasets 100Gb+
- Cannot store the data in memory
- Insist on sublinear memory

Machines
- Machines in a cluster do not share memory
- Shared clusters have 100-1000 machines
- Insist on sublinear number of machines
Modeling MapReduce

Memory
- Typical datasets 100Gb+
- Cannot store the data in memory
- Insist on sublinear memory

Machines
- Machines in a cluster do not share memory
- Shared clusters have 100-1000 machines
- Insist on sublinear number of machines

Synchronization
- Computation proceeds in rounds
- Count the number of rounds
Not Modeling MapReduce

Lies, Damned Lies, Statistics
- And big-O notation
- And Competitive Analysis
- And...
Not Modeling MapReduce

Lies, Damned Lies, Statistics
- And big-O notation
- And Competitive Analysis
- And...

MapReduce Communication:
- Very important, makes a big difference
Not Modeling MapReduce

Lies, Damned Lies, Statistics
- And big-O notation
- And Competitive Analysis
- And...

MapReduce Communication:
- Very important, makes a big difference
- Many engineering improvements:
 - Dealing with Graphs: save graph structure locally between rounds
 - Move code to data (and not data to code)
 - Job scheduling (same rack / different racks, etc)
Filtering:

- Reduce the problem size in parallel
- Solve the smaller instance sequentially
Filtering:
- Reduce the problem size in parallel
- Solve the smaller instance sequentially

How to reduce input size?
- Connectivity: if (u,v) already connected, remove edge
- MST: remove heaviest edge on every cycle
- Matching: remove dead edges (see next talk)
- Clustering: remove nodes that are not in the coreset (see Ben’s talk)
- Set Cover: remove dominated sets
- etc
Finding Densest Subgraph

Problem: Given a graph $G = (V, E)$, find $V' \subseteq V$ that maximizes:

$$\rho = \frac{|E(V')|}{|V'|}$$
Finding Densest Subgraph

Problem: Given a graph $G = (V, E)$, find $V' \subseteq V$ that maximizes:

$$\rho = \frac{|E(V')|}{|V'|}$$

Useful Primitive in Graph Analysis:
- Community Detection
- Graph Compression
- Link SPAM Mining
- Many other applications
Finding Densest Subgraph

Problem: Given a graph $G = (V, E)$, find $V' \subseteq V$ that maximizes:

$$\rho = \frac{|E(V')|}{|V'|}$$

Useful Primitive in Graph Analysis

Can be solved exactly:
- LP Formulation
- Multiple Max flow computations
Finding Densest Subgraphs

Simple Algorithm [Charikar ’00]:
- Iteratively remove the lowest degree node and update vertex degrees
- Keep the densest intermediate subgraph
Finding Dense Subgraphs

Simple Algorithm:
- Iteratively remove the lowest degree node and update vertex degrees
- Keep the densest intermediate subgraph

Best Density: 16/11
Current Density: 16/11
Finding Dense Subgraphs

Simple Algorithm:
- Iteratively remove the lowest degree node and update vertex degrees
- Keep the densest intermediate subgraph

Best Density: $16/11$
Current Density: $16/11$
Finding Dense Subgraphs

Simple Algorithm:
- Iteratively remove the lowest degree node and update vertex degrees
- Keep the densest intermediate subgraph

Best Density: 15/10
Current Density: 15/10
Finding Dense Subgraphs

Best Density: 14/9
Current Density: 14/9

Simple Algorithm:
- Iteratively remove the lowest degree node and update vertex degrees
- Keep the densest intermediate subgraph
Finding Dense Subgraphs

Simple Algorithm:
- Iteratively remove the lowest degree node and update vertex degrees
- Keep the densest intermediate subgraph

Best Density: 13/8
Current Density: 13/8
Finding Dense Subgraphs

Simple Algorithm:
- Iteratively remove the lowest degree node and update vertex degrees
- Keep the densest intermediate subgraph

Best Density: 12/7
Current Density: 12/7
Finding Dense Subgraphs

Simple Algorithm:
- Iteratively remove the lowest degree node and update vertex degrees
- Keep the densest intermediate subgraph

Best Density: 12/7
Current Density: 10/6
Finding Dense Subgraphs

Simple Algorithm:
- Iteratively remove the lowest degree node and update vertex degrees
- Keep the densest intermediate subgraph

Best Density: 9/5
Current Density: 9/5
Finding Dense Subgraphs

Simple Algorithm:
- Iteratively remove the lowest degree node and update vertex degrees
- Keep the densest intermediate subgraph

Best Density: 9/5
Current Density: 6/4
Finding Dense Subgraphs

Simple Algorithm:
- Iteratively remove the lowest degree node and update vertex degrees
- Keep the densest intermediate subgraph

Best Density: 9/5
Current Density: 3/3
Finding Dense Subgraphs (Analysis)

Approximation Ratio:
- Guaranteed to return a 2-approximation

Proof:
- Let \(V^* \subseteq V \) be the optimal solution, and \(\lambda^* = \frac{|E[V^*]|}{|V^*|} \) the optimal density.
- Consider the first time a vertex from \(V^* \) is removed.
- Every vertex in \(V^* \) has degree at least \(\lambda^* \).
 - Otherwise can improve optimum density
- Therefore the density of that subgraph is at least:
 \[
 \frac{\lambda^* |V^*|}{2|V^*|} = \frac{\lambda^*}{2}
 \]
Finding Dense Subgraphs (Analysis)

Approximation Ratio:
- Guaranteed to return a 2-approximation

Running Time:
- RAM:
 • Maintain a heap on vertex degrees
 • Update keys upon removing every edge
 • Straightforward implementation in $O(m \log n)$
- Streaming:
 • Seemingly need one pass per vertex to adapt this algorithm
 • Can show that need $\Omega(n / \log n)$ memory if using $O(\log n)$ passes
- MapReduce?
 • Open question in Chierichetti, Kumar and Tompkins WWW ’10.
Parallel Dense Subgraphs

Sequential Algorithm:
- Remove the node with the smallest degree
Parallel Dense Subgraphs

Sequential Algorithm:
- Remove the node with the smallest degree

Parallel Version:
- Remove all nodes with less degree less than $(1 + \epsilon) \cdot \text{average degree}$
- Of course this also includes the smallest degree node

- Every Step:
 - Round 1: Count remaining edges, vertices, compute vertex degrees
 - Distributed counting
 - Round 2: Remove vertices with degree below threshold
 - Distributed checking
Parallel Dense Subgraphs

Parallel Algorithm:
- Iteratively remove nodes with degree below average and update vertex degrees
- Keep the densest intermediate subgraph

Best Density: $16/11$
Current Density: $16/11$
Average Degree: $32/11$
Parallel Dense Subgraphs

Parallel Algorithm:
- Iteratively remove nodes with degree below average and update vertex degrees
- Keep the densest intermediate subgraph

Best Density: 16/11
Current Density: 16/11
Average Degree: 32/11
Parallel Dense Subgraphs

Parallel Algorithm:
- Iteratively remove nodes with degree below average and update vertex degrees
- Keep the densest intermediate subgraph

Best Density: 9/5
Current Density: 9/5
Average Degree: 18/5
Parallel Dense Subgraphs

Parallel Algorithm:
- Iteratively remove nodes with degree below average and update vertex degrees
- Keep the densest intermediate subgraph

Best Density: 9/5
Current Density: 3/3
Average Degree: 6/3
Parallel Densest Subgraph (Analysis)

Algorithm:
- Each round remove all vertices with degree less than \((1 + \epsilon) \cdot \text{average}\).

How many vertices do we remove?
- One cannot have too many vertices above average (This is not Lake Wobegon)
- Easy [Markov inequality]: at most a \(\frac{1}{1 + \epsilon}\) fraction of vertices remains in every round.
- Therefore algorithm terminates after \(O\left(\frac{1}{\epsilon \log n}\right)\) rounds
Parallel Densest Subgraph (Analysis)

Algorithm:
- Each round remove all vertices with degree less than \((1 + \epsilon) \cdot \text{average}\).

How many vertices do we remove?
- One cannot have too many vertices above average (This is not Lake Wobegon)
- Easy [Markov inequality]: at most a \(\frac{1}{1 + \epsilon}\) fraction of vertices remains in every round.

- Therefore algorithm terminates after \(O\left(\frac{1}{\epsilon \log n}\right)\) rounds

Approximation Ratio:
- Achieves a \((2 + \epsilon)\) approximation in the worst case
 - Only look at the degree of the nodes removed as compared to average.
How well does it work?

IM Network graph: 650M nodes, 6.1B edges

- Quickly reduce the size of the graph.
- Approximation ratio between 1.06 and 1.4 at $\epsilon = 1$
Densest Subgraph

- Original algorithm: $O(m)$ heap updates:
 - Update vertex degrees every time an edge is removed.
- New algorithm $O(n)$ heap updates:
 - Number of vertices decreases geometrically every round
Low Memory Algorithms:
- Recall MapReduce requirement of sublinear memory
- Can run the parallel algorithm sequentially
 - Work efficient algorithms imply identical running time
Improving Sequential Algorithms

Low Memory Algorithms:
- Recall MapReduce requirement of sublinear memory
- Can run the parallel algorithm sequentially
 • Work efficient algorithms imply identical running time

In practice:
- Low memory algorithms are more efficient
- Take better advantage of caching hierarchy (L1, L2, OS)
- Empirically have observed faster running times running MapReduce algorithms sequentially
Conclusion:

- MapReduce combines parallelism with sublinear memory
- Filtering:
 - Reduce input size in parallel
 - Until data is small enough to be processed sequentially
- Unlike PRAMs, insisting on non-shared memory leads to very good cache performance when simulating sequentially.
Thank You

sergei@yahoo-inc.com