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Scheduling a DataCenterScheduling a DataCenter

�� Companies run large datacentersCompanies run large datacenters
�� Construction, maintainence, etc. of Construction, maintainence, etc. of 

datacenters has significant cost, and uses a datacenters has significant cost, and uses a 
significant amount of powersignificant amount of power

�� Datacenters are estimated to use 2% of the Datacenters are estimated to use 2% of the �� Datacenters are estimated to use 2% of the Datacenters are estimated to use 2% of the 
power in the United Statespower in the United States

�� Managing such a data  center efficiently is an Managing such a data  center efficiently is an 
important problemimportant problem

�� We will talk about experience scheduling We will talk about experience scheduling 
googlegoogle’’s datacenterss datacenters



Power concernsPower concerns

What matters most to the computer 
designers at Google is not speed, but 
power, low power, because data centers 
can consume as much electricity as a city

Eric Schmidt, CEO GoogleEric Schmidt, CEO Google

Energy costs at data centers are 
comparable to the cost for hardware



An abstraction of a computing An abstraction of a computing 
environment environment 

�� Users submit Users submit jobsjobs consisting of consisting of tasks.tasks.
�� Tasks are the unit that is scheduled.Tasks are the unit that is scheduled.
�� Mix of longMix of long--running and shortrunning and short--running jobs.running jobs.
�� Mix of userMix of user--facing and backfacing and back--end jobs.end jobs.�� Mix of userMix of user--facing and backfacing and back--end jobs.end jobs.
�� Mix of high and low priority jobs.Mix of high and low priority jobs.

�� We will consider a We will consider a ““datacenterdatacenter”” with thousands with thousands 
of (heterogeneous) machines, and a time period of (heterogeneous) machines, and a time period 
((““dayday””) long enough to have hundreds  of ) long enough to have hundreds  of 
thousands of tasks. thousands of tasks. 



The goalThe goal

�� We want to evaluate the performance of We want to evaluate the performance of 
many different scheduling algorithms on a many different scheduling algorithms on a 
large large datacenterdatacenter, make meaningful , make meaningful 
comparisons and recommend better comparisons and recommend better comparisons and recommend better comparisons and recommend better 
algorithmsalgorithms

� High Level Goal: improve cells utilization, 
overall productivity, energy useage



MetaMeta--goalgoal

�� How does one actually carry out such an How does one actually carry out such an 
experiment?experiment?



Some ways to measure scheduling Some ways to measure scheduling 
qualityquality

� Throughput - number of processed tasks
� Total flow time – total time tasks spend in system
� Total useful work – total time tasks spend processing 

work that will not be thrown away
Number of preemptions – times tasks were � Number of preemptions – times tasks were 
interrupted.

� Pending queue size – number of tasks in system but 
not being scheduled

� Machine fragmentation – roughly the number of 
unused machines



Primary GoalsPrimary Goals

� Increase throughput.
� Reduce machine fragmentation                                              

(increase job packing ability).
� Increase the number of unused � Increase the number of unused 

machines ( leads to power savings).



OverviewOverview

�� We collected data from We collected data from googlegoogle
datacentersdatacenters

�� We built a highWe built a high--level model of the level model of the 
scheduling system scheduling system (how do you figure this (how do you figure this scheduling system scheduling system (how do you figure this (how do you figure this 
out?)out?)

�� We experimented with various algorithmsWe experimented with various algorithms



How to model machines and jobsHow to model machines and jobs

�� Machines:Machines:
�� DiskDisk
�� MemoryMemory
�� CPUCPU�� CPUCPU

�� JobsJobs
�� Consist of set of tasks, which haveConsist of set of tasks, which have

•• CpuCpu, disk, memory, precedence, priority, etc., disk, memory, precedence, priority, etc.
•• Processing times Processing times (how do you compute these?)(how do you compute these?)
•• Long list of other possible constraintsLong list of other possible constraints



SimulatorSimulator

�� Replay a Replay a ““dayday”” of scheduling using a of scheduling using a 
different algorithm.  different algorithm.  

�� Use data  gathered from checkpoint files Use data  gathered from checkpoint files 
kept by the scheduling systemkept by the scheduling systemkept by the scheduling systemkept by the scheduling system

� We tried 11 different algorithms in the 
simulator.



The Algorithmic Guts of SchedulingThe Algorithmic Guts of Scheduling

Given a task, we need to choose a machine:Given a task, we need to choose a machine:

1.1. Filter out the set of machines it can run on Filter out the set of machines it can run on 
2.2. Compute  score(i,j) for  task j  on each Compute  score(i,j) for  task j  on each 

remaining machine i.remaining machine i.remaining machine i.remaining machine i.
3.3. Assign task to lowest scoring machine.Assign task to lowest scoring machine.

Notes:Notes:
�� The multidimensional nature of fitting a job on The multidimensional nature of fitting a job on 

a machine makes the scoring problem a machine makes the scoring problem 
challenging.challenging.



AlgorithmsAlgorithms

If we place task j on machine i , thenIf we place task j on machine i , then

�� free_ram_pct(i) = free_ram_pct(i) = 
free ram on i  (after scheduling  j) / total ram on ifree ram on i  (after scheduling  j) / total ram on ifree ram on i  (after scheduling  j) / total ram on ifree ram on i  (after scheduling  j) / total ram on i

�� free_cpu_pct(i) = free_cpu_pct(i) = 
free cpu on i  (after scheduling j) / total cpu on ifree cpu on i  (after scheduling j) / total cpu on i

�� free_disk_pct(i) = free_disk_pct(i) = 
free disk on i  (after scheduling j) / total disk on ifree disk on i  (after scheduling j) / total disk on i



AlgorithmsAlgorithms
�� Bestfit:Bestfit: Place job on machine with Place job on machine with ““smallest available holesmallest available hole””

�� V1: score(i,j) = free_ram_pct(i) + free_cpu_pct(i)V1: score(i,j) = free_ram_pct(i) + free_cpu_pct(i)
�� V2: score(i,j) = free_ram_pct(i)V2: score(i,j) = free_ram_pct(i)22 + free_cpu_pct(i)+ free_cpu_pct(i)22

�� V3: score(i,j) = 10 V3: score(i,j) = 10 free_ram_pct(i)free_ram_pct(i) + 10 + 10 free_cpu_pct(i) free_cpu_pct(i) 

�� V4: score(i,j) = 10 V4: score(i,j) = 10 free_ram_pct(i)free_ram_pct(i) + 10 + 10 free_cpu_pct(i) free_cpu_pct(i) + 10 + 10 free_disk_pct(i) free_disk_pct(i) 

�� V5: score(i,j) = max(free_ram_pct(i), free_cpu_pct(i))V5: score(i,j) = max(free_ram_pct(i), free_cpu_pct(i))
�� FirstfitFirstfit: Place job on first machine with a large enough hole: Place job on first machine with a large enough hole�� FirstfitFirstfit: Place job on first machine with a large enough hole: Place job on first machine with a large enough hole

�� V1: score(i,j) = machine_uidV1: score(i,j) = machine_uid
�� V2: score(i,j) = random(i)  (chosen once, independent of j)V2: score(i,j) = random(i)  (chosen once, independent of j)

�� SumSum--OfOf--SquaresSquares: tries to create a diverse set of free machines (see : tries to create a diverse set of free machines (see 
next slide) next slide) 

�� Worst Fit  (EPVM)Worst Fit  (EPVM): score(i,j) = : score(i,j) = 
�� -- (10 (10 free_ram_pct(i)free_ram_pct(i) + 10 + 10 free_cpu_pct(i) free_cpu_pct(i) + 10 + 10 free_disk_pct(i)free_disk_pct(i)))

�� RandomRandom: Random placement: Random placement



Sum of SquaresSum of Squares
Motivation:Motivation: create a diverse profile of free resourcescreate a diverse profile of free resources

�� Characterize each machine by the amount of free resources it has Characterize each machine by the amount of free resources it has 
(ram, disk, cpu).(ram, disk, cpu).

�� Define buckets:  each bucket contains all machines with similar Define buckets:  each bucket contains all machines with similar 
amounts of free resources (in absolute, not relative size).amounts of free resources (in absolute, not relative size).

�� Let b(k) be the number of machines in bucket k.Let b(k) be the number of machines in bucket k.�� Let b(k) be the number of machines in bucket k.Let b(k) be the number of machines in bucket k.
�� Score(i,j) = Score(i,j) = ΣΣ b(k)b(k)22 (where buckets are updated after placing job j (where buckets are updated after placing job j 

on machine i.on machine i.
�� Intuition: function is minimized when buckets are equalIntuition: function is minimized when buckets are equal--sized.sized.
�� Has nice theoretical properties for bin packing with discrete sized Has nice theoretical properties for bin packing with discrete sized 

item distributions.item distributions.

Two versions:Two versions:
oo V1:  bucket ram and cpu in 10 parts, disk in 5 = 500 buckets.V1:  bucket ram and cpu in 10 parts, disk in 5 = 500 buckets.
oo V2:  bucket ram and cpu in 20 parts, disk in 5 = 2000 buckets.V2:  bucket ram and cpu in 20 parts, disk in 5 = 2000 buckets.



Sum of Squares (1Sum of Squares (1--D)D)
�� Suppose four machines with 1G of Ram:Suppose four machines with 1G of Ram:

�� M1 is using 0GM1 is using 0G
�� M2 is using 0GM2 is using 0G
�� M3 is using .25GM3 is using .25G
�� M4 is using .75GM4 is using .75G

�� Bucket size = .33G.  Vector of bucket values = (3,0,1). Bucket size = .33G.  Vector of bucket values = (3,0,1). ΣΣ b(k)b(k)22 = 10.= 10.
�� .5G job arrives..5G job arrives.�� .5G job arrives..5G job arrives.

�� If we add a .5G job to M1 or M2, vector is (2,1,1). If we add a .5G job to M1 or M2, vector is (2,1,1). ΣΣ b(k)b(k)22 = 6.= 6.
�� If we add a .5G job to M3, vector is (2,0,2). If we add a .5G job to M3, vector is (2,0,2). ΣΣ b(k)b(k)22 = 8.= 8.

�� We run the job on M1.We run the job on M1.

�� This algorithm requires more data structures and careful coding than This algorithm requires more data structures and careful coding than 
others.others.



Algorithm EvaluationAlgorithm Evaluation

Big Problem: Big Problem: 
�� If a cell ran all its jobs and is underloaded, If a cell ran all its jobs and is underloaded, 

almost any algorithm is going to do almost any algorithm is going to do 
reasonably well.reasonably well.reasonably well.reasonably well.

�� If a cell was very overloaded and didnIf a cell was very overloaded and didn’’t run t run 
some jobs, we might not  know how much some jobs, we might not  know how much 
work was associated with jobs that didnwork was associated with jobs that didn’’t t 
run.run.



Algorithm Evaluation FrameworkAlgorithm Evaluation Framework

As an example, letAs an example, let’’s use the  metric of throughput s use the  metric of throughput 
(number of completed jobs).(number of completed jobs).

�� Let T(x) be the number of jobs completed using Let T(x) be the number of jobs completed using 
only x% of the machines in a datacenter (choose only x% of the machines in a datacenter (choose only x% of the machines in a datacenter (choose only x% of the machines in a datacenter (choose 
a random x%).a random x%).

�� We can evaluate an algorithm on a cluster by We can evaluate an algorithm on a cluster by 
looking at a collection of T(x) values.looking at a collection of T(x) values.

�� We use We use 20%, 40%, 60%, 80%, 83%, 85%, 87%, 20%, 40%, 60%, 80%, 83%, 85%, 87%, 
90%, 93%, 95%, 100% for x.90%, 93%, 95%, 100% for x.

�� Same reasoning applies to other metrics.Same reasoning applies to other metrics.



Throughput (one day on one Throughput (one day on one 
datacenter)datacenter)















Comparison based on ThroughputComparison based on Throughput
(multiple days on multiple datacenters)(multiple days on multiple datacenters)

�� Over all cells and machine Over all cells and machine 
percentages:percentages:

AlgAlg times besttimes best times  ≥ times  ≥ 
99% best99% best

randFirstFitrandFirstFit 1111 1616

BestFit3BestFit3 1010 2020

FirstFitFirstFit 77 1515

�� Over all cells at 80%Over all cells at 80%--90% of 90% of 
machines:machines:

AlgAlg times besttimes best times  ≥ times  ≥ 
99% best99% best

randFirstFitrandFirstFit 3131 3737

SOS10SOS10 2020 4141

FirstFitFirstFit 1515 3232 FirstFitFirstFit 77 1515

BestFit4BestFit4 66 1919

SOS10SOS10 55 1414

BestFit1BestFit1 33 1212

BestFit2BestFit2 33 1212

RandFitRandFit 33 1212

EPVMEPVM 22 1010

EPVM2EPVM2 22 77

SOS20SOS20 22 1212

FirstFitFirstFit 1515 3232

BestFit3BestFit3 1212 3838

BestFit4BestFit4 1010 3737

EPVM2EPVM2 66 1919

EPVMEPVM 55 3535

BestFit1BestFit1 55 2929

BestFit2BestFit2 55 2929

SOS20SOS20 55 2626

RandFitRandFit 55 2626



Useful work done (in seconds)Useful work done (in seconds)





Useful Work in Seconds Useful Work in Seconds –– Cell Cell 
agag



Comparison based on Useful Comparison based on Useful 
WorkWork

Over all days, cells and machine Over all days, cells and machine 
percentages:percentages: Over all days, cells at 80%Over all days, cells at 80%--90% 90% 

of machines:of machines:

AlgAlg times besttimes best times  ≥ times  ≥ 
99% best99% best

BestFit3BestFit3 294294 318318

AlgAlg times besttimes best times  ≥ times  ≥ 
99% best99% best

BestFit3BestFit3 114114 138138BestFit3BestFit3 294294 318318

RandFFRandFF 264264 306306

BestFit4BestFit4 258258 312312

BestFit1BestFit1 246246 288288

BestFit2BestFit2 246246 288288

EPVMEPVM 240240 270270

EPVM2EPVM2 240240 270270

RandFitRandFit 240240 282282

BestFit3BestFit3 114114 138138

RandFFRandFF 8484 126126

BestFit4BestFit4 7878 132132

BestFit1BestFit1 6666 108108

BestFit2BestFit2 6666 108108

EPVMEPVM 6060 9090

EPVM2EPVM2 6060 9090

RandFitRandFit 6060 102102



Simulation ConclusionsSimulation Conclusions

�� Many more experiments with similar Many more experiments with similar 
conclusions.conclusions.

�� Bestfit seemed to be best.Bestfit seemed to be best.
�� SumSum--ofof--squares was also competitive.squares was also competitive.�� SumSum--ofof--squares was also competitive.squares was also competitive.
�� First Fit was a little worse than sumFirst Fit was a little worse than sum--ofof--

squares.squares.
�� WorstWorst--Fit seemed to do quite poorly.Fit seemed to do quite poorly.



Machine FragmentationMachine Fragmentation

Thesis:
� Empty machines are good.  
� Machines with large holes are good.

� Machine "fullness" can be drastic  depending on 
the  algorithm used.the  algorithm used.

� We count machines m for which
free_cpu(m) < (x/100) *  total_cpu(m)  

&&  free_ram(m) < (x/100)*  total_ram(m)



Machine Fragmentation 

full empty



Machine Fragmentation 

full
empty



PowerPower

�� Machines have the following power Machines have the following power 
characteristics:characteristics:
�� Between 50% and 100% utilization, power Between 50% and 100% utilization, power 

use is linear in machine loaduse is linear in machine load
�� At 0% you can turn the machine offAt 0% you can turn the machine off
�� In between 0% and 50%, power usage is In between 0% and 50%, power usage is 

inefficientinefficient

�� By looking at the fragmentation, you can By looking at the fragmentation, you can 
analyze power utilizationanalyze power utilization



How to do real experimentsHow to do real experiments

�� SimluatorSimluator is only working on a model, is only working on a model, 
would like live experiments.would like live experiments.

�� Ideal experiment:  Run two datacenters on Ideal experiment:  Run two datacenters on 
the same real data and compare the same real data and compare the same real data and compare the same real data and compare 
performance.performance.



Live Experiments on same data Live Experiments on same data 
are difficultare difficult

�� Running two real sized datacenters on Running two real sized datacenters on 
same data is expensive, or even same data is expensive, or even 
impossibleimpossible

�� Once you run on small datacenters, you Once you run on small datacenters, you �� Once you run on small datacenters, you Once you run on small datacenters, you 
are forced to model your inputare forced to model your input

�� It is not clear how to run on real data on It is not clear how to run on real data on 
two sites in parallel, because of sidetwo sites in parallel, because of side--
effects and interaction with other effects and interaction with other 
computing/datacomputing/data



Another ideaAnother idea

�� Look for 2 datacenters on two days that Look for 2 datacenters on two days that 
have have ““similar data.similar data.”” Run different Run different 
algorithms and compare.algorithms and compare.

�� Hard to find such datacenters.Hard to find such datacenters.�� Hard to find such datacenters.Hard to find such datacenters.



Conclusions and Future DirectionsConclusions and Future Directions

�� Careful study and experimentation can lead to more Careful study and experimentation can lead to more 
efficient use of a large efficient use of a large datacenterdatacenter..

�� Best Fit seems to be the best performer for the Best Fit seems to be the best performer for the 
environments we studied. (Usually the best, never environments we studied. (Usually the best, never 
far from best.)far from best.)far from best.)far from best.)

�� SOS and first fit are also reasonable choices.SOS and first fit are also reasonable choices.
�� Methodology for realMethodology for real--time testing of scheduling time testing of scheduling 

algorithms is an interesting area of study.algorithms is an interesting area of study.
�� Algorithms based on our work are now running at Algorithms based on our work are now running at 

googlegoogle and have led to improved throughput and and have led to improved throughput and 
energy performanceenergy performance


