Computing Statistical Summaries over Massive Distributed Data

Ke (Kevin) Yi

Hong Kong University of Science and Technology

Distributed Systems for Massive Data: MapReduce

Open sourcee implementation: Hadoop

Distributed Systems for Massive Data: MapReduce

Open sourcee implementation: Hadoop

Suitable for batch processing (e.g., index construction)

Distributed Systems for Massive Data: Dremel

No open source implementation yet

Distributed Systems for Massive Data: Dremel

No open source implementation yet

Suitable for analytical queries (e.g., extracting a summary)

(Simplified) Model of Computation

(Simplified) Model of Computation

- The root broadcasts a message to initialize computation
- Each node computes a summary on its local data
- The root combines the summaries to produce a global summary

(Simplified) Model of Computation

- The root broadcasts a message to initialize computation
- Each node computes a summary on its local data
- The root combines the summaries to produce a global summary
- Using minimum communication (and load balancing)

- Model of computation
- Frequency estimation (heavy hitters)
- Quantiles (order statistics)
- Other problems

Problem: Frequency Estimation

Input: Multiset *S* of *N* items drawn from the universe $[u] = \{1 \dots u\}$ For example, all IP addresses

Each node j ∈ [k] holds a subset of S
For any item i ∈ [u]
x_{ij}: total number of i's in node j (local count)
y_i = ∑^k_{j=1} x_{ij} (global count)

Compute y_i for each i

Compute exactly: send everything

- Compute exactly: send everything
- Approximate each y_i within addtive error ϵN

- Compute exactly: send everything
- Approximate each y_i within addtive error ϵN
- Sketching: Each node computes a sketch of its own data and sends it to the coordinator.

Count-min sketch, MG sketch, Space saving, etc.

Sketch size: $O(1/\varepsilon)$

Communication cost: $O(k/\varepsilon)$

- Compute exactly: send everything
- Approximate each y_i within addtive error ϵN
- Sketching: Each node computes a sketch of its own data and sends it to the coordinator.

Count-min sketch, MG sketch, Space saving, etc.

Sketch size: $O(1/\varepsilon)$

Communication cost: $O(k/\varepsilon)$

Random sampling

Uniformly randomly sample a subset of size $O(1/\varepsilon^2)$

- Compute exactly: send everything
- Approximate each y_i within addtive error ϵN
- Sketching: Each node computes a sketch of its own data and sends it to the coordinator.

Count-min sketch, MG sketch, Space saving, etc.

Sketch size: $O(1/\varepsilon)$

Communication cost: $O(k/\varepsilon)$

Random sampling

Uniformly randomly sample a subset of size $O(1/\varepsilon^2)$

• We can achieve: $O(\sqrt{k}/\varepsilon)$

Typical values of $\varepsilon = 10^{-3} \sim 10^{-6}, k = 10^2 \sim 10^4$ We assume $k < 1/\varepsilon^2$

Each node holds a set of (item, count) pairs

```
(item, count)
```


send each pair (i, x_{ij}) with probability $g(x_{ij})$

Each node holds a set of (item, count) pairs

HT estimator for x_{ij} : $Y_{i,j} = \frac{x_{i,j}}{g(x_{i,j})}$ if it is sampled, otherwise 0 This is an unbiased estimator Estimator for y_i :

 $Y_i = Y_{i,1} + \cdots + Y_{i,n}$

HT estimator for x_{ij} : $Y_{i,j} = \frac{x_{i,j}}{g(x_{i,j})}$ if it is sampled, otherwise 0 This is an unbiased estimator

Estimator for *y_i*:

 $Y_i = Y_{i,1} + \cdots + Y_{i,n}$

$$Var[Y_{i,j}] = \left(\frac{x_{i,j}}{g(x_{i,j})} - x_{i,j}\right)^2 g(x_{i,j}) + (x_{i,j})^2 (1 - g(x_{i,j}))$$
$$= \frac{x_{i,j}^2 (1 - g(x_{i,j}))}{g(x_{i,j})}$$

$$Var[Y_i] = \sum_{j=1}^{n} Var[Y_{ij}] = \sum_{j=1}^{n} \frac{x_{i,j}^2(1-g(x_{i,j}))}{g(x_{i,j})}$$

Sampling Function

Question: What sampling function g(x) should we use

Question: What sampling function g(x) should we use

Accuracy: standard deviation less than εN A function is valid, if $Var[Y_i] \leq (\epsilon N)^2$ for all items *i* Question: What sampling function g(x) should we use

Accuracy: standard deviation less than εN A function is valid, if $\operatorname{Var}[Y_i] \leq (\epsilon N)^2$ for all items *i*

Communication cost: $\sum_{i,j} g(x_{ij})$

Question: What sampling function g(x) should we use

Accuracy: standard deviation less than εN A function is valid, if $\operatorname{Var}[Y_i] \leq (\epsilon N)^2$ for all items *i* Communication cost: $\sum_{i,j} g(x_{ij})$

Optimal valid g(x)?

A Worst-Case Optimal Sampling Function

$$g_1(x) = \min\{\frac{\sqrt{k}}{\varepsilon N}x, 1\}$$

A Worst-Case Optimal Sampling Function

$$g_1(x) = \min\{\frac{\sqrt{k}}{\varepsilon N}x, 1\}$$

Can show:

•
$$\operatorname{Var}[Y_i] = -\left(\frac{y_i}{\sqrt{k}} - \frac{\varepsilon N}{2}\right)^2 + \frac{(\varepsilon N)^2}{4} \le \frac{1}{4}(\varepsilon N)^2,$$

i.e., $g_1(x)$ is valid

- Communication cost of using $g_1(x)$ is $O(\sqrt{k}/\varepsilon)$
- Communication cost of any valid sampling function is $\Omega(\sqrt{k}/\varepsilon)$ in the worst case (i.e., on some input)

A Worst-Case Optimal Sampling Function

$$g_1(x) = \min\{\frac{\sqrt{k}}{\varepsilon N}x, 1\}$$

Can show:

•
$$\operatorname{Var}[Y_i] = -\left(\frac{y_i}{\sqrt{k}} - \frac{\varepsilon N}{2}\right)^2 + \frac{(\varepsilon N)^2}{4} \le \frac{1}{4}(\varepsilon N)^2,$$

i.e., $g_1(x)$ is valid

- Communication cost of using $g_1(x)$ is $O(\sqrt{k}/\varepsilon)$
- Communication cost of any valid sampling function is $\Omega(\sqrt{k}/\varepsilon)$ in the worst case (i.e., on some input)
- A very recent result shows that any algorithm has to spend $\Omega(\sqrt{k}/\varepsilon)$ bits of communication in the worst case [Woodruff, Zhang, manuscript]

Another Sampling Function

$$g_2(x) = (g_1(x))^2$$

Another Sampling Function

$g_2(x) = (g_1(x))^2$

Can show:

 \blacksquare g_2 is also valid

Another Sampling Function

 $g_2(x) = (g_1(x))^2$

Can show:

- \blacksquare g_2 is also valid
- Clearly, $g_1(x) \ge g_2(x)$

 g_1 's communication cost is always $\Theta(\sqrt{k}/\varepsilon)$, while g_2 can be much better when there are many small local counts

 $g_2(x) = (g_1(x))^2$

Can show:

- \blacksquare g_2 is also valid
- Clearly, $g_1(x) \ge g_2(x)$

 g_1 's communication cost is always $\Theta(\sqrt{k}/\varepsilon)$, while g_2 can be much better when there are many small local counts

A stronger optimality: g₂(x) is instance-optimal
 Define opt(I) = Σ_{i,j} g₂(x_{i,j}) on input I : {x_{i,j}}
 Can show that on every input I, any valid sampling function must have cost Ω(opt(I))

Instance Optimality

All possible inputs

$$g_1(x) = \min\{\frac{\sqrt{k}}{\varepsilon N}x, 1\}$$

HT estimator for x_{ij} : $Y_{i,j} = \frac{x_{i,j}}{g(x_{i,j})}$ if it is sampled, otherwise 0

Estimator for y_i :

$$Y_i = Y_{i,1} + \cdots + Y_{i,n}$$

$$g_1(x) = \min\{\frac{\sqrt{k}}{\varepsilon N}x, 1\}$$

HT estimator for x_{ij} : $Y_{i,j} = \frac{x_{i,j}}{g(x_{i,j})}$ if it is sampled, otherwise 0

Estimator for y_i:

$$Y_i = Y_{i,1} + \dots + Y_{i,n}$$

 $Y_i = \frac{\varepsilon N}{\sqrt{k}} (1 + 0 + 1 + 1 + \dots + 0 + 1)$

$$g_1(x) = \min\{\frac{\sqrt{k}}{\varepsilon N}x, 1\}$$

HT estimator for x_{ij} : $Y_{i,j} = \frac{x_{i,j}}{g(x_{i,j})}$ if it is sampled, otherwise 0

Estimator for y_i:

$$Y_i = Y_{i,1} + \dots + Y_{i,n}$$

 $Y_i = \frac{\varepsilon N}{\sqrt{k}} (1 + 0 + 1 + 1 + \dots + 0 + 1)$

Each site *j* just needs to tell whether *i* is sampled or not!

$$g_1(x) = \min\{\frac{\sqrt{k}}{\varepsilon N}x, 1\}$$

HT estimator for x_{ij} : $Y_{i,j} = \frac{x_{i,j}}{g(x_{i,j})}$ if it is sampled, otherwise 0

Estimator for y_i : $Y_i = Y_{i,1} + \dots + Y_{i,n}$ $Y_i = \frac{\varepsilon N}{\sqrt{k}} (1 + 0 + 1 + 1 + \dots + 0 + 1)$

Each site *j* just needs to tell whether *i* is sampled or not!

The set of sampled items can be encoded in a Bloom filter, taking O(1) bits per item \Rightarrow total cost = $O(\sqrt{k}/\varepsilon)$ bits

Bloom Filters

- A Bloom filter needs $O(\log(1/q))$ bits per item
- No false negatives
- False positive probability = q

Bloom Filters

- A Bloom filter needs $O(\log(1/q))$ bits per item
- No false negatives
- False positive probability = q

Change the estimator to

$$Y_i = \frac{\varepsilon N}{\sqrt{k}} \cdot \frac{Y_{i,1} + \cdots + Y_{i,k} - kq}{1-q}$$

- $g_2(x)$ samples opt(I) (item, count) pairs, which may be much smaller than $O(\sqrt{k}/\varepsilon)$ on many inputs
- But it is a nonlinear sampling function

Estimator for y_i :

$$Y_{i} = \frac{x_{i,1}}{g_{2}(x_{i,1})} + 0 + 0 + \frac{x_{i,4}}{g_{2}(x_{i,4})} + \dots + 0 + \frac{x_{i,k}}{g_{2}(x_{i,k})}$$

- $g_2(x)$ samples opt(I) (item, count) pairs, which may be much smaller than $O(\sqrt{k}/\varepsilon)$ on many inputs
- But it is a nonlinear sampling function

- $g_2(x)$ samples opt(I) (item, count) pairs, which may be much smaller than $O(\sqrt{k}/\varepsilon)$ on many inputs
- But it is a nonlinear sampling function

- $g_2(x)$ samples opt(I) (item, count) pairs, which may be much smaller than $O(\sqrt{k}/\varepsilon)$ on many inputs
- But it is a nonlinear sampling function

Simulation Results

 $k = 1000, N = 10^9$ following Zipf distribution with $\alpha = 1.2$. Estimate the frequencies of the 100 most popular items. Variance computed from 100 runs, and take the worst

- Model of computation
- Frequency estimation (heavy hitters)
- Quantiles (order statistics)
- Other problems

Quantiles

In a set of *n* values, the (r/n)-quantile is the value ranked at *r*. The 0.5-quantile is the median.

Quantiles

In a set of *n* values, the (r/n)-quantile is the value ranked at *r*. The 0.5-quantile is the median.

An ε -approximate (r/n)-quantile is any value ranked between $[r - \varepsilon n, r + \varepsilon n]$.

Quantiles

In a set of *n* values, the (r/n)-quantile is the value ranked at *r*. The 0.5-quantile is the median.

Sketching: Each node computes a sketch of its own data and sends it to the coordinator.

Sketch size: $O(1/\varepsilon)$

Communication cost: $O(k/\varepsilon)$

Random sampling

Uniformly randomly sample a subset of size $O(1/\varepsilon^2)$

• We can achieve: $O(\sqrt{k}/\varepsilon)$

Typical values of $\varepsilon = 10^{-3} \sim 10^{-6}, k = 10^2 \sim 10^4$ We assume $k < 1/\varepsilon^2$

The algorithm for each node

Sample each value with probabiltiy p

At the base station:

Answering value-to-rank query

Given any value x, estimates its rank r(x)

At the base station:

Answering value-to-rank query

 $\hat{r}(10) = 5 + 2/p$

Correctness

Will show: $\hat{r}(x)$ is an unbiased estimator of r(x) with standard deviation εn .

r(10)?

r(10)?5 Follows a geometric distribution (almost) E[?] = 1/p $Var[?] \le 1/p^2$ Set $p = \frac{\sqrt{k}}{\varepsilon n}$ $\operatorname{Var}[\hat{r}(x)] \leq k/p^2 = (\varepsilon n)^2$ Total cost: $np = \sqrt{k}/\varepsilon$ in expectation

- Model of computation
- Frequency estimation (heavy hitters)
- Quantiles (order statistics)
- Other problems

ε -approximate range counting

Let P be a set of n points in the plane. Compute a summary structure so that, for any range Q (from a certain range space), $|P \cap Q|$ can be extracted with error εn

ε -approximations

 $S \subseteq P$ is an ε -approximation of P if for any Q (from a certain range space),

$$|P \cap Q| = |S \cap Q| \cdot \frac{n}{|S|} \pm \varepsilon n$$

ε -approximations

 $1/\varepsilon \log^{O(1)}(1/\varepsilon)$ $1/\varepsilon^{4/3}$

Size of ε -approximations

ε -approximations over k distributed data sets

$$\sqrt{k} \cdot 1/\varepsilon \log^{O(1)}(1/\varepsilon) \qquad \qquad k^{1/3} \cdot 1/\varepsilon^{4/3}$$

The General Question

For what probems can we do better than $k \times$ sketch size?

For what probems can we do better than $k \times$ sketch size?

- Some positive results in this talk
- Negative results in Qin Zhang's talk
 - Number of distinct elements
 - Frequency moments

- Optimal Sampling Algorithms for Frequency Estimation in Distributed Data. Zengfeng Huang, Ke Yi, Yunhao Liu, Guihai Chen. INFOCOM 2011.
- Sampling Based Algorithms for Quantile Computation in Sensor Networks. Zengfeng Huang, Lu Wang, Ke Yi, and Yunhao Liu. SIGMOD 2011.