
Complexity of Finding
a Duplicate in a Stream:
Simple Open Problems

1

Jun Tarui
Univ of Electro-Comm, Tokyo

Shonan, Jan 2012

Duplicate Finding Problem

Given: Stream a1, …,am ai ∈ {1,…,n}

Assuming m > n, find a duplicate d = ai = al
(i≠l)

2

(i≠l)

Finding just one, any duplicate suffices.
Exists by the pigeonhole principle.

Duplicate Finding Problem

For m = n+1, a deterministic algorithm with
O(log n) space and O(1) passes exist?
[Muthu, talk@Kyoto 05]
→ No [T. 07] (-->Muthu’s survey05)

3

→ No [T. 07] (-->Muthu’s survey05)

Main-Point-of-Talk: Open Question 1:
the same question for the case m = 2n
(or m = n2 or m=poly(n))

Finding a missing item

Assuming m < n, find a missing item:
x ∈ {1,…,n} but ∉ {a1, …, am}

a dual problem

4

a dual problem
but no known black-box reductions

Our lower bounds for space--#passes trade-off
apply for both problems.

Simple algorithms and our lower bounds

0. In RAM model, O(log n)-space O(n)-time by 2 pointers.

1. In the 1st pass, count # of ai’s in [1 n/2] and in (n/2 n] ...

O(log n) space, O(log n) passes
→ With O(log n) space, needs Ω(log n/loglog n) passes

5

→ With O(log n) space, needs Ω(log n/loglog n) passes

2. With two passes: In the 1st pass, count # of ai’s in
[1, √n], (√n, 2√n], …, (n-√n, n]. Space O(n^1/2 log n)
of blocks n^1/2 → (n/log n)^1/2: Space O((n log n)^1/2)

With k passes, space O(n^(1/k) (log n)^(1-1/k))
→ With k passes, needs space Ω(n^(1/ 2k-1))

3. m=2n: Randomly choose i ∈ {1,…, m}.
Check if d=ai occurs in ai+1, …, am.
If so, report d as a duplicate; otherwise report “failure”
one pass, O(log n) space, success prob ≥ ½, Las-Vegas

For m=n+1: one-pass Las-Vegas needs space Ω(n)

6

For m=n+1:
One-pass Monte-Carlo (error < ¼) with O(log^3 n) space

[Gopalan-Radhakrishnan SODA09]
improved to O(log^2 n) [Jowhari-Sagiam-Tarods PODS11]

Open Problem 2: Reduce space to O(log n)

Result for multiple-pass algorithms

Result 1:
Assume that m=n+1. A streaming algorithm with
O(log n) space requires Ω(log n/loglog n) passes.
A k-pass algorithm requires Ω(n^(1/ 2k-1)) space.

7

A k-pass algorithm requires Ω(n^(1/ 2k-1)) space.

The same bounds apply for finding a missing-item
with m=n-1.

Results for one-pass algorithms

2. For any m > n (including m=∞), if P is a deterministic
read-once branching program that finds a duplicate, then
the number of non-sink nodes in P is at least 2^n.

3. Assume that m = n+1. Let P be a Las-Vegas randomized
oblivious read-once branching program that finds a

8

oblivious read-once branching program that finds a
duplicate with prob ≥ ½. Then, the number of nodes in P
is at least 2^(n/4 – o(1)).

a result similar (but different) to 3 in
[Razborov-Wigderson-Yao02: Read-Once Branching

Programs, Rectangular Proofs of the Pigeonhole
Principle and the Transversal Calculus]

Proof Sketch of Result 1

1. Relate to the Karchmer-Wigderson
communication game for Majority

2. Apply well-known size lower bounds for

9

constant-depth circuits computing Majority

Remark: First reduce to a comm complexity
problem; but finish off using circuit bounds

Assume that m=n+1 is even.
Consider inputs:
A={a1, … ,am/2} all distinct → Alice
B={am/2+1, …, am} all distinct → Bob

Alice and Bob must find some j ∈ A∩B.

10

Alice and Bob must find some j ∈ A∩B.

In one round, Alice → Bob or Bob → Alice

s-bit r-pass streaming algorithm
→ s-communication-bit (2r-1)-round protocol

Karchmer-Wigderson communication game for
a (monotone) Boolean function f : {0,1}n→ {0,1}

Alice: x ∈ {0,1}n : f(x)=1 (minterm)
Bob: y ∈ {0,1}n : f(y)=0 (maxterm)
Find j such that xj≠yj (xj=1 and yj=0)

11

communication complexity
= min depth of AND/OR circuits for f

of rounds ↔ # of AND/OR alternations

Majority(x1, …, xn) = 1 if Σxi ≥ n/2, and 0 otherwise.
Assume n is odd.
minterms = maxterms = (n+1)/2-subsets of {1,…,n}

A, B: (n+1)/2-subsets of {1, …, n}
Alice gets A, Bob gets B; they must find j ∈ A∩B
↔ monotone circuits computing Majority

12

↔ monotone circuits computing Majority

Apply size lower bounds for monotone constant-
depth circuits [Boppana86]. (the same bound for

general circuits later given by [Hastad87])
size → fan-in of each gate end-of-proof-sketch

The proof breaks down for bigger m

Consider f(x) = 1 if Σxi ≥ n/2 + ε(n);
0 if Σxi ≤ n/2 - ε(n).

For ε(n) = n/ polylog(n), computable by poly-size
O(1)-depth circuits [Ajtai-BenOr84]

13

O(1)-depth circuits [Ajtai-BenOr84]

→The same argument applied to space O(log n)
algorithms fails to yield an ω(1) bound for
of passes if m ≥ (1 + 1/polylog(n))n

Deterministic one-pass algorithms

Task 1: Find a duplicate d.
Task 2: Find d together with i≠l such that d=ai=al.

an n-way read-once branching program

14

[RWY02] For Task 2, # of nodes ≥ 2^Ω(n log n).

Result 2: For Task 1, # of non-sink nodes ≥ 2^n.

Both results hold for any m > n, including m=∞

Proof sketch of Result 2

For node v, define K[v] = { j ∈ {1,…,n} :
Every path to v includes “ai=j” }

Claim: {K[v] : v node} = the power set of {1, …, n}

15

Assume otherwise and consider an inclusion-minimal
A ⊆ {1,…,n} that does not appear as K[v].

E.g., A = {1,2,4}. For “ai=?” at node v with K[v]={1,2},
the adversary responds: ai=4. end-of-proof-sketch

Open Problems Restated

1. Show that O(log n)-space O(1)-pass is impossible for
m=2n deterministic duplicate finding
(or no matter how big m is)

2. For the case m=n+1, give a Monte-Carlo randomized

16

2. For the case m=n+1, give a Monte-Carlo randomized
algorithm that finds a duplicate with 1 pass and O(log n) space.

connection to
the proof complexity of the pigeonhole principle?

Thanks!

17

Thanks!

How should I get to Kyoto from here?

Go to “Shin-Yokohama” JR station, and take
a Nozomi Shinkansen (bullet train); takes 2

hours to get to Kyoto; runs every 10
minutes; reservation not needed

18

How should I get to Shin-Yokohama?
Get to Zushi station by bus or taxi;

go to Yokohama station by JR trains;
go to Shin-Yokohama by JR trains

