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Duplicate Finding Problem

Given:  Stream  a1, …,am ai ∈ {1,…,n}

Assuming m > n, find a duplicate d = ai = al
(i≠l) 
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(i≠l) 

Finding just one, any duplicate suffices.
Exists by the pigeonhole principle.



Duplicate Finding Problem

For m = n+1, a deterministic algorithm with 
O(log n) space and O(1)  passes exist? 
[Muthu, talk@Kyoto 05]  
→ No [T. 07]  (-->Muthu’s survey05)
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→ No [T. 07]  (-->Muthu’s survey05)

Main-Point-of-Talk:  Open Question 1:
the same question for the case m = 2n
(  or m = n2 or m=poly(n)  )



Finding a missing item

Assuming m < n, find a missing item:
x ∈ {1,…,n}  but  ∉ {a1, …, am}

a dual problem
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a dual problem
but no known black-box reductions

Our lower bounds for  space--#passes trade-off 
apply for both problems.



Simple algorithms and our lower bounds

0. In RAM model, O(log n)-space O(n)-time by 2 pointers.

1. In the 1st pass, count # of ai’s in [1 n/2] and in (n/2  n] ...

O(log n) space, O(log n) passes
→ With O(log n) space, needs Ω(log n/loglog n) passes
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→ With O(log n) space, needs Ω(log n/loglog n) passes

2. With two passes: In the 1st pass, count # of ai’s in
[1, √n], (√n, 2√n], …, (n-√n, n].   Space O(n^1/2  log n) 
# of blocks n^1/2 → (n/log n)^1/2:  Space O((n log n)^1/2 )

With k passes, space O(n^(1/k)  (log n)^(1-1/k) )
→ With k passes, needs space Ω( n^(1/ 2k-1) ) 



3. m=2n:  Randomly choose i ∈ {1,…, m}.
Check if d=ai occurs in ai+1, …, am.
If so, report d as a duplicate; otherwise report “failure”
one pass, O(log n) space, success prob ≥ ½, Las-Vegas

For m=n+1:  one-pass Las-Vegas needs space Ω(n)
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For m=n+1:
One-pass Monte-Carlo (error < ¼)  with O(log^3 n) space

[Gopalan-Radhakrishnan SODA09]
improved to O(log^2 n) [Jowhari-Sagiam-Tarods PODS11]

Open Problem 2:  Reduce space to O(log n)



Result for multiple-pass algorithms

Result 1: 
Assume that m=n+1. A streaming algorithm with
O(log n) space requires Ω(log n/loglog n) passes.
A k-pass algorithm requires Ω(n^(1/ 2k-1) ) space.
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A k-pass algorithm requires Ω(n^(1/ 2k-1) ) space.

The same bounds apply for finding a missing-item
with m=n-1.



Results for one-pass algorithms

2. For any m > n (including m=∞), if P is a deterministic
read-once branching program that finds a duplicate, then
the number of non-sink nodes in P is at least 2^n.

3. Assume that m = n+1. Let P be a Las-Vegas randomized
oblivious read-once branching program that finds a
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oblivious read-once branching program that finds a
duplicate with prob ≥ ½. Then, the number of nodes in P
is at least 2^(n/4 – o(1)).

a result similar (but different) to 3 in
[Razborov-Wigderson-Yao02: Read-Once Branching 

Programs, Rectangular Proofs of the Pigeonhole 
Principle and the Transversal Calculus]



Proof Sketch of Result 1

1. Relate to the Karchmer-Wigderson 
communication game for Majority

2. Apply well-known size lower bounds for
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constant-depth circuits computing Majority

Remark:  First reduce to a comm complexity
problem; but finish off using circuit bounds



Assume that m=n+1 is even.
Consider inputs: 
A={a1, … ,am/2}  all distinct → Alice
B={am/2+1, …, am} all distinct → Bob

Alice and Bob must find some j ∈ A∩B. 
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Alice and Bob must find some j ∈ A∩B. 

In one round, Alice → Bob or Bob → Alice

s-bit  r-pass streaming algorithm
→ s-communication-bit  (2r-1)-round protocol



Karchmer-Wigderson communication game for
a (monotone) Boolean function f : {0,1}n→ {0,1}

Alice:   x ∈ {0,1}n :  f(x)=1   (minterm)
Bob:    y ∈ {0,1}n :  f(y)=0   (maxterm)
Find j such that xj≠yj (xj=1 and yj=0)
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communication complexity 
= min depth of AND/OR circuits for f

# of rounds ↔ # of AND/OR alternations



Majority(x1, …, xn) = 1 if Σxi ≥ n/2, and 0 otherwise.
Assume n is odd.
minterms = maxterms = (n+1)/2-subsets of {1,…,n}

A, B: (n+1)/2-subsets of {1, …, n}
Alice gets A, Bob gets B; they must find j ∈ A∩B
↔ monotone circuits computing Majority
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↔ monotone circuits computing Majority

Apply size lower bounds for monotone constant-
depth circuits [Boppana86]. (the same bound for 

general circuits later given by [Hastad87] )
size → fan-in of each gate end-of-proof-sketch



The proof breaks down for bigger m

Consider  f(x) = 1 if Σxi ≥ n/2 + ε(n);
0 if Σxi ≤ n/2 - ε(n).

For ε(n) = n/ polylog(n), computable by poly-size
O(1)-depth circuits [Ajtai-BenOr84]
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O(1)-depth circuits [Ajtai-BenOr84]

→The same argument applied to space O(log n)
algorithms fails to yield an ω(1) bound for
# of passes if m ≥ (1 + 1/polylog(n))n



Deterministic one-pass algorithms

Task 1: Find a duplicate d.
Task 2: Find d together with i≠l such that d=ai=al.

an n-way read-once branching program
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[RWY02]  For Task 2, # of nodes ≥ 2^Ω(n log n).

Result 2:  For Task 1, # of non-sink nodes ≥ 2^n.

Both results hold for any m > n, including m=∞



Proof sketch of Result 2

For node v, define K[v] = { j ∈ {1,…,n} :
Every path to v includes “ai=j” }

Claim: {K[v] : v node} = the power set of {1, …, n}
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Assume otherwise and consider an inclusion-minimal 
A ⊆ {1,…,n} that does not appear as K[v].

E.g., A = {1,2,4}. For “ai=?” at node v with K[v]={1,2},
the adversary responds: ai=4.   end-of-proof-sketch



Open Problems Restated

1. Show that O(log n)-space O(1)-pass is impossible for
m=2n deterministic duplicate finding
(or no matter how big m is)

2. For the case m=n+1, give a Monte-Carlo randomized
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2. For the case m=n+1, give a Monte-Carlo randomized
algorithm that finds a duplicate with 1 pass and O(log n) space.

connection to 
the proof complexity of the pigeonhole principle?



Thanks!
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Thanks!



How should I get to Kyoto from here?

Go to “Shin-Yokohama” JR station, and take
a Nozomi Shinkansen (bullet train); takes 2 

hours to get to Kyoto; runs every 10 
minutes; reservation not needed
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How should I get to Shin-Yokohama?
Get to Zushi station by bus or taxi; 

go to Yokohama station by JR trains; 
go to Shin-Yokohama by JR trains


