

Safe Zones for Tracking the Median Function

Assaf Schuster, Technion
Daniel Keren, Haifa University
Tsachi Sharfman, Technion
Minos Garofalakis, Technical University of Crete
Vasilis Samoladas, Technical University of Crete

Goal

- Construct safe zones that contain the safe zones defined by the geometric method
 - Guarantees that resulting constraints remain effective for longer periods of time
 - Can potentially reduce communications by orders of magnitude

Title/Authors 2 Institute Logo

Tracking the Median Function

- We have n nodes, each holding a time varying d dimensional vector denoted by $\mathbf{v_i}$.
- We denote their average by v.
- •• We are given the median function $med(\mathbf{v})$ and an approximation margin ϵ .
- At any time we would like to hold a number x, referred to as the approximation value, such that $|med(\mathbf{v}) x| < \varepsilon$.

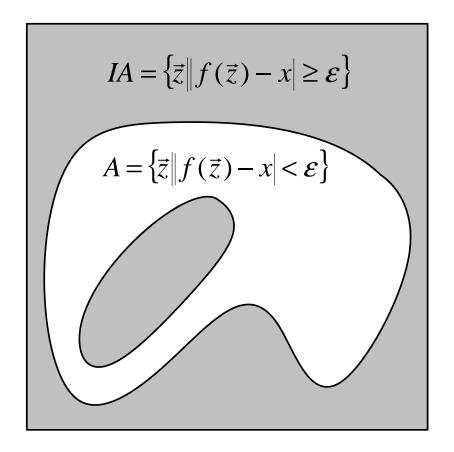
Title/Authors 3 Institute Logo

Admissible and Inadmissible Regions

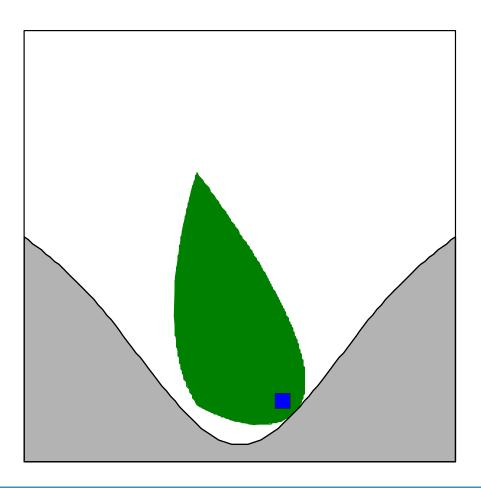
- Given a function f, an estimate value x, and an approximation margin ε , we define the following:
 - Let the admissible region, denoted by A(f,x,ε) be the set of vectors for which the value of the function is within the approximation range, i.e. A(f,x,ε) = {z| |f(z)-x|< ε}</p>
 - Similarly, let the *inadmissible region*, denoted by IA(f,x,ε) be the set of vectors for which the value of the function is not within the approximation range, i.e. A(f,x,ε) = {z| |f(z)-x| ≥ ε}

Title/Authors 4 Institute Logo

Admissible and Inadmissible Regions (Cont.)

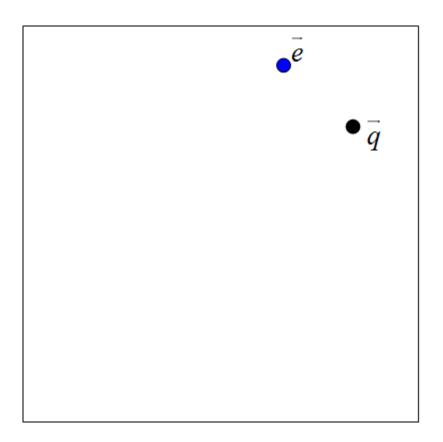


Safe Zone Induced by the Geometric Method



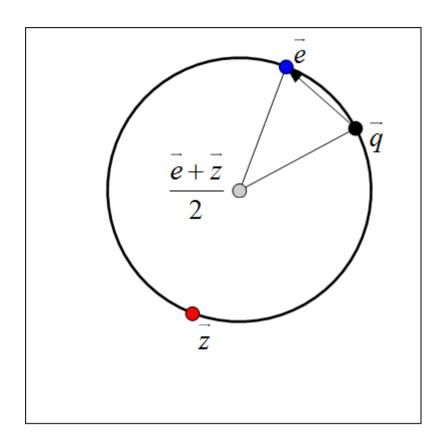
Title/Authors 6 Institute Logo

Safe Zone Induced by a Singular Vector



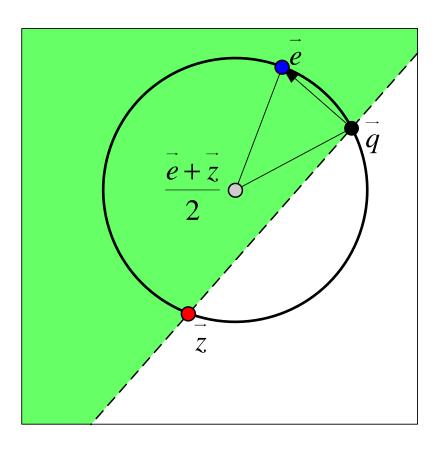
Title/Authors 7 Institute Logo

Safe Zone Induced by a Singular Vector



Title/Authors 8 Institute Logo

Safe Zone Induced by a Singular Vector



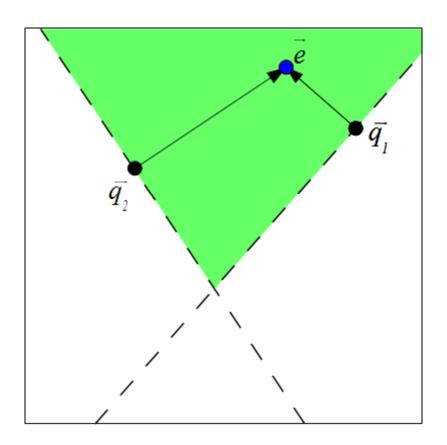
Title/Authors 9 Institute Logo

An Induced Half-Space

Given an inadmissible vector \mathbf{q} and an estimate vector \mathbf{e} , let $H(\mathbf{e}, \mathbf{q})$ be the half-space defined by the hyper-plane passing through \mathbf{q} , orthogonal to \mathbf{e} - \mathbf{q} , and containing \mathbf{e} . We refer to $H(\mathbf{e}, \mathbf{q})$ as the half-space induced by \mathbf{q} .

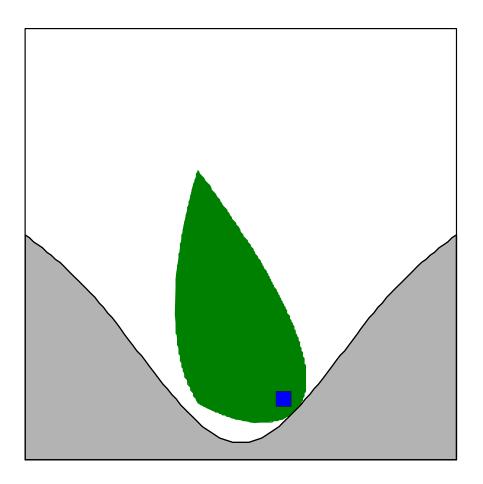
Title/Authors 10 Institute Logo

Safe Zone Induced by Two Singular Vectors



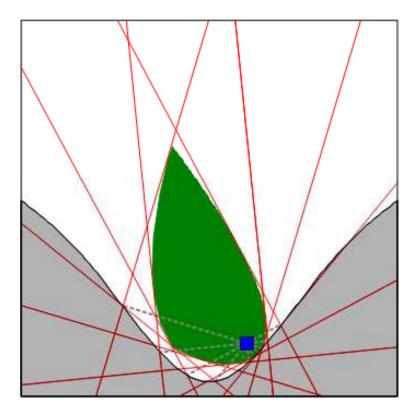
Title/Authors 11 Institute Logo

Safe Zone Induced by the Geometric Method



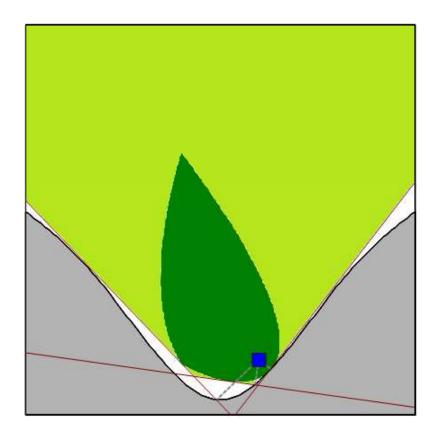
Title/Authors 12 Institute Logo

Safe Zone as an Intersection of Half-Spaces



Title/Authors 13 Institute Logo

Safe Zone as an Intersection of Half-Spaces



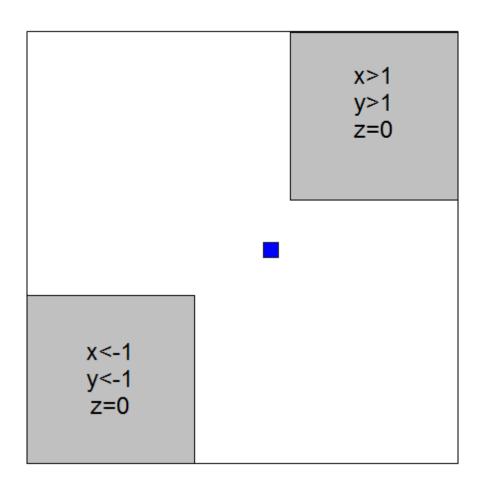
Title/Authors 14 Institute Logo

Support Vectors

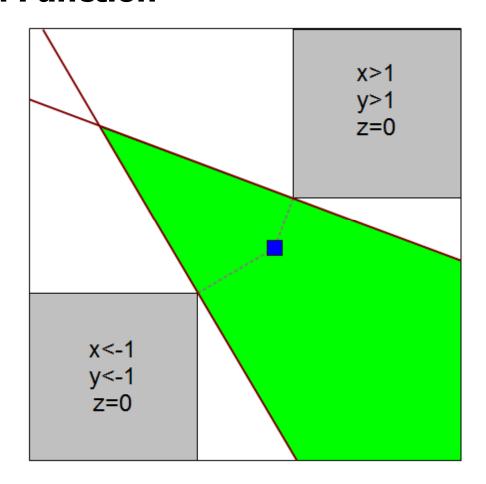
- Given an inadmissible region and an estimate vector, we would like to select a small set of vectors from the set such that the intersection of the half spaces they induce is contained in the admissible region.
- We refer to these vectors as support vectors

Title/Authors 15 Institute Logo

The Median Function



The Median Function

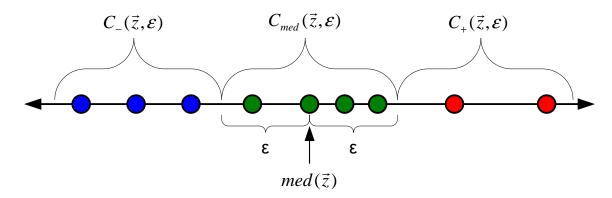


Notations

- Let I denote a subset of the natural numbers in the range $\{1,...,d\}$.
- Let r be a real value, and let \mathbf{z} be a d-dimensional vector. Let $\mathbf{z}^{(I,r)}$ denote the vector \mathbf{z} with the value of the components whose index is in I set to r.
- Let $\begin{bmatrix} I \\ m \end{bmatrix}$ be the set of all m sized subsets of I.

Definitions

- Given a d-dimensional vector \mathbf{z} , an estimate value x and an approximation margin ϵ , we group the vector's components as follows:
 - $C_+(\mathbf{z}, \epsilon)$: A set of the indices of the components of \mathbf{z} whose value is greater than or equal to $median(\mathbf{z}) + \epsilon$.
 - $C_{med}(\mathbf{z}, \epsilon)$: A set of the indices of the components of \mathbf{z} whose value is in the range $median(\mathbf{z}) \pm \epsilon$.
 - $C_{\underline{}}(\mathbf{z}, \epsilon)$: A set of the indices of the components of \mathbf{z} whose value is smaller than or equal to $median(\mathbf{z})$ - ϵ



Institute Logo

Support Vectors

- The safe zone consists of the half-spaces defined by the estimate vector and a set of vectors referred to as the support vectors.
- The set of support vectors is the union of the following two sets:

$$Support_{+}(\vec{e}, \varepsilon) = \left\{ \vec{e}^{(I, med(\vec{e}) - \varepsilon)} \middle| I \in \begin{bmatrix} C_{med}(\vec{e}, \varepsilon) \cup C_{+}(\vec{e}, \varepsilon) \\ \frac{d+1}{2} - ||C_{-}(\vec{e}, \varepsilon)|| \end{bmatrix} \right\}$$

$$Support_{-}(\vec{e}, \varepsilon) = \left\{ \vec{e}^{(I, med(\vec{e}) + \varepsilon)} \middle| I \in \begin{bmatrix} C_{med}(\vec{e}, \varepsilon) \cup C_{-}(\vec{e}, \varepsilon) \\ \frac{d+1}{2} - ||C_{+}(\vec{e}, \varepsilon)|| \end{bmatrix} \right\}$$

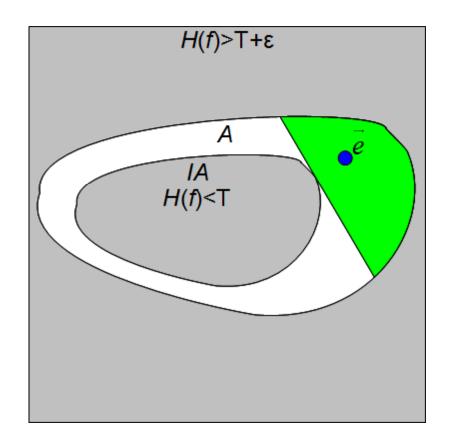
Title/Authors 20 Institute Logo

Monitoring Entropy

- We are given a distributed set of time-varying frequency vectors \mathbf{f}_{i} let their \mathbf{f} denote their sum.
- We would like to monitor the entropy of the sum, H(f), with an approximation error of ε .
- It is easy to show that the <u>inadmissible</u> region *IA* defined by *H*(*f*)>T is convex.
- Consequently, the <u>admissible</u> region A defined by $H(f) < T + \varepsilon$ is convex.
- Given an estimate vector e (that belongs to A\IA) let e* be the vector in IA that is closest to e.
- •• We can construct a safe zone by taking the intersection of $H(e,e^*)$ and A.

Title/Authors 21 Institute Logo

Monitoring Entropy (Cont')



Title/Authors 22 Institute Logo

Summary and Future Work

- **Extend technique to general AMS sketches**
- Extend technique to generic families of functions
- Refine and extend the notion of optimality

Title/Authors 23 Institute Logo

Backup Slides

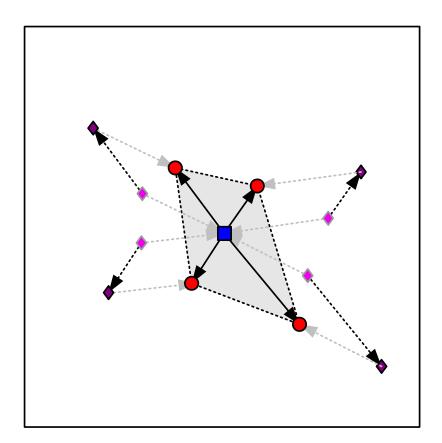
Title/Authors 24 Institute Logo

Algorithmic Framework

- From time to time, as specified by the protocol, we will perform a synchronization procedure, which consists of:
 - Collecting local vectors from nodes. Value sent by the ith vector is denoted by v'_i.
 - Determining their average, denoted by e.
 - Sending the average vector back to the nodes.
- After synchronization:
 - We set $x=f(\mathbf{e})$
 - At each node determine a vector $\mathbf{\delta_i} = \mathbf{e} \mathbf{v'_i}$. This value remains fixed until the next synchronization event.
 - Each node holds an additional vector \mathbf{u}_i referred to as the drift vector, $\mathbf{u}_i = \mathbf{v}_i + \mathbf{\delta}_i$
- At any time, the average of the drift vectors is equal to the average of data vectors. After synchronization drift vectors are equal to the estimate vector.

Title/Authors 25 Institute Logo

Algorithmic Framework (cont.)



Title/Authors 26 Institute Logo

AMS Sketches

- Given two (very) large d vectors, $\mathbf{v_a}$ and $\mathbf{v_b}$, their inner product $\langle \mathbf{v_a}, \mathbf{v_b} \rangle$ can be approximated as follows:
 - Given (ε, δ) , let $n = O(1/\varepsilon^2)$ and $m = O(\ln(1/\delta))$
 - Each vector v is represented by a m×n matrix S(v) referred as the vector's sketch:
 - We use $m \times n$ four-wise independent d dimensional random vectors $\mathbf{r}_{i,j}$ where each component receives either 1 or -1 with equal probability
 - Given a vector v let S(v)_{i,i} = <v,r_{i,i}>
 - Let S(v_a)• S(v_b) denote the component-wise product of S(v_a) and S(v_b)
 - The inner product of $\mathbf{v_a}$ and $\mathbf{v_b}$ is approximated by the median of the average of the rows of $\mathbf{S}(\mathbf{v_a}) \bullet \mathbf{S}(\mathbf{v_b})$
- •• The AMS estimate has a error of $\varepsilon ||\mathbf{v}_a|| \cdot ||\mathbf{v}_b||$ with probability of are least 1- δ

Title/Authors 27 Institute Logo