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Overlapping Clustering

e Motivation:

1. Natural Social Communities
[MSSTO0S8,ABL10,...] =2

2. Better clusters (Part 1, KKM)

3. Easier to compute (distributed) (Part 2,
GLMY,AGM)

4. Useful for Distributed
Computation (Part 3, AGM)

e Good Clusters 2 Low Conductance?

— Inside: Well-connected,
— Toward outside: Not so well-connected.



Conductance and Local Clustering

#cut edges
min(vol(S),vol(S))

e Conductance of a cluster S =

e Approximation Algorithms

— Oflog n)(LR) and O(+/logn) (ARV) o \. o ©
* Local Clustering: Given a node v, S ..’<:o o®
find a min-conductance cluster S o
containing v.

* Local Algorithms based on
— Truncated Random Walk(ST03), PPR Vectors (ACLO7)

— Empirical study: A cluster with good conductance (LLM10)



Overlapping Clustering

* Find a set of overlapping clusters:

{S1,...,5:}
each cluster with volume <= B,
covering all nodes,

and minimize:
— Maximum conductance of clusters (Min-Max)
— Sum of the conductance of clusters (Min-Sum)

* Overlapping vs. non-overlapping variants?



Overlapping Clustering: Approx. Results

[Khandekar, Kortsarz, M.]

Overlap vs. no-overlap:
— Min-Sum: Within a factor 2 using Uncrossing.
— Min-Max: Might be arbitrarily different.

min-sum overlap no-overlap
bounded-count Sum.Overlap.Bound Sum.Nonoverlap.Bound
O(logn) O(logn)

(with O(K) clusters)

(with O(K) clusters)

unbounded-count

Sum.Overlap.Unbound

Sum.Nonoverlap.Unbound

O(logn) O(logn)
min-max overlap no-overlap
bounded-count Max.Overlap.Bound Max.Nonoverlap.Bound
O(logn) O(log* nloglogn)

(with O(K log n) clusters)

(with O(K) clusters)

unbounded-count

Max.Overlap.Unbound
O(logn)

Max.Nonoverlap.Unbound
O(log* nloglogn)
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Local Graph Algorithms

* Local Algorithms: Algorithms based on local
message passing among nodes.

Local Algorithms:
* Applicable in distributed large-scale graphs.

e Faster, Simpler implementation (Mapreduce,
Hadoop, Pregel).

e Suitable for incremental computations.



Local Clustering: Recap

#cut edges
vol(s)

Conductance of a cluster S =

Goal: Given a node v, find a

min-conductance cluster S

containing v.

&)
o
S o
Local Algorithms based on ®
= °

— Truncated Random Walk(ST), PPR Vectors (ACL),

Outline (Local Distributed Algorithms)
— Computing Personalized Pagerank Vectors >
— Local and Overlapping Clustering
— [Embedding (low-rank matrix approximation)]



Personalized PageRank

* Personalized PageRank (PPR) of u—=2v:
Probability of visiting v in the following
random walk: at each step,

— With probability a, go back to u.

— With probability 1-a, go to a neighbor uniformly at
random.

* PPRis a similarity measure: It captures
— Distance
— #disjoint paths



Approximate PPR vector

* Personalimized PageRank: Random Walk with Restart.

e PPR Vector for u: vector of PPR value from u.
« Contribution PR (CPR) vector for u: vector of PPR value tO wu.

* Goal: Compute approximate PPR or CPR
Vectors with an additive error of €

e =.001 . e=.0005



Local PushFlow Algorithms

For each node let p, = 0 be its initial ppr vector
and r, = Y, its residual vector.

- While maxr,(u) > €:
U,V

- For each couple of vertices s.t.7,(u) > € :
* Po(u) = po(u) + ary(u)
+ () = 7o (u) + (1 — a)ry(u)/2
- For each ¢ such that (t,u) € E -
ri(u) = ri(u) + (1 - a)ry(u)/(2d(u))

* Return the p,vector for each v.



Local Algorithms for PPR

* Local PushFlow Algorithms for approximating
both PPR and CPR vectors (ACLO7,ABCHMTOS)

* Theoretical Guarantees in approximation:

— Theorem: O(k) Push Operations to compute top k
PPR or CPR values [ACLO7,ABCHMTO8]

* Simple Pregel or Mapreduce Implementation



PPR-based Local Clustering Algorithm

1. Compute approximate PPR vector for v.

2. Sweep(v): For each vertex v, find the
min-conductance set among subsets
S7v ={ur,...,u;}
where ,, . 's are sorted in the decreasing
order of ’

Po(uj)
deg u

 Thm[ACL]:If the conductance of the output
is¢®, and the optimum is ®, then ¢ < V kP
where k is the volume of the optimum.



Local Overlapping Clustering

 Modified Algorithm:

— Find a seed set of nodes that are far from each other.

— Candidate Clusters: Find a cluster around each node
using the local PPR-based algorithms.

— Solve a covering problem over candidate clusters.
— Post-process by combining/removing clusters.

* Experiments:

1. Large-scale Community Detection on Youtube graph
(Gargi, Lu, M., Yoon).

2. On public graphs (Andersen, Gleich, M.)



Large-scale Overlapping Clustering

e Clustering a Youtube video subgraph (Lu, Gargi, M.,
Yoon, ICWSM 2011)

— Clustered graphs with 120M nodes and 2B edges in
5 hours.

— https://sites.google.com/site/ytcommunity
* Overlapping clusters for Distributed

Computation (Andersen, Gleich, M.)

— Ran on graphs with up to 8 million nodes.

— Compared with Metis and GRACLUS = Better
quality (up to 40%) = See next section.



Future Directions

* Design practical algorithms for overlapping
clustering with good theoretical guarantees

* Maximize minimum Density?

* Local algorithm for low-rank embedding of
large graphs = [Useful for online clustering]

— Message-passing-based low-rank matrix
approximation

— Ran on a graph with 50M nodes and in 3 hours
(using 1000 machines)

— With Keshavan, Thakur.
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Clustering for Distributed Computation

* Implement scalable distributed algorithms
— Partition the graph = assign clusters to machines
— must address communication among machines
— close nodes should go to the same machine

* |dea: Overlapping clusters [Andersen, Gleich, M.]
* Given a graph G, overlapping clustering (C, y) is

— a set of clusters C each with volume < B and
— a mapping from each node v to a home cluster y(v).

 Message to an outside cluster for v goes to y(v).
— Communication: e.g PushFlow to outside clusters



Formal Metric: Swapping Probability

In a random walk on an overlapping clustering,
the walk moves from cluster to cluster.

On leaving a cluster, it goes to the home cluster
of the new node.

Swap: A transition between clusters

— requires a communication if the underlying graph is
distributed.

Swapping Probability := probability of swap in a
long random walk.



Swapping Probability: Lemmas

* Lemma 1: Swapping Probability for

e i
Partitioning P: E |o(C
Vol(G) Cep‘ (©)]

* Lemma 2: Optimal swapping probability for
overlapping clustering might be arbitrarily
better than swapping partitioning.

— Cycles, Paths, Trees, etc



Lemma 2: Example

» Consider cycle C,, withnn = M I nodes.
* Partitioning: 2/B (M paths of volume B&Lemma 1)

* Overlapping Clustering: Total volume:4n=4MB
1 HHHH I
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Cycle wrap The cycllzz graph ] Cycle wrap
— When the walk leaves a cluster, it goes to the center of
another cluster.

— A random walk traveIsO(\/%) in t steps =2 it takes BA2/2
to leave a cluster after a swap.

— —> Swapping Probability = 4/B/2.




Experiments: Setup

 We empirically study this idea.

* Used overlapping local clustering...
* Compared with Metis and GRACLUS.

Graph |V| | E| max deg \E|/|V]|
onera 85567 419201 5 4.9
usroads 126146 323900 7 2.6
annulus 500000 2999258 19 6.0
email-Enron 33696 361622 1383 10.7
soc-Slashdot 77360 1015667 2540 13.1
dico 111982 2750576 68191 24.6
lcsh 144791 394186 1025 2.7
web-Google 855302 8582704 6332 10.0
as-skitter 1694616 22188418 35455 13.1
cit-Patents 3764117 33023481 793 8.8




Swapping Probability and Communication

2f —e— Swapping Probability (usroads)
—e— PageRank Communication (usroads)
15l Swapping Probability (web-Google)

—6— PageRank Communication (web-Google)

Metis Partitioner
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Swapping Probability
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Swapping Probability, Conductance and

Swapping Probability

Communication

Prob.

Vol. Ratio

Graph  Swap. Prob. Avg. Cond. Swap. Perf. Ratio Avg. Cond. Method
of Partition of Overlap
onera 7.6 x 107¢ 0.02 1x 1074 0.129 2.82 0.03 Med.30
usroads 1.3 x 10~ 4* <0.01 1x10°¢ 0.008 1.49 0.01 Med.30
annulus 1 x 104 <0.01 5x 10°¢ 0.049 1.17 <0.01 Med.10
email-Enron  0.02 0.39 0.013 0.650 14.86 0.47 Big.30
soc-Slashdot 0.03 0.66 0.026 0.867 13.52 0.65 Med.30
dico 0.04 0.82 0.03 0.750 12.35 0.82 Big.30
lcsh  0.003* 0.06 0.0007 0.233 6.63 0.12 Med.30
web-Google 7.8 x 10~ 4* 0.02 4.6 x 1074 0.592 1.43 0.02 Big.30
as-skitter 0.005 0.1 0.004 0.549 8.36 0.2 Big.30
cit-Patents 0.0064 0.13 0.0034 0.524 3.25 0.42 Small.10
Communication
Graph Comm. of Avg. Cond. Comm. of Perf. Ratio Vol. Ratio Avg. Cond. Method
Partition Overlap
onera 18654 0.02 48 0.003 2.82 0.03 Med.30
usroads 3256* <0.01 0 0.000 1.49 0.01 Med.30
annulus 12074 <0.01 2 0.000 0.01 <0.01 Med.10
email-Enron  194536* 0.4 235316 1.210 1.7 0.46 Metis.2
soc-Slashdot 875435% 0.68 1.3 x 10° 1.480 1.78 0.74 Metis.2
dico 1.5 x 10°* 0.79 2.0 x 10° 1.320 1.53 0.84 Metis.2
lcsh  73000* 0.06 ARTTT 0.668 2.17 0.08 Small.5
web-Google  201159* 0.02 167609 0.833 1.57 0.04 Metis.10
as-skitter 2.4 x 10° 0.1 3.9 x 10° 1.645 1.93 0.24 Metis.10
cit-Patents 8.7 x 10° 0.13 7.3 x 10° 0.845 1.34 0.16 Metis.4




A challenge and an idea

* Challenge: To accelerate the distributed
implementation of local algorithms, close

nodes (clusters) should go to the same
machine < Chicken or Egg Problem.

* |dea: Use Overlapping clusters:
— Simpler for preprocessing.

— Improve communication cost (Andersen, Gleich,
M.)

* Apply the idea iteratively?



Open Problems

Practical algorithms with good theoretical
guarantees

Maximize minimum Density?

Design approximation algorithms for swapping
probability metric?

Classify graphs in which overlapping clustering
helps in getting a much better swapping
probability.

How do we solve the chicken or egg problem?



Thanks



Message-Passing-based Embedding

oLet N € R™*" be ‘approximately’ low rank
N=UVI4+WwW

o A small subset £ of entries revealed

oU and V are typically low rank

e —

o Compute UVT from the subset of entries revealed

* Pregel Implementation of Message-passing-based
low-rank matrix approximation.

* Ran on G+ graph with 40 million nodes and used for
friend suggestion: Better link prediction than PPR.



Overlap vs. no-overlap

* Min-Sum: Overlap is within a factor 2 of no-
overlap. This is done through uncrossing:
—(X,Y) — either (X,Y\X) or (V,X\Y)
* Min-Max: For a family of graphs, min-max
solution is very different for overlap vs. no-
overlap:
— For Overlap, it is O(‘V‘_z/g).

— For no-overlap is Q(l)



Overlap vs. no-overlap: Min-Max

* Min-Max: For some graphs, min-max
conductance from overlap << no-overlap.
— For an integer k, let G = ch U H, where H is
a 3-regular expander on ]-CS nodes, and
B=k(k—1)+3.
— Overlap: foreach UV & H, Cv — Kk U {U},
thus min-max conductance O(\V|_2/3)

— Non-overlap: Conductance of at least one cluster
is at least Q(l), since H is an expander.



Overlapping Clustering: Basic ldea

e Basic Framework:
1. Find a candidate set of clusters around nodes.
2. Run a greedy set covering algorithm and choose
a subset of candidate clusters covering all nodes.
. in applying set-cover algorithm:
Find a good candidate set of clusters and find
the cluster with the maximum size/cost
ratio?
 Racke: Embed the graph into a family of
trees while preserving the cut value.



Tree Embedding and Dynamic Program

e Racke: For any graph G(V,E), there exists an
embedding of G to a convex combination of
trees 1 such that the value of each cut is
preserved within alogn factor in expectation.

- Implement set-cover algorithm over trees.

* |n order to find the most cost-effective cluster,
run a dynamic program over the tree.



Overlapping Clustering: Approx. Results

Overlap vs. no-overlap:

— Min-Sum: Within a factor 2 using Uncrossing.
— Min-Max: Might be arbitrarily different.

min-sum overlap no-overlap
bounded-count Sum.Overlap.Bound Sum.Nonoverlap.Bound
O(logn) O(logn)

(with O(K) clusters)

(with O(K) clusters)

unbounded-count

Sum.Overlap.Unbound

Sum.Nonoverlap.Unbound

O(logn) O(logn)
min-max overlap no-overlap
bounded-count Max.Overlap.Bound Max.Nonoverlap.Bound
O(logn) O(log* nloglogn)

(with O(K log n) clusters)

(with O(K) clusters)

unbounded-count

Max.Overlap.Unbound
O(logn)

Max.Nonoverlap.Unbound
O(log* nloglogn)




Experiments: Public Data

Graph |V| | E| maxdeg |E|/|V]|
onera 85567 419201 5 4.9
usroads 126146 323900 7 2.6
annulus 500000 2999258 19 6.0
email-Enron 33696 361622 1383 10.7
soc-Slashdot 77360 1015667 2540 13.1
dico 111982 2750576 68191 24.6
lcsh 144791 394186 1025 2.7
web-Google 855802 8582704 6332 10.0
as-skitter 1694616 22188418 35455 13.1
cit-Patents 3764117 33023481 793 8.8



Average Conductance

* Goal: get clusters with low conductance and
volume up to 10% of total volume

e Start from various sizes and combine.
— Small clusters: up to volume 1000
— Medium clusters: up to volume 10000
— Large Clusters: up to 10% of total volume.
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Impact of Heuristic: Combining Clusters

Output Volume Ratio
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