Sketching Graphs

,'o'.' e

5 '_'l adx)
ﬁ *.51 ..’4 s
BT LY

fu

;’ L -
’ 4
¢ X &
F)

Kook Jin Ahn University of Pennsylvania
Sudipto Guha University of Pennsylvania
Andrew McGregor University of Massachusetts

Linear Sketches

Linear Sketches

® Random linear projection M: R"—Rk that preserves
properties of any veR" with high probability where k«n.

Linear Sketches

® Random linear projection M: R"—Rk that preserves
properties of any veR" with high probability where k«n.

()

\

Linear Sketches

® Random linear projection M: R"—Rk that preserves
properties of any veR" with high probability where k«n.

(N)/\

\

Linear Sketches

® Random linear projection M: R"—Rk that preserves
properties of any veR" with high probability where k«n.

(N)/\

\

Linear Sketches

® Random linear projection M: R"—Rk that preserves
properties of any veR" with high probability where k«n.

(

)

()

\

= (Mv) — answer

Linear Sketches

® Random linear projection M: R"—Rk that preserves
properties of any veR" with high probability where k«n.

(’)/ \(Mv)ﬁanswer

\

® Many Results: Estimating norms, entropy, support size,
quantiles, heavy hitters, fitting histograms and polynomials, ...

Linear Sketches

® Random linear projection M: R"—Rk that preserves
properties of any veR" with high probability where k«n.

(’)/ \(Mv)ﬁanswer

\

Many Results: Estimating norms, entropy, support size,
quantiles, heavy hitters, fitting histograms and polynomials, ...

Rich Theory: Related to compressed sensing and sparse
recovery, dimensionality reduction and metric embeddings, ...

Sketching Graphs!?

Sketching Graphs!?

? Question: Are there sketches for structured objects like graphs!?

Sketching Graphs!?

? Question: Are there sketches for structured objects like graphs!?

()

Sketching Graphs!?

? Question: Are there sketches for structured objects like graphs!?

) |

Sketching Graphs!?

? Question: Are there sketches for structured objects like graphs!?

’)f \(i)

Sketching Graphs!?

? Question: Are there sketches for structured objects like graphs!?

M) (\ = (MA) —> answer

Sketching Graphs!?

? Question: Are there sketches for structured objects like graphs!?

_ (MA) — answer

!)f

\

)

/

® Example: Project O(n?)-dimensional adjacency matrix Ag to
O(n) dimensions and still determine if graph is bipartite?

Sketching Graphs!?

? Question: Are there sketches for structured objects like graphs!?

’)f

\

)

/

_ (MA) — answer

® Example: Project O(n?)-dimensional adjacency matrix Ag to
O(n) dimensions and still determine if graph is bipartite?

! No cheating! Assume M is finite precision etc.

Why? Graph Streams

Why? Graph Streams

® In semi-streaming, want to process graph defined by edges
el, ..., em With O(n) memory and reading sequence in order.

[Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

Why? Graph Streams

In semi-streaming, want to process graph defined by edges
el, ..., em With O(n) memory and reading sequence in order.

[Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

Dynamic Graphs: Work on graph streams doesn’t support
edge deletions! Work on dynamic graphs stores entire graph!

Why? Graph Streams

In semi-streaming, want to process graph defined by edges
el, ..., em With O(n) memory and reading sequence in order.

[Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

Dynamic Graphs: Work on graph streams doesn’t support
edge deletions! Work on dynamic graphs stores entire graph!

Example: Connectivity is easy if edges are only inserted...

Why? Graph Streams

In semi-streaming, want to process graph defined by edges
el, ..., em With O(n) memory and reading sequence in order.

[Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

Dynamic Graphs: Work on graph streams doesn’t support
edge deletions! Work on dynamic graphs stores entire graph!

Example: Connectivity is easy if edges are only inserted...

O @ @
0 O @
Q0 @ ©

Why? Graph Streams

In semi-streaming, want to process graph defined by edges
el, ..., em With O(n) memory and reading sequence in order.

[Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

Dynamic Graphs: Work on graph streams doesn’t support
edge deletions! Work on dynamic graphs stores entire graph!

Example: Connectivity is easy if edges are only inserted...

0 @ @
D O @
Q0 @ ©

Why? Graph Streams

In semi-streaming, want to process graph defined by edges
el, ..., em With O(n) memory and reading sequence in order.

[Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

Dynamic Graphs: Work on graph streams doesn’t support
edge deletions! Work on dynamic graphs stores entire graph!

Example: Connectivity is easy if edges are only inserted...

Why? Graph Streams

In semi-streaming, want to process graph defined by edges
el, ..., em With O(n) memory and reading sequence in order.

[Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

Dynamic Graphs: Work on graph streams doesn’t support
edge deletions! Work on dynamic graphs stores entire graph!

Example: Connectivity is easy if edges are only inserted...

Why? Graph Streams

In semi-streaming, want to process graph defined by edges
el, ..., em With O(n) memory and reading sequence in order.

[Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

Dynamic Graphs: Work on graph streams doesn’t support
edge deletions! Work on dynamic graphs stores entire graph!

Example: Connectivity is easy if edges are only inserted...

Why? Graph Streams

In semi-streaming, want to process graph defined by edges
el, ..., em With O(n) memory and reading sequence in order.

[Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

Dynamic Graphs: Work on graph streams doesn’t support
edge deletions! Work on dynamic graphs stores entire graph!

Example: Connectivity is easy if edges are only inserted...

Why? Graph Streams

In semi-streaming, want to process graph defined by edges
el, ..., em With O(n) memory and reading sequence in order.

[Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

Dynamic Graphs: Work on graph streams doesn’t support
edge deletions! Work on dynamic graphs stores entire graph!

Example: Connectivity is easy if edges are only inserted...

Why? Graph Streams

In semi-streaming, want to process graph defined by edges
el, ..., em With O(n) memory and reading sequence in order.

[Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

Dynamic Graphs: Work on graph streams doesn’t support
edge deletions! Work on dynamic graphs stores entire graph!

Example: Connectivity is easy if edges are only inserted...

Why? Graph Streams

In semi-streaming, want to process graph defined by edges
el, ..., em With O(n) memory and reading sequence in order.

[Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

Dynamic Graphs: Work on graph streams doesn’t support
edge deletions! Work on dynamic graphs stores entire graph!

Example: Connectivity is easy if edges are only inserted...

Why? Graph Streams

In semi-streaming, want to process graph defined by edges
el, ..., em With O(n) memory and reading sequence in order.

[Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

Dynamic Graphs: Work on graph streams doesn’t support
edge deletions! Work on dynamic graphs stores entire graph!

Example: Connectivity is easy if edges are only inserted...

Why? Graph Streams

In semi-streaming, want to process graph defined by edges
el, ..., em With O(n) memory and reading sequence in order.

[Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

Dynamic Graphs: Work on graph streams doesn’t support
edge deletions! Work on dynamic graphs stores entire graph!

Example: Connectivity is easy if edges are only inserted...

Why? Graph Streams

In semi-streaming, want to process graph defined by edges
el, ..., em With O(n) memory and reading sequence in order.

[Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

Dynamic Graphs: Work on graph streams doesn’t support
edge deletions! Work on dynamic graphs stores entire graph!

Example: Connectivity is easy if edges are only inserted...

Why? Graph Streams

In semi-streaming, want to process graph defined by edges
el, ..., em With O(n) memory and reading sequence in order.

[Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

Dynamic Graphs: Work on graph streams doesn’t support
edge deletions! Work on dynamic graphs stores entire graph!

Example: Connectivity is easy if edges are only inserted...

Why? Graph Streams

In semi-streaming, want to process graph defined by edges
el, ..., em With O(n) memory and reading sequence in order.

[Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

Dynamic Graphs: Work on graph streams doesn’t support
edge deletions! Work on dynamic graphs stores entire graph!

Example: Connectivity is easy if edges are only inserted...

Why? Graph Streams

In semi-streaming, want to process graph defined by edges
el, ..., em With O(n) memory and reading sequence in order.

[Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

Dynamic Graphs: Work on graph streams doesn’t support
edge deletions! Work on dynamic graphs stores entire graph!

Example: Connectivity is easy if edges are only inserted...

Why? Graph Streams

In semi-streaming, want to process graph defined by edges
el, ..., em With O(n) memory and reading sequence in order.

[Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

Dynamic Graphs: Work on graph streams doesn’t support
edge deletions! Work on dynamic graphs stores entire graph!

Example: Connectivity is easy if edges are only inserted...

Why? Graph Streams

In semi-streaming, want to process graph defined by edges
el, ..., em With O(n) memory and reading sequence in order.

[Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

Dynamic Graphs: Work on graph streams doesn’t support
edge deletions! Work on dynamic graphs stores entire graph!

Example: Connectivity is easy if edges are only inserted...

Why? Graph Streams

In semi-streaming, want to process graph defined by edges
el, ..., em With O(n) memory and reading sequence in order.

[Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

Dynamic Graphs: Work on graph streams doesn’t support
edge deletions! Work on dynamic graphs stores entire graph!

Example: Connectivity is easy if edges are only inserted...

Sketches: To delete e from G: update MAG—MAG-MA:=MAG.c

Why? Distributed Processing

(Input: G=(V;E))

Why? Distributed Processing

ﬁlﬂ: G=(\@\

Gi=(V;E) G2=(V,E2) G3=(V,E3) G4=(V;E4)

Why? Distributed Processing

ﬁlﬂ: G=(\@\

Gi=(V;E) G2=(V,E2) G3=(V,E3) G4=(V;E4)

Why? Distributed Processing

/[Input: G= (v E)

Gi=(V,E)) G2=(V,E) G3 =(V,E3) G4=(V,E4)

MG, MG, MG3 MG,

\\ //

(Output: MG=MG+MG2+MG3+MGy)

_ a) Connectivity

) Applications

a) Connectivity

b) Applications

Connectivity

Connectivity

® Thm: Can check connectivity with O(nlog?® n)-size sketch.

Connectivity

® Thm: Can check connectivity with O(nlog?® n)-size sketch.

® Main Idea: a) Sketch! b) Run Algorithm in Sketch Space

Connectivity

® Thm: Can check connectivity with O(nlog?® n)-size sketch.

® Main Idea: a) Sketch! b) Run Algorithm in Sketch Space

Connectivity

® Thm: Can check connectivity with O(nlog?® n)-size sketch.

® Main Idea: a) Sketch! b) Run Algorithm in Sketch Space

(Algorithm) » ANSWER

Connectivity

® Thm: Can check connectivity with O(nlog?® n)-size sketch.

® Main Idea: a) Sketch! b) Run Algorithm in Sketch Space

%
o
()
=

_—/

(Algorithm) » ANSWER

4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
l

N e

4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|

T U [

Original Graph Sketch Space

Connectivity

® Thm: Can check connectivity with O(nlog?® n)-size sketch.

® Main Idea: a) Sketch! b) Run Algorithm in Sketch Space

%
o
()
=

\——/

\4

(Algorithm)

(Algorithm) > ANSWER <

4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
l

N e

4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|

T U [

Original Graph Sketch Space

Connectivity

® Thm: Can check connectivity with O(nlog?® n)-size sketch.

® Main Idea: a) Sketch! b) Run Algorithm in Sketch Space

v
(AIgorithm)
Sketch Space

> ANSWER <

4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
l

N e

4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|

® (Catch: Sketch must be homomorphic for algorithm operations.

Ingredient 1: Basic Connectivity Algorithm

® Algorithm (Spanning Forest):

1. For each node, select an incident edge

Ingredient 1: Basic Connectivity Algorithm

@ Algorithm (Spanning Forest):
1. For each node, select an incident edge

2.Contract selected edges. Repeat until no edges.

Ingredient 1: Basic Connectivity Algorithm

® Algorithm (Spanning Forest):
1. For each node, select an incident edge

2.Contract selected edges. Repeat until no edges.

/. O
1

Ingredient 1: Basic Connectivity Algorithm

® Algorithm (Spanning Forest):
1. For each node, select an incident edge

2.Contract selected edges. Repeat until no edges.

QG
\._.

Ingredient 1: Basic Connectivity Algorithm

@ Algorithm (Spanning Forest):
1. For each node, select an incident edge

2.Contract selected edges. Repeat until no edges.

Ingredient 1: Basic Connectivity Algorithm

@ Algorithm (Spanning Forest):
1. For each node, select an incident edge

2.Contract selected edges. Repeat until no edges.

Ingredient 1: Basic Connectivity Algorithm

@ Algorithm (Spanning Forest):
1. For each node, select an incident edge

2.Contract selected edges. Repeat until no edges.

Ingredient 1: Basic Connectivity Algorithm

@ Algorithm (Spanning Forest):
1. For each node, select an incident edge

2.Contract selected edges. Repeat until no edges.

@ Lemma: Takes O(log n) steps and selected edges
include spanning forest.

Ingredient 2: Graph Representation

@ For node |, let aj be vector indexed by node pairs.
Non-zero entries: ai[i,jl=1 if j>i and aili,jl=-1 if j«i.

Ingredient 2: Graph Representation

@ For node |, let aj be vector indexed by node pairs.
Non-zero entries: ai[i,jl=1 if j>i and aili,jl=-1 if j«i.

@ Example:

Ingredient 2: Graph Representation

@ For node i, let aj be vector indexed by node pairs.
Non-zero entries: ai[i,jl=1 if j>i and aili,j]=-1 if j«i.

@ Example:

Ingredient 2: Graph Representation

@ For node i, let aj be vector indexed by node pairs.
Non-zero entries: ai[i,jl=1 if j>i and aili,j]=-1 if j«i.

@ Example:
(1,2} {1,3} {1,4 {1,5} {23} {24} {25} {34} {3,5} {4.5} o
a1:(1100000000)°/| |
N

Ingredient 2: Graph Representation

@ For node i, let aj be vector indexed by node pairs.
Non-zero entries: ai[i,jl=1 if j>i and aili,j]=-1 if j«i.

s

@ Example:

(,2y {13} {14 {1,5 {23} {24} 2,5} {3.4} {35 {45
a; = (T SRRl 0730 0 0RO /|

a2:(—1000100000)°\
(3 s

Ingredient 2: Graph Representation

@ For node i, let aj be vector indexed by node pairs.
Non-zero entries: ai[i,jl=1 if j>i and aili,j]=-1 if j«i.
@ Example:

(1,2} {1,3} {1,4 {1,5} {23} {24} {25} {34} {3,5} {4.5} o
= (Tl (7% 0 S0R ON /| |

a;=(-1 0 0 0 1; 0B S0
0—0

@ Lemma: For any subset of nodes ScV,

support (Za,) ="E(S, V& S)

IES

Ingredient 3: lo-Sampling

@ Lemma: Exists random CeR¥™ with d=0O(log? m)
such that for any a € R™

Ca — e € support(a)

with probability 9/10.

[Cormode, Muthukrishnan, Rozenbaum 05; Jowhari, Saglam, Tardos | |]

Recipe: Sketch & Compute on Sketches

@ Skefch: Apply log n sketches C;i to each a;
@ Run Algorithm in Sketch Space:

Recipe: Sketch & Compute on Sketches

@ Skefch: Apply log n sketches C;i to each a;
@ Run Algorithm in Sketch Space:

@ Use Cia; to get incident edge on each node |

Recipe: Sketch & Compute on Sketches

@ Skefch: Apply log n sketches C;i to each a;

@ Run Algorithm in Sketch Space:
@ Use Cia; to get incident edge on each node |
@ For i=2 fto t:

Recipe: Sketch & Compute on Sketches

@ Skefch: Apply log n sketches C;i to each a;

@ Run Algorithm in Sketch Space:
@ Use Cia; to get incident edge on each node |
@ For i=2 to t:

@ To get incident edge on supernode ScV use:

Z C,-aj — C,’ Zaj
JES Jj&is

Recipe: Sketch & Compute on Sketches

@ Skefch: Apply log n sketches C;i to each a;

@ Run Algorithm in Sketch Space:
@ Use Cia; to get incident edge on each node |
@ For i=2 to t:

@ To get incident edge on supernode ScV use:

ZCaJ—C Zaj —>e€support(ZaJ BiST VN'S)
1ES jes

JES

Connectivity

® Thm: Can check connectivity with O(nlog?® n)-size sketch.

® Main Idea: a) Sketch! b) Run Algorithm in Sketch-Space

v
(AIgorithm)
Sketch Space

> ANSWER <

4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
l

N e

4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|

® (Catch: Sketch must be homomorphic for algorithm operations.

_ a) Connectivity

) Applications

a) Connectivity

b) Applications

Bipartiteness

Bipartiteness

® |dea: Given G, define graph G’ where a node v becomes
vi and v2 and edge (u,v) becomes (ui,v2) and (uz,vi).

Bipartiteness

® |dea: Given G, define graph G’ where a node v becomes
vi and v2 and edge (u,v) becomes (ui,v2) and (uz,vi).

Yo éa

Bipartiteness

Idea: Given G, define graph G’ where a node v becomes
vi and v2 and edge (u,v) becomes (ui,v2) and (uz,vi).

"

Lemma: Number of connected components doubles iff G
is bipartite. Can sketch G’ implicitly.

Bipartiteness

Idea: Given G, define graph G’ where a node v becomes
vi and v2 and edge (u,v) becomes (ui,v2) and (uz,vi).

,Z v,

Lemma: Number of connected components doubles iff G
is bipartite. Can sketch G’ implicitly.

Bipartiteness

Idea: Given G, define graph G’ where a node v becomes
vi and v2 and edge (u,v) becomes (ui,v2) and (uz,vi).

,Z v,

Lemma: Number of connected components doubles iff G
is bipartite. Can sketch G’ implicitly.

® Thm: Can check bipartiteness with O(nlog? n)-size sketch.

Minimum Spanning Tree

Minimum Spanning Tree

® |dea:If njis the number of connected components if we
ignore edges with weight greater than (1+¢)', then:

w(MST) <> (1 +€)'n < (1+ €)w(MST)

Minimum Spanning Tree

® |dea:If njis the number of connected components if we
ignore edges with weight greater than (1+¢)', then:

w(MST) <> (1 +€)'n < (1+ €)w(MST)

® Thm:Can (l+¢€) approximate MST in one-pass dynamic
semi-streaming model.

Minimum Spanning Tree

® |dea:If njis the number of connected components if we
ignore edges with weight greater than (1+¢)', then:

w(MST) <> (1 +€)'n < (1+ €)w(MST)

® Thm:Can (l+¢€) approximate MST in one-pass dynamic
semi-streaming model.

® T[hm:Can find exact MST in dynamic semi-streaming
model using O(log n/log log n) passes.

k-Connectivity

k-Connectivity

® A graph is k-connected if every cut has size > k.

k-Connectivity

® A graph is k-connected if every cut has size > k.

® Thm: Can check k-connectivity with O(nklog? n)-size sketch.

k-Connectivity

A graph is k-connected if every cut has size > k.
Thm: Can check k-connectivity with O(nklog3 n)-size sketch.

Extension: There exists a O(g2nlog> n)-size sketch with
which we can approximate all cuts up to a factor (| +¢).

Original Graph Sparsifier Graph

Ingredient 1: Basic Algorithm

@ Algorithm (k-Connectivity):
1. Let Fi be spanning forest of G(V,E)

Ingredient 1: Basic Algorithm

@ Algorithm (k-Connectivity):
1. Let Fi be spanning forest of G(V,E)
2.For i=2 to k:
2.1. Let Fi be spanning forest of G(V,E-Fi-...-Fi.1)

Ingredient 1: Basic Algorithm

@ Algorithm (k-Connectivity):
1. Let Fi be spanning forest of G(V,E)
2.For i=2 to k:
2.1. Let Fi be spanning forest of G(V,E-Fi-...-Fi.1)
& Lemma: G(V,Fi+...4Fk) is k-connected iff G(V,E) is.

Ingredient 2: Connectivity Sketches

@ Skefch: Simultaneously construct k independent
sketches {MiAs, M2AG, ... MkAc} for connectivity.

Ingredient 2: Connectivity Sketches

@ Skefch: Simultaneously construct k independent
sketches {N\lAG, M2Ag, ... N\kAg} for connec’rivi’ry.

@ Run Algorithm in Sketch Space:
@ Use M!Ag, to find a spanning forest F, of G

Ingredient 2: Connectivity Sketches

@ Skefch: Simultaneously construct k independent
sketches {MiAs, M2AG, ... MkAc} for connectivity.

@ Run Algorithm in Sketch Space:

@ Use M!Ag, to find a spanning forest F, of G
@ Use M2Ac-M2Ar=M?(Ac-Ar1)=M?(Ac-r1) to find F>

Ingredient 2: Connectivity Sketches

@ Skefch: Simultaneously construct k independent
sketches {MiAs, M2AG, ... MkAc} for connectivity.

@ Run Algorithm in Sketch Space:
@ Use M!Ag, to find a spanning forest F, of G
e Use M2Ac-M2An=M?¥Ac-Ar)=M?(Ac_r1) to find F2
@ Use M3AG-M3Ar-M3Ar2=M3(Ac_ri-r2) to find F3

Ingredient 2: Connectivity Sketches

@ Skefch: Simultaneously construct k independent
sketches {MiAs, M2AG, ... MkAc} for connectivity.

@ Run Algorithm in Sketch Space:
@ Use M!Ag, to find a spanning forest F, of G
e Use M2Ac-M2An=M?¥Ac-Ar)=M?(Ac_r1) to find F2
@ Use M3AG-M3Ar-M3Ar2=M3(Ac_ri-r2) to find F3

@ etc.

k-Connectivity

A graph is k-connected if every cut has size > k.
Thm: Can check k-connectivity with O(nklog3 n)-size sketch.

Extension: There exists a O(g2nlog* n)-size sketch with
which we can approximate all cuts up to a factor (| +¢).

Original Graph Sparsifier Graph

Summary

® Graph Sketches: Initiates the study of linear projections that
preserve structural properties of graphs. Application to
dynamic-graph streams and are embarrassingly parallelizable.

® Properties: Connectivity, sparsifiers, spanners, bipartite,
minimum spanning trees, small cliques, matchings, ...

