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® Random linear projection M: R"—Rk that preserves
properties of any veR" with high probability where k«n.

( ’ )/ \(Mv)ﬁanswer

\

Many Results: Estimating norms, entropy, support size,
quantiles, heavy hitters, fitting histograms and polynomials, ...

Rich Theory: Related to compressed sensing and sparse
recovery, dimensionality reduction and metric embeddings, ...
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Sketching Graphs!?

? Question: Are there sketches for structured objects like graphs!?
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_ ( MA ) — answer

® Example: Project O(n?)-dimensional adjacency matrix Ag to
O(n) dimensions and still determine if graph is bipartite?

! No cheating! Assume M is finite precision etc.
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Why? Graph Streams

In semi-streaming, want to process graph defined by edges
el, ..., em With O(n) memory and reading sequence in order.

[Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

Dynamic Graphs: Work on graph streams doesn’t support
edge deletions! Work on dynamic graphs stores entire graph!

Example: Connectivity is easy if edges are only inserted...

Sketches: To delete e from G: update MAG—MAG-MA:=MAG.c
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Why? Distributed Processing

/[ Input: G= (v E)

Gi=(V,E)) G2=(V,E) G3 =(V,E3) G4=(V,E4)

MG, MG, MG3 MG,

\\ //

( Output: MG=MG+MG2+MG3+MGy )
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Connectivity

® Thm: Can check connectivity with O(nlog?® n)-size sketch.

® Main Idea: a) Sketch! b) Run Algorithm in Sketch Space
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Connectivity

® Thm: Can check connectivity with O(nlog?® n)-size sketch.

® Main Idea: a) Sketch! b) Run Algorithm in Sketch Space
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® (Catch: Sketch must be homomorphic for algorithm operations.
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Ingredient 1: Basic Connectivity Algorithm

@ Algorithm (Spanning Forest):
1. For each node, select an incident edge

2.Contract selected edges. Repeat until no edges.

@ Lemma: Takes O(log n) steps and selected edges
include spanning forest.






Ingredient 2: Graph Representation

@ For node |, let aj be vector indexed by node pairs.
Non-zero entries: ai[i,jl=1 if j>i and aili,jl=-1 if j«i.



Ingredient 2: Graph Representation

@ For node |, let aj be vector indexed by node pairs.
Non-zero entries: ai[i,jl=1 if j>i and aili,jl=-1 if j«i.

@ Example:



Ingredient 2: Graph Representation

@ For node i, let aj be vector indexed by node pairs.
Non-zero entries: ai[i,jl=1 if j>i and aili,j]=-1 if j«i.

@ Example:



Ingredient 2: Graph Representation

@ For node i, let aj be vector indexed by node pairs.
Non-zero entries: ai[i,jl=1 if j>i and aili,j]=-1 if j«i.

@ Example:
(1,2} {1,3} {1,4 {1,5} {23} {24} {25} {34} {3,5} {4.5} o
a1:(1100000000)°/| |
N



Ingredient 2: Graph Representation

@ For node i, let aj be vector indexed by node pairs.
Non-zero entries: ai[i,jl=1 if j>i and aili,j]=-1 if j«i.

s

@ Example:

(,2y {13} {14 {1,5 {23} {24} 2,5} {3.4} {35 {45
a; = (T SRRl 0730 0 0RO /|

a2:(—1000100000)°\
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Ingredient 2: Graph Representation

@ For node i, let aj be vector indexed by node pairs.
Non-zero entries: ai[i,jl=1 if j>i and aili,j]=-1 if j«i.
@ Example:

(1,2} {1,3} {1,4 {1,5} {23} {24} {25} {34} {3,5} {4.5} o
= (Tl (7% 0 S0R ON /| |

a;=( -1 0 0 0 1; 0B S0
0—0

@ Lemma: For any subset of nodes ScV,

support (Za,) ="E(S, V& S)

IES






Ingredient 3: lo-Sampling

@ Lemma: Exists random CeR¥™ with d=0O(log? m)
such that for any a € R™

Ca — e € support(a)

with probability 9/10.

[Cormode, Muthukrishnan, Rozenbaum 05; Jowhari, Saglam, Tardos | |]
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Recipe: Sketch & Compute on Sketches

@ Skefch: Apply log n sketches C;i to each a;

@ Run Algorithm in Sketch Space:
@ Use Cia; to get incident edge on each node |
@ For i=2 to t:

@ To get incident edge on supernode ScV use:

ZCaJ—C Zaj —>e€support(ZaJ BiST VN'S)
1ES jes

JES



Connectivity

® Thm: Can check connectivity with O(nlog?® n)-size sketch.

® Main Idea: a) Sketch! b) Run Algorithm in Sketch-Space
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Bipartiteness

Idea: Given G, define graph G’ where a node v becomes
vi and v2 and edge (u,v) becomes (ui,v2) and (uz,vi).

_,Z v_,

Lemma: Number of connected components doubles iff G
is bipartite. Can sketch G’ implicitly.

® Thm: Can check bipartiteness with O(nlog? n)-size sketch.
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Minimum Spanning Tree

® |dea:If njis the number of connected components if we
ignore edges with weight greater than (1+¢)', then:

w(MST) <> (1 +€)'n < (1+ €)w(MST)

® Thm:Can (l+¢€) approximate MST in one-pass dynamic
semi-streaming model.

® T[hm:Can find exact MST in dynamic semi-streaming
model using O(log n/log log n) passes.
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k-Connectivity

A graph is k-connected if every cut has size > k.
Thm: Can check k-connectivity with O(nklog3 n)-size sketch.

Extension: There exists a O(g2nlog> n)-size sketch with
which we can approximate all cuts up to a factor (| +¢).

Original Graph Sparsifier Graph
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Ingredient 1: Basic Algorithm

@ Algorithm (k-Connectivity):
1. Let Fi be spanning forest of G(V,E)
2.For i=2 to k:
2.1. Let Fi be spanning forest of G(V,E-Fi-...-Fi.1)
& Lemma: G(V,Fi+...4Fk) is k-connected iff G(V,E) is.
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Ingredient 2: Connectivity Sketches

@ Skefch: Simultaneously construct k independent
sketches {MiAs, M2AG, ... MkAc} for connectivity.

@ Run Algorithm in Sketch Space:
@ Use M!Ag, to find a spanning forest F, of G
e Use M2Ac-M2An=M?¥Ac-Ar)=M?(Ac_r1) to find F2
@ Use M3AG-M3Ar-M3Ar2=M3(Ac_ri-r2) to find F3

@ etc.



k-Connectivity

A graph is k-connected if every cut has size > k.
Thm: Can check k-connectivity with O(nklog3 n)-size sketch.

Extension: There exists a O(g2nlog* n)-size sketch with
which we can approximate all cuts up to a factor (| +¢).

Original Graph Sparsifier Graph




Summary

® Graph Sketches: Initiates the study of linear projections that
preserve structural properties of graphs. Application to
dynamic-graph streams and are embarrassingly parallelizable.

® Properties: Connectivity, sparsifiers, spanners, bipartite,
minimum spanning trees, small cliques, matchings, ...







