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• Random linear projection M: Rn→Rk that preserves 
properties of any v∈Rn with high probability where k≪n.   

• Many Results: Estimating norms, entropy, support size, 
quantiles, heavy hitters, fitting histograms and polynomials, ...

• Rich Theory: Related to compressed sensing and sparse 
recovery, dimensionality reduction and metric embeddings, ...
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• Example: Project O(n2)-dimensional adjacency matrix AG to 
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Sketching Graphs?
 

? Question: Are there sketches for structured objects like graphs? 

• Example: Project O(n2)-dimensional adjacency matrix AG to 
Õ(n) dimensions and still determine if graph is bipartite?

! No cheating! Assume M is finite precision etc.
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• In semi-streaming, want to process graph defined by edges 
e1, ..., em with Õ(n) memory and reading sequence in order.

• 	

 [Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

• Dynamic Graphs: Work on graph streams doesn’t support 
edge deletions! Work on dynamic graphs stores entire graph!

• Example: Connectivity is easy if edges are only inserted...

• Sketches: To delete e from G: update MAG➝MAG-MAe=MAG-e
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G1=(V,E1) G2=(V,E2) G3=(V,E3) G4=(V,E4)

Input: G=(V,E)

Output: MG=MG1+MG2+MG3+MG4

MG1 MG2 MG3 MG4

Why? Distributed Processing
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Connectivity
• Thm: Can check connectivity with O(nlog3 n)-size sketch.  

• Main Idea: a) Sketch! b) Run Algorithm in Sketch Space

• Catch: Sketch must be homomorphic for algorithm operations. 

Original Graph Sketch Space

AlgorithmAlgorithm ANSWER

Sketch
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Algorithm (Spanning Forest): 
1. For each node, select an incident edge
2.Contract selected edges. Repeat until no edges.

Lemma: Takes O(log n) steps and selected edges 
include spanning forest.

Ingredient 1: Basic Connectivity Algorithm
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For node i, let ai be vector indexed by node pairs. 
Non-zero entries: ai[i,j]=1 if j>i and ai[i,j]=-1 if j<i.
Example:

Ingredient 2: Graph Representation

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�
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For node i, let ai be vector indexed by node pairs. 
Non-zero entries: ai[i,j]=1 if j>i and ai[i,j]=-1 if j<i.
Example:

Lemma: For any subset of nodes S⊂V,

Ingredient 2: Graph Representation
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Ingredient 3: l0-Sampling

Lemma: Exists random C∈Rdxm with d=O(log2 m) 
such that for any a ∈ Rm

with probability 9/10.
	

 [Cormode, Muthukrishnan, Rozenbaum 05; Jowhari, Saglam, Tardos 11]

Ca �! e 2 support(a)
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Run Algorithm in Sketch Space:
Use C1aj to get incident edge on each node j
For i=2 to t:

To get incident edge on supernode S⊂V use:
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Sketch: Apply log n sketches Ci to each aj

Run Algorithm in Sketch Space:
Use C1aj to get incident edge on each node j
For i=2 to t:

To get incident edge on supernode S⊂V use:

Recipe: Sketch & Compute on Sketches
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• Thm: Can check connectivity with O(nlog3 n)-size sketch.  

• Main Idea: a) Sketch! b) Run Algorithm in Sketch-Space

• Catch: Sketch must be homomorphic for algorithm operations. 

Connectivity

Original Graph Sketch Space

AlgorithmAlgorithm ANSWER

Sketch
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Bipartiteness

• Idea: Given G, define graph G’ where a node v becomes 
v1 and v2 and edge (u,v) becomes (u1,v2) and (u2,v1).

• Lemma: Number of connected components doubles iff G 
is bipartite. Can sketch G’ implicitly. 

• Thm: Can check bipartiteness with O(nlog3 n)-size sketch.  
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Minimum Spanning Tree

• Idea: If ni is the number of connected components if we 
ignore edges with weight greater than (1+ε)i, then:

• Thm: Can (1+ε) approximate MST in one-pass dynamic 
semi-streaming model.  

• Thm: Can find exact MST in dynamic semi-streaming 
model using O(log n/log log n) passes.  

w(MST) 
X

i

✏(1 + ✏)ini  (1 + ✏)w(MST)
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k-Connectivity

• A graph is k-connected if every cut has size ≥ k. 

• Thm: Can check k-connectivity with O(nklog3 n)-size sketch.

• Extension: There exists a O(ε-2nlog5 n)-size sketch with  
which we can approximate all cuts up to a factor (1+ε).

Original Graph Sparsifier Graph
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Algorithm (k-Connectivity): 
1. Let F1 be spanning forest of G(V,E)
2.For i=2 to k: 

2.1. Let Fi be spanning forest of G(V,E-F1-...-Fi-1)
Lemma: G(V,F1+...+Fk) is k-connected iff G(V,E) is.

Ingredient 1: Basic Algorithm
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Ingredient 2: Connectivity Sketches

Sketch: Simultaneously construct k independent 
sketches {M1AG, M2AG, ... MkAG} for connectivity.
Run Algorithm in Sketch Space:

Use M1AG, to find a spanning forest F1 of G 
Use M2AG-M2AF1=M2(AG-AF1)=M2(AG-F1) to find F2

Use M3AG-M3AF1-M3AF2=M3(AG-F1-F2) to find F3 
etc.



k-Connectivity

• A graph is k-connected if every cut has size ≥ k. 

• Thm: Can check k-connectivity with O(nklog3 n)-size sketch.

• Extension: There exists a O(ε-2nlog4 n)-size sketch with  
which we can approximate all cuts up to a factor (1+ε).

Original Graph Sparsifier Graph



Summary

• Graph Sketches: Initiates the study of linear projections that 
preserve structural properties of graphs. Application to 
dynamic-graph streams and are embarrassingly parallelizable.

• Properties: Connectivity, sparsifiers, spanners, bipartite, 
minimum spanning trees, small cliques, matchings, ...

ありがとう！




