
Algorithms for Distributed Stream
Processing

Ashish Goel
Stanford University

Joint work with
I. Bahman Bahmani and Abdur Chowdhury; VLDB 2011

II. Bahman Bahmani and Rajendra Shinde
III. Michael Kapralov, Olga Kapralova, and Sanjeev Khanna

January 12, 2012

Outline

1 Active DHTs and Distirbuted Stream
Processing

2 Incremental PageRank
A Diversion: Recommendation Systems
Fast Incremental PageRank via Monte Carlo

3 Locality Sensitive Hashing

4 Graph Sparsification in Active DHTs

Outline

1 Active DHTs and Distirbuted Stream
Processing

2 Incremental PageRank
A Diversion: Recommendation Systems
Fast Incremental PageRank via Monte Carlo

3 Locality Sensitive Hashing

4 Graph Sparsification in Active DHTs

Map-Reduce

An immensely successful idea which transformed offline analytics
and bulk-data processing. Hadoop (initially from Yahoo!) is the
most popular implementation.

Map: Transforms a (key, value) pair into other (key, value)
pairs using a UDF (User Defined Function) called
Map. Many mappers can run in parallel on vast
amounts of data in a distributed file system

Shuffle: The infrastructure then transfers data from the
mapper nodes to the “reducer” nodes so that all the
(key, value) pairs with the same key go to the same
reducer

Reduce: A UDF that aggregates all the values corresponding
to a key. Many reducers can run in parallel.

Active DHT

• Distributed Hash Table: Stores key-value pairs; supports
insertion, lookup, and deletion

• Active DHT: Can supply arbitrary UDFs (User Defined
Functions) to be executed on a key-value pair

• Examples: Twitter’s Storm; Yahoo’s S4 (both open source)

• Challenge: At high volume, small requests are not network
efficient

• Challenge: Robustness

• Application: Distributed Stream Processing

• Application: Continuous Map-Reduce

• Active DHTs subsume bulk-synchronous graph processing
systems such as Pregel

An Example Application of Continuous Map
Reduce

• Problem: There is a stream of data arriving (eg. tweets)
which needs to be farmed out to many users/feeds in real time

• A simple solution:

Map: (user u, string tweet, time t) ⇒
(v1, (tweet, t))
(v2, (tweet, t))
. . .
(vK , (tweet, t)) where v1, v2, . . . , vK follow u.

Reduce:
(user v , (tweet1, t1), (tweet2, t2), . . . , (tweetJ , tJ)) ⇒
sort tweets in descending order of time or
importance

• With Active DHTs, this and many other real-time web
problems would become very simple to implement

Performance Measures

• Number of network calls per update

• Size of network data transfer per update

• Maximum size of a key-value pair

• Total size of all key-value pairs

• Maximum number of requests that go to a particular
key-value pair (akin to the curse of the last reducer)

Outline

1 Active DHTs and Distirbuted Stream Processing

2 Incremental PageRank
A Diversion: Recommendation Systems
Fast Incremental PageRank via Monte Carlo

3 Locality Sensitive Hashing

4 Graph Sparsification in Active DHTs

PageRank

• An early and famous search ranking rule [Brin et al. 1998]

• Premise: Treats each hyperlink as an endorsement. You are
highly reputed if other highly reputed nodes endorse you.

• Formula: N nodes, M edges, V is the set of nodes, E is the
set of edges, ε is the “teleport” probability, d(w) is the
number of outgoing edges from node w , π(w) is the
PageRank. Now,

π(v) = ε/N + (1− ε)
∑

(w ,v)∈E

π(w)/d(w).

• Another interpretation: A random surfer traverses the
web-graph, teleporting to a random node with probability ε at
every step, and following a random hyperlink otherwise; π is
the stationary distribution.

PageRank

• An early and famous search ranking rule [Brin et al. 1998]

• Premise: Treats each hyperlink as an endorsement. You are
highly reputed if other highly reputed nodes endorse you.

• Formula: N nodes, M edges, V is the set of nodes, E is the
set of edges, ε is the “teleport” probability, d(w) is the
number of outgoing edges from node w , π(w) is the
PageRank. Now,

π(v) = ε/N + (1− ε)
∑

(w ,v)∈E

π(w)/d(w).

• Another interpretation: A random surfer traverses the
web-graph, teleporting to a random node with probability ε at
every step, and following a random hyperlink otherwise; π is
the stationary distribution.

PageRank in Social Networks

• A follows B or A is friends with B ⇒ A endorses B

• Incremental: Update as soon as an edge arrives; needs to be
efficient enough to also add “quasi-edges” eg. A clicks on
something that B sent out, or A liked B, or retweeted B

• Personalized: Assume a teleport vector 〈ε1, ε2, . . . , εN〉 such

that
∑

i

εi = ε. Now, define

π(v) = εv + (1− ε)
∑

(w ,v)∈E

π(w)/d(w).

• Set εw = ε and εi = 0 for all other nodes ⇒ Personalized
PageRank for node w

• Goal: To maintain PageRank efficiently as edges arrive.

Two Approaches to Computing PageRank

• The power-iteration method: Set π0(w) = 1/N for all nodes,
and run R iterations of

πr+1(v) = ε/N + (1− ε)
∑

(w ,v)∈E

πr (w)/d(w).

Use πR as an estimate of π.

• The Monte Carlo method: For each node v , simulate R
PageRank random walks starting at v , where each random
walk terminates upon teleportation. If node w is visited #(w)

times, then use #(w) · ε

RN
as an estimate of π

• R = O(log N) suffices for good estimates (the exact bounds
differ).

Computing Incremental PageRank

Goal: Maintain an accurate estimate of PageRank of every node
after each edge arrival.

• Naive Approach 1: Run the power iteration method from
scratch: Total time over M edge arrivals is O(RM2).

• Naive Approach 2: Run the Monte Carlo method from
scratch: Total time over M edge arrivals is O(RMN/ε).

• Many heuristics known, but none is asymptotically a large
improvement over the naive approaches.

• Our result: Implement Monte Carlo in total time

O∗(
NR log N

ε2
) under mild assumptions.

Outline

1 Active DHTs and Distirbuted Stream Processing

2 Incremental PageRank
A Diversion: Recommendation Systems
Fast Incremental PageRank via Monte Carlo

3 Locality Sensitive Hashing

4 Graph Sparsification in Active DHTs

Recommendation Systems

Goal: Make personalized recommendations of goods that a
consumer may like

Three integral parts:

• Collect data about users’ preferred goods; Explicit (Netflix
ratings) or Implicit (Amazon purchases)

• Identify similar users to a given client, or similar goods to a
given good

• Use this similarity to find other goods that the client may
want to consume

• The “good” could be another user, if we are doing friend
suggestion in a social network

Collaborative Filter
Basics

The arrow could denote LIKES or CONSUMES or FOLLOWS

Collaborative Filter
Basics

Compute similarity score on the left, propagate it to relevance
score on the right, and then vice-versa; repeat a few times

Starting point: A client C is most similar to herself

Collaborative Filter
Love or Money?

• How do we do this propagation? Two extremes:
• LOVE: All the similarity score of a user X gets transferred to

each good that X likes, and the same in the reverse direction.
(Same as HITS)

• MONEY: If X likes K goods, then a (1/K) fraction of the
similarity score of X gets transferred to each good that X likes
(Same as SALSA)

• Empirical finding: MONEY does far better than LOVE

• Observation: Computing MONEY is the same as doing
PageRank in a graph with all the edges converted to being
bidirectional

Collaborative Filter
Comparing various algorithms

Dark Test: Run various algorithms to recommend friends, but
don’t display the results. Instead, just observe how many
recommendations get followed organically.

HITS COSINE Personalized PageRank SALSA

Top 100 0.25 4.93 5.07 6.29

Top 1000 0.86 11.69 12.71 13.58

Table: Link Prediction Effectiveness

Outline

1 Active DHTs and Distirbuted Stream Processing

2 Incremental PageRank
A Diversion: Recommendation Systems
Fast Incremental PageRank via Monte Carlo

3 Locality Sensitive Hashing

4 Graph Sparsification in Active DHTs

The Random Permutation Model

• Assume edges of a network are chosen by an adversary, but
then these edges arrive in random order.

• At time t = 1, 2, . . . M:
Arriving edge = 〈ut , vt〉
Out degree of node w = dt(w)
PageRank of node w = πt(w)

• Technical consequence: E[πt−1(ut)/dt(ut)] = 1/t

• Impossible to verify assumption given a single network, but we
empirically validated the above technical consequence for the
twitter network

Algorithm for Incremental PageRank

• Initialize: Store R random walks starting at each node

• At time t, for every random walk passing through node ut ,
shift it to use the new edge 〈ut , vt〉 with probability 1/dt(ut)

• Time for each re-routing: O(1/ε).

• Time to decide whether any walk will get rerouted: O(1)

• Claim: This faithfully maintains R random walks after
arbitrary edge arrivals.

Observe that we need the graph and the stored random walks to
be available in an Active DHT; this is a reasonable assumption for
social networks, though not necessarily for the web-graph.

Algorithm for Incremental PageRank

• Initialize: Store R random walks starting at each node

• At time t, for every random walk passing through node ut ,
shift it to use the new edge 〈ut , vt〉 with probability 1/dt(ut)

• Time for each re-routing: O(1/ε).

• Time to decide whether any walk will get rerouted: O(1)

• Claim: This faithfully maintains R random walks after
arbitrary edge arrivals.

Observe that we need the graph and the stored random walks to
be available in an Active DHT; this is a reasonable assumption for
social networks, though not necessarily for the web-graph.

Running Time Analysis

Remember the technical consequence of the random permutation
model: E[πt−1(ut)/dt(ut)] = 1/t.

• Expected running time at time t
= E[(Number of random walks rerouted)]/ε
= E[(Number of random walks via ut)/dt(ut)]/ε
= E[(RN/ε)πt−1(ut)/dt(ut)]/ε
= (RN/ε2)/t [From technical assumption].

• Total running time =

O((RN/ε2)
M∑

t=1

1/t) = O((RN log M)/ε2)

(ignoring time taken to actually make the decision whether to

reroute a random walk)

Verifying E[πt−1(ut)/dt(ut)] = 1/t

In the random permutation model, any of the t edges present at
the end of time t is equally likely to have been the last to arrive,
i.e. P[ut = x] = dt(x)/t. Hence,

E[πt−1(ut)/dt(ut)] =
∑
x∈V

P[ut = x]πt−1(x)/dt(x)

=
∑
x∈V

πt−1(x)/t

= 1/t

Also, empirically verified on Twitter’s network.

Directions

• Extend running time result to adversarial arrival (lower bound
by [Lofgren 2012])

• Efficient personalized search: combine inverted indexes with
personalized reputation systems: recent progress by Bahmani
and Goel

• Speed up incremental computation of other graph and IR
measures, assuming random permutation model

Outline

1 Active DHTs and Distirbuted Stream Processing

2 Incremental PageRank
A Diversion: Recommendation Systems
Fast Incremental PageRank via Monte Carlo

3 Locality Sensitive Hashing

4 Graph Sparsification in Active DHTs

Locality Sensitive Hash Families

• A Hash Family H is said to be a (l , u, pl , pu)-LSH if

1. For any two points x , y such that ||x − y ||2 ≤ l ,
P[h(x) = h(y)] ≥ pl , and

2. For any two points x , y such that ||x − y ||2 ≥ u,
P[h(x) = h(y)] ≤ pu,

where h is a hash function chosen uniformly from the family H

• Given a LSH family, one can design an algorithm for the (l , u)
Near Neighbor problem that uses O(nρ) hash functions, where

n is the number of points, and ρ =
log pl

log pu

• We can obtain ρ = l/u using a simple LSH family

• The idea extends to metrics other than `2

[Indyk-Motwani 2004, Andoni-Indyk 2006]

A simple LSH family

• Project every point to a set of K randomly chosen lines; the
position of the point on the K lines defines a hash function f .

• Impose a random grid on this K dimensional space; the
identifier for the grid cell in which a point x falls is h(x)

• For each database point x and each query point q, we would
generate L = nρ key-value pairs in the map stage

• Data points: Map(x) → {(h1(x), x , 0), . . . , (hL(x), x , 0)}
• Query points: Map(q) → {(h1(q), q, 1), . . . , (hL(q), q, 1)}
• Reduce : For any hash cell, see if any of the query points is

close to any of the data points

• Problem: Shuffle size will be too large for Map-Reduce/Active
DHTs

• Problem: Total space used will be very large for Active DHTs

Entropy LSH

• Instead of hashing each point using L = nρ different hash
functions, hash L = n2ρ perturbations of the query point using
the same hash function [Panigrahi 2006].

• Map(q) → {(h(q + δ1), q, 1), . . . , (h(q + δL), q, 1)}
• Reduces space in centralized system, but still has a large

shuffle size in Map-Reduce and too many network calls over
Active DHTs

Simple LSH

Projec'on	
 of	
 query	
 point	

Projec'on	
 of	
 data	
 point	

L	
 =	
 Nρ	
 Hash	
 func'ons	

Entropy LSH

Projec'on	
 of	
 query	
 offset	

Projec'on	
 of	
 data	
 point	

L	
 =	
 N2ρ	
 query	
 offsets	

Hopefully,	
 one	
 of	
 the	

query	
 offsets	
 maps	
 to	
 the	

same	
 cell	
 as	
 the	
 close	
 by	

data	
 point	

Reapplying LSH to Entropy LSH

Projec'on	
 of	
 query	
 offset	

Projec'on	
 of	
 data	
 point	

L	
 =	
 N2ρ	
 query	
 offsets	

Apply	
 another	
 LSH	
 to	
 the	

grid	
 cells,	
 and	
 use	
 the	

“meta-­‐cell”	
 as	
 the	
 key.	

Intui'on:	
 All	
 the	
 query	

offsets	
 get	
 mapped	
 to	
 a	

small	
 number	
 of	
 meta-­‐
cells	

Our results – Simulations

 10

 100

 1000

1000 1200 1400 1600 1800 2000

S
hu

ffl
e

(G
B

)

L

Layered LSH
Simple LSH

 1

 10

 100

200 400 600 800 1000 1200

S
hu

ffl
e

(G
B

)
L

Layered LSH
Simple LSH

(a) Random data (b) An image database

Our results – Analysis

• Number of network calls/shuffle-size/space per data point:
O(1)

• Number of network calls/shuffle-size/space per query point:
O(

√
log n)

• Maximum size of a key-value pair: Not analyzed. But we can
show that for some small constant c , if ||x − y ||2 > cl then
P[g(x) = g(y)] < 1/2 where g is the meta-cell.

• Maximum number of requests that go to a particular
key-value pair: Same analysis as above

• Open Problems: Optimum tradeoff? Extend to dense point
sets?

Our results – Analysis

• Number of network calls/shuffle-size/space per data point:
O(1)

• Number of network calls/shuffle-size/space per query point:
O(

√
log n)

• Maximum size of a key-value pair: Not analyzed. But we can
show that for some small constant c , if ||x − y ||2 > cl then
P[g(x) = g(y)] < 1/2 where g is the meta-cell.

• Maximum number of requests that go to a particular
key-value pair: Same analysis as above

• Open Problems: Optimum tradeoff? Extend to dense point
sets?

Outline

1 Active DHTs and Distirbuted Stream Processing

2 Incremental PageRank
A Diversion: Recommendation Systems
Fast Incremental PageRank via Monte Carlo

3 Locality Sensitive Hashing

4 Graph Sparsification in Active DHTs

Graph Sparsification via Union-Find

• Typical Approach to Graph Sparsification: For every edge e,
assign a weight we

• Sample the edge with probability 1/we and assign it weight we

if sampled.
• Weight we typically measures the “connectivity strength” of

the endpoints of the edge in the
graph [Benczur-Karger 1996, Spielman-Teng 2004]

• Our observation: We can use a series of nested Union-Find
data structures to estimate this weight [details omitted]

• Stream Processing: Since Union-Find is an easy structure to
update, we get an efficient algorithm for streaming
sparsification

• Other approaches to streaming sparsification
exist [Ahn-Guha 2009, Fung et al. 2011], but Union-Find will
be easy to “distribute”

Union-Find

A connectivity data structure. Every node u maintains a parent
pointer p(u), and a node u is a root if p(u) = u. The structure is
acyclic, so every node has a root that can be found by following
parent pointers.

Find(u) Keep following parent pointers from u till we get to a
root r
Path compression: set p(v) = r for every node v on
the path from u to r .

Union(u, v) Compute a = Find(u); b = Find(v). Assume a has
smaller “rank”. Set p(a) = b.

Amortized time: O(log∗ n) per call.

Union-Find in an Active DHT

• Treat the parent array p as a set of key-value pairs
(u, p(u), rank(u)).

• Number of network calls per update: O(log∗ n) amortized

• Maximum size of a key-value pair: O(1)

• Total number of key-value pairs: O(n)

• Problem: Maximum number of queries to a key-value pair is
O(m).

• Once a graph gets connected, every Find query hits the root,
and there are O(m) Union queries, each triggering two Find
queries.

• Fix: Zig-zag Find. In Union(u, v), first compare whether
p(u) = p(v) and trigger a full Find only when they are not
equal

• Maximum load on a key-value pair: O(n log∗ n). Other
performance measures unaffected

Union-Find in an Active DHT

• Treat the parent array p as a set of key-value pairs
(u, p(u), rank(u)).

• Number of network calls per update: O(log∗ n) amortized

• Maximum size of a key-value pair: O(1)

• Total number of key-value pairs: O(n)

• Problem: Maximum number of queries to a key-value pair is
O(m).

• Once a graph gets connected, every Find query hits the root,
and there are O(m) Union queries, each triggering two Find
queries.

• Fix: Zig-zag Find. In Union(u, v), first compare whether
p(u) = p(v) and trigger a full Find only when they are not
equal

• Maximum load on a key-value pair: O(n log∗ n). Other
performance measures unaffected

Summary of Sparsification

• A Distributed Stream Processing Algorithm for Sparsification

• Total space used: Õ(n)

• Size of key-value pair: O(1)

• Amortized update complexity:
• Number of network calls: Õ(1)
• Amount of data transfer: Õ(1)
• Total amount of computation: Õ(1)

• Total number of calls to a specific key-value pair: O(n log∗ n).

Conclusion

• Active DHTs can do to real-time computation what
Map-Reduce did to Bulk processing

• Many algorithmic issues, some discussed here
• Graph algorithms (eg. sparsification)
• Search/social search (eg. PageRank)
• Mining large data sets (eg. LSH)

• Directions: Optimization; Robustness; Other basic graph,
search, and data-processing measures

THANK YOU

K. Ahn and S. Guha.
On graph problems in a semi-streaming model.
Automata, languages and programming: Algorithms and
complexity, pages 207 – 216, 2009.

A. Andoni and P. Indyk.
Near optimal hashing algorithms for approximate nearest
neighbor in high dimensions.
FOCS ’06.

András A. Benczúr and David R. Karger.

Approximating s-t minimum cuts in Õ(n2) time.
Proceedings of the 28th annual ACM symposium on Theory of
computing, pages 47–55, 1996.

S. Brin, L. Page, R. Motwani, and T. Winograd
What can you do with a Web in your Pocket?, 1998

Wai Shing Fung, Ramesh Hariharan, Nicholas J. A. Harvey,
and Debmalya Panigrahi.
A general framework for graph sparsification.
STOC, pages 71–80, 2011.

M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni.
Locality sensitive hashing scheme based on p-stable
distributions.
SoCG ’04.

P. Lofgren.
A lower bound on amortized complexity of the Monte Carlo
method for incremental PageRank.
Personal communication.

R. Panigrahi.
Entropy based nearest neighbor search in high dimensions.
SODA ’06.

Daniel A. Spielman and Shang-Hua Teng.
Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems.

STOC ’04, 2004.

	Active DHTs and Distirbuted Stream Processing
	Incremental PageRank
	A Diversion: Recommendation Systems
	Fast Incremental PageRank via Monte Carlo

	Locality Sensitive Hashing
	Graph Sparsification in Active DHTs

