Nessie: A NESL to CUDA Compiler

John Reppy
University of Chicago

October 2018

GPU background

GPUs

» GPU architectures are optimized for arithmetically intensive computation.

» GPUs provide super-computer levels of parallelism at commodity prices.

» For example, the Tesla V100 provides 15.7 TFlops peak single-precision performance and 7.8
TFlops of peak double-precision performance.

NVidia GPUs have two (or three) levels of parallelism:

» A multicore processor that supports Single-Instruction Multiple-Thread (SIMT) parallelism.

» Multiple multicore processors on a single chip.

» Multiple GPGPU boards per system.

October 2018 Shonan 136 — Nessie

GPUs

For example’ NVldla’s Kepler GKl 10 Streamlng Register File (64K x 32-bit)
Multiprocessor (SMX). (O R o

P> 192 single-precision cores ll
» 64 double-precision cores

P 32 load/store units M

P 32 special function units

P> 4 x 32-lane warps in parallel

AEEEENENNEEENENE-

Lots of parallel compute, but not very much memory

iterconnect Network

=1

October 2018 Shonan 136 — Nessie 3

GPU background

GPUs (continued ...)
NVIDIA’s Tesla K40 architecture has 15 GK110 SMXs (2880 Cuda cores).

Thread Engine

Memory Controller

Optimized for processing data in bulk!

October 2018

GPU programming model

The design of GPU hardware is manifest in the widely used GPU programming languages (e.g.,
Cuda and OpenCL).

Thread hierarchy Explicit memory hierarchy
» Threads (grouped into warps for SIMT » Disjoint memory spaces
execution) » Per-thread memory maps to registers
» Blocks (mapped to the same SMX) » Per-block shared memory
» Grid (multiple blocks running the same » Global memory
kernel) » Host memory
Synchronization » Also texture and constant memory

» Block-level barriers
» Atomic memory operations

» Task synchronization

October 2018 Shonan 136 — Nessie

PU ba

Programming becomes harder!

C code for dot product (map-reduce):

float dotp (int n, const float xa, const float xb)
{
float sum = 0.0f ;
for (int 1 = 0; 1 < n; i++)
sum += a[i] * b[i] ;

return sum ;

Also need CPU-side code!

cudaMalloc ((void #%)&V1_D , N«sizeof (float)) ;

cudaMalloc ((void #*)&V2_D , Nxsizeof (float)) ;

cudaMalloc ((void #+)&V3_D , blockPerGrid«sizeof (£loat)) ;
cudaMemcpy (VI_D , VI_H , Nrsizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy (V2_D , V2_H , N+sizeof (float), cudaMemcpyHostToDevice);

dotp <<<blockPerGrid, ThreadPerBlock>>> (N, V1D, V2_D, V3_D);

V3_H = new float [blockPerGrid] ;

cudaMemcpy (V3_H, V3_D, N+sizeof (float), cudaMemcpyDeviceToHost);

float sum = 0 ;

for (int i = 0 ; i<blockPerGrid ;
sum += V3_H[i] ;

it4)

delete V3_H;

CUDA device code for dot product:

__global _ void dotp (int n, const float *a, const float
{
__shared__ float cache[ThreadsPerBlock] ;

float temp ;

*b, float sresults)

const unsigned int tid = blockDim.x * blockIdx.x + threadIdx.x ;

const unsigned int idx = threadIdx.x ;

while (tid < n) (
temp += al[tid] » b[tid] ;
tid += blockDim.x % gridDim.x ;
)
cache[idx] = temp ;
__synchthreads () ;

int i = blockDim.x / 2 ;
while (i != 0) {
if (idx < i)
cache[idx] += cache[idx + i] ;
__synchthreads () ;
i/=2;
}
if (idx == 0)
results[blockIdx.x] = cache[0] ;

onan 136 — Nessie

Nested Data Parallelism

NESL

>

>

NESL is a first-order functional language for parallel programming over sequences designed
by Guy Blelloch [Blelloch *96].
Provides parallel for-each operation (with optional filter)
{ x+vy : x in xs; y in ys }
{x/y:xinxs; yinys | (y /= 0) }
Provides other parallel operations on sequences, such as reductions, prefix-scans, and
permutations.

function dot (xs, ys) = sum ({ x » v ¢ x in xs; y in ys })

Supports Nested Data Parallelism (NDP) — components of a parallel computation may
themselves be parallel.

October 2018

Nested Data Parallelism

NDP example: sparse matrix times dense vector

10400 1 .

0300 2) Sparse representation tracks non-zero
entries using sequence of sequences of

00050 3 index-value pairs:

67008]||4 Patrs:

00900 5

. . > 0,1 [2.4
Want to avoid computing products where

matrix entries are 0. >| (1,3) | 4,2

> (3,5)

> (0,6) | (1,7) | 4,8)

> (0,1)

October 2018 Shonan 136 — Nessie 8

Nested Data Parallelism

NDP example: sparse-matrix times vector

In NESL, this algorithm has a compact expression:

function svxv (sv, v) = sum ({ x * v[i] : (i, x) in sv })
function smxv (sm, v) = { svxv (sv, Vv) : sv in sm }

Notice that the smxv function is a map of map-reduce subcomputations; i.e., nested data
parallelism.

October 2018 Shonan 136 — Nessie 9

Nested Data Parallelism

NDP example: sparse-matrix times vector

Naive parallel decomposition will be unbalanced because of irregularity in sub-problem sizes.

0.1

2.4

> (1,3)

4.2)

> (3.5

> (0,6)

1.7

4.8)

0,1

October 2018

Flattening transformation converts NDP
to flat DP (including AoS to SoA)

Shonan 136 — Nessie 10

Nested Data Parallelism

Flattening

Flattening (a.k.a. vectorization) is a global program transformation that converts irregular nested
data parallel code into regular flat data parallel code.

> Lifts scalar operations to work on sequences of values

P Flattens nested sequences paired with segment descriptors

» Conditionals are encoded as data

P Residual program contains vector operations plus sequential control flow and
recursion/iteration.

October 2018 Shonan 136 — Nessie 1

Nested Data Parallelism

Flattening function calls

{f(e) : xinxs}

if #xs=0
then []
elseletes={e:xinuxs}
in fT(es)

October 2018 Shonan 136 — Nessie 12

Nested Data Parallelism

Lifting functions

If we have
functionf (x) =e¢

then f7 is defined to be
function T (xs) = {e : xinxs}

October 2018 Shonan 136 — Nessie 13

Nested Data Parallelism

Flattening conditionals
{if bthene elsee; : xinxs}

—

letfs={b:xinuxs}

let (xs;,xs2) = PARTITION (xs, f5)
let vsi ={e; : xinxs; }

letvs) ={e : xinxsy }

in COMBINE (vsy, vsa, f5)

October 2018 Shonan 136 — Nessie 14

Nested Data Parallelism

Flattening example: factorial

function fact (n) = if (n <= 0) then 1 else n * fact (n - 1)
function fact' (ns) = { fact (n) n in ns }
-
function fact' (ns) =

let fs = (ns <=T dist (0, #ns));
(nsl, ns2) = PARTITION (ns, fs);
vsl = dist (1, #nsl);
vs2 = if (#ns2 = 0)
then []
else let
es = (ns2 -T dist (1, #ns2));
rs = fact! (es);
in (ns2 «T rs);

in COMBINE (vsl,

October 2018

vs2, fs)

Shonan 136 — Nessie

NESL on GPUs

NESL on GPUs

> NESL was designed for bulk-data processing on wide-vector machines (SIMD)
P Potentially a good fit for GPU computation

> First try [Bergstrom & Reppy *12] demonstrated feasibility of NESL on GPUs, but was
signficantly slower than hand-tuned CUDA code for some benchmarks (worst case: over 50
times slower on Barnes-Hut [Burtscher & Pingali *11]).

October 2018

NESL on GPUs

Areas for improvement

We identified a number of areas for improvement.

» Better fusion:

» Fuse generators, scans, and reductions with maps.
» “Horizontal fusion,” (fuse independent maps over the same index space).

P Better segment descriptor management.

> Better memory management.

It proved difficult/impossible to support these improvements in the context of the VCODE
interpreter.

October 2018 Shonan 136 — Nessie 17

Nessie

New NESL compiler built from scratch.

» Front-end produces monomorphic, direct-style IR.

» Flattening eliminates NDP and produces Flan, which is a flat-vector language with
VCODE-like operators.

» Shape analysis is used to tag vectors with size information (symbolic in some cases).

» Flan is converted to \.,, which is where fusion and other optimizations occur.

October 2018 Shonan 136 — Nessie 18

Aew — An IR for GPU programs (continued ...)

Acu 18 a three-level language:
» CPU expressions — direct-style extended A-calculus with kernel dispatch
» Kernels — sequences of second-order array combinators (SOAC)

» GPU anonymous functions — first-order functions that are the arguments to the SOACs.

October 2018 Shonan 136 — Nessie 19

Nessie

Aew — An IR for GPU programs (continued ...)

prog
dcl

params
blk
bind

exp

October 2018

CPU expressions

kern dcl

kern
bind
function f (params) blk dcl
let params = exp dcl

exp

arg

Xi i Xi
{ bind exp }
let params = exp A

blk

run K args

fargs

if exp then blk else blk
exp O exp

exp

Shonan 136 — Nessie

Kernel expressions
kernel K xs { bind return ys }
let xs = SOAC arg
A

rop*
shape

GPU expressions
{ xs => exp using ys }

if exp then exp else exp
let X = exp in exp

exp © exp

xs[i]

X

Nessie

Second-Order Array Combinators

Like Futhark [Henriksen et al. *14], Nova [Collins et al. *14], and other systems, we use
Second-Order Array Combinators (SOACsS) to represent the iteration structure of our operations on

sequences.

October 2018

ONCE

MAP
PERMUTE
REDUCE
SCAN
FILTER
PARTITION

SEG_PERMUTE
SEG_REDUCE
SEG_SCAN
SEG_FILTER
SEG_PARTITION

(unit = 7) — 7

(int = 7) int — 77

(int = 7) (int = int) int — 77
(int = 7) rop,. int — 7

(int = 7) rop, int — 77

(int = 7) (1 = bool) int — 77
(int = 7) (r = bool) int — 7 x 7T
(int = 7) (int = int) sd — 77

(int = 7) rop, sd — 7"

(
(
(

int = 7) (7 = bool) sd — 7T x sd

)
)
int = 7) rop, sd — 7"
)
) (7 = bool) sd — 7T x sd x 7T x sd

Shonan 136 — Nessie pal

Nessie

Second-Order Array Combinators (continued ...)

There is a key difference between our combinators and previous work: combinators use a pull
thunk, which is parameterized by the array indices, to get their inputs

Example: iota
{1 : 1 in [0 : n-1] }
—>
kernel K (n : int) -> [int] {

let res = MAP { 1 => 1 } n
return res

October 2018 Shonan 136 — Nessie

Nessie

Second-Order Array Combinators (continued ...)

There is a key difference between our combinators and previous work: combinators use a pull
thunk, which is parameterized by the array indices, to get their inputs

Example: the element-wise product of two sequences

{ x *+ vy : x in xs; y in ys }
—

kernel K (xs : [float], ys : [float]) -> [float] {

let res = MAP { i => xs[i] * ys[i] using xs, ys } (#xs)
return res

October 2018 Shonan 136 — Nessie

Nessie

Second-Order Array Combinators (continued ...)

There is a key difference between our combinators and previous work: combinators use a pull
thunk, which is parameterized by the array indices, to get their inputs

Example: summing a sequence

sum (xs)
—>
kernel K (xs : [float]) —> float {
let res =
REDUCE { i => xs[i] using xs } (FADD) (#xs)

return res

October 2018 Shonan 136 — Nessie

Nessie

Nessie backend

D END RN BN D N D)

» Designed to support better fusion, ezc..
» Backend transforms flattened code to CUDA in several steps.

> ILP-based fusion [Megiddo and Sarkar *99; Robinson et al *14].
» Memory analysis based on Uniqueness types [de Vries et al *07].
» Add explicit memory management based on analysis.

October 2018 Shonan 136 — Nessie 23

Nessie

Simple map-reduce fusion

The A, code for the dotp example is

kernel prod (xs : [float], ys : [float]) -> [float] {
let res = MAP { i => xs[i] % ys[i] using xs, ys } (#xs)
return res

}
kernel sum (xs : [float]) —-> float {

let res = REDUCE { i => xs[i] using xs } (FADD) (#xs)
return res

}

function dots (xs : [float], ys : [float]) -> [float] {
let t1 : [float] = run prod (xs, ys)
let t2 : float = run sum (t)
return t2

October 2018 Shonan 136 — Nessie

Nessie

Simple map-reduce fusion

Step 1: Fuse the two kernels into a combined kernel.

kernel prod (xs : [float], ys : [float]) -> [float] {
let res = MAP { i => xs[i] x ys[i] using xs, ys } (#xs)
return res

}

kernel sum (xs : [float]) —-> float {
let res = REDUCE { i => xs[i] using xs } (FADD) (#xs)
return res

}

function dots (xs : [float], ys : [float]) -> [float] {
[let tl : [float] = run prod (xs, ysq
let t2 : float = run sum (t)
return t2

October 2018 Shonan 136 — Nessie

Nessie

Simple map-reduce fusion

Step 1: Fuse the two kernels into a combined kernel.

kernel F (xs : [float], ys : [float]) -> float {
let ts = MAP { i => xs[i] » ys[i] using xs, ys } (#xs)
let res = REDUCE { i => ts[i] using ts } (FADD) (#ts)
return res

}

function dots (xs : [float], ys : [float]) -> [float] {
let t2 : float = run F (xs, ys)
return t2

}

October 2018 Shonan 136 — Nessie 24

Nessie

Simple map-reduce fusion

Step 2: Fuse the map operation into the rebuce’s pull operation

kernel F (xs : [float], ys : [float]) -> float {
[let ts = MAP { i => xs[i] % ys[i] using xs, ys } (#xsa

let res = REDUCE { i => ts[i] using ts } (FADD) (#ts)
return res

}

function dots (xs : [float], ys : [float]) —-> [float] {
let t2 : float = run F (xs, ys)
return t2

}

October 2018 Shonan 136 — Nessie

Nessie

Simple map-reduce fusion

Step 2: Fuse the map operation into the rebuce’s pull operation

kernel F (xs : [float], ys : [float]) -> float {
let res = REDUCE { i => xs[i] » ys[i] using xs, ys } (FADD) (#xs)
return res

}

function dots (xs : [float], ys : [float]) —-> [float] {
let t2 : float = run F (xs, ys)
return t2

}

October 2018 Shonan 136 — Nessie 24

Fancier fusion

Consider the following Nesl function (adapted from [Robinson et al *14]):
function norm2 (xs) : [float] -> ([float], [float]) =

let suml = sum(xs);
gts = { x : x in xs | (x > 0) };
sum2 = sum(gts);

in

({ x / suml : x in xs }, { x / sum2 : X in xs })

October 2018 Shonan 136 — Nessie 25

Nessie

Fancier fusion (continued ...)

Translating to A., produces the following code:

kernel K1 (xs : [float]) -> float {
let res = REDUCE { i => xs[i] using xs } (FADD) (#xs)
return res

}

kernel K2 (xs : [float]) =-> [float] {
let res = FILTER { i => xs[i] using xs } { x => x > 0 } (#xs)
return res

}

kernel K3 (xs : [float], s : float) -> [float] {
let res = MAP { i => xs[i] / s using xs } (#xs)
return res

}

function norm2 (xs : [float]) =-> ([float], [float]) {
let suml : float = run K1 (xs)
let its : [float] = run K2 (xs)
let sum2 = run K1 (its)
let resl : [float] = run K3 (xs, suml)
let res2 : [float] = run K3 (xs, sum2)
return (resl, res2)

Shonan

Nessie

Fancier fusion (continued ...)

PDG control region

kernel K1 (xs : [float]) -> float {
let res = REDUCE { i => xs[i] using xs }

(FADD) (#xs)
return res

}
kernel K2 (xs : [float]) =-> [float] {

let res = FILTER { i => xs[i] using xs } { x => x > 0 } (#xs)

return res
} run K2 (xs)
kernel K3 (xs : [float], s : float) -> [float] {

let res = MAP { i => xs[i] / s using xs } (#xs)

return res gts
! run K1 (gts)
function norm2 (xs : [float]) —-> ([float], [float]) { K

suml : float = run Kl (xs) 4éum2

let its : [float] = run K2 (xs) .

let sum2 = run K1 (its) 9

let resl : [float] = run K3 (xs, suml

let res2 : {float} = run K3 ((xs: sumZ; (nm K3 (xs, suml)) (r‘m K3 (xs, Sumz))

return (resl, res2)

resl Tres2

(resl,res2)

October 2018

Shonan 1 Nessie

26

Fancier fusion (continued ...)

kernel K1 (xs
let res =

[float]) —-> float {

}

kernel K2

return res

(xs

REDUCE { i => xs[i] using xs } (FADD)

(#xs)

[float]) -> [float] {
let res = FILTER { i => xs[i] using xs } { x => x > 0 } (#xs)
return res
: (zon 1 xe))
kernel K3 (xs : [float], s : float) —> [£loat] { xun K1_(xs) xun K2 (x5)
let res MAP { i => xs[i] / s using xs } (#xs) X
return res N
} \
K run K1 (gts)
function norm2 (xs [float]) —> ([float], [float]) { ‘.‘ K
let suml : float = run Kl (xs) 3 v
let its : [float] = run K2 (xs) K S
let sum2 = run K1 (its) 3 ¥
let resl [float] = run K3 (xs, suml)
3 , 1 3 , 2
let res2 : [float] run K3 (xs, sum2) [nm K3 _(xs, sum)) [r‘m X3 (xs, sum)]
return (resl, res2) ‘///

Shonan 13

Nessie

One possible schedule

26

Fancier fusion (continued ...)

kernel K1 (xs
let res =

[float]) —-> float {

}

kernel K2

return res

(xs

REDUCE { i => xs[i] using xs } (FADD)

(#xs)

[float]) -> [float] {
let res = FILTER { i => xs[i] using xs } { x => x > 0 } (#xs)
return res
: (zon 1 xe))
kernel K3 (xs : [float], s : float) —> [£loat] { xun K1_(xs) xun K2 (x5)
let res MAP { i => xs[i] / s using xs } (#xs) X
return res N
} \
K run K1 (gts)
function norm2 (xs [float]) —> ([float], [float]) { ‘.‘ K
let suml : float = run Kl (xs) 3 v
let its : [float] = run K2 (xs) K S
let sum2 = run K1 (its) 3 ¥
let resl [float] = run K3 (xs, suml)
3 , 1 3 , 2
let res2 : [float] run K3 (xs, sum2) [nm K3 _(xs, sum)) [r‘m X3 (xs, sum)]
return (resl, res2) ‘///

Shonan 13

Nessie

Another possible schedule

26

Nessie

Fancier fusion (continued ...)

Using ILP produces the following

kernel F1 (xs : [float]) -> (float, float) { SChedUIe'
let (suml, sum2) =
REDUCE { i => let x = xs[i] in (x, if x > 0 then x else 0) using xs }
(FADD, FADD)
(#xs)
return (suml, sum2)
} KF1
kernel F2 (xs : [float], suml : float, sum2 : float) -> [float] {
let (resl, res2) =
MAP { i => let x = xs[i] in (x / suml, x / sum2) using xs, suml, sum2 }
(#xs)
return (resl, res2)

}

run K2 (xs)

function norm2 (xs : [float]) —-> ([float], [float]) {

let (suml : float, sum2) = run F1 (xs)
let (resl : [float], res2 : [float]) = run F2 (xs, suml, sum2)
return (resl, res2)
run K3 (xs, suml run K3 (xs, sum2
) (rom w0 ¢) (remos)

(resl,res2)

Shonan 13 Nessie 26

Nessie

Fancier fusion (continued ...)

Using ILP produces the following

kernel F1 (xs : [float]) —-> (float, float) { SChedUIe'
let (suml, sum2) =
REDUCE { i => let x = xs[i] in (x, (if x > 0 then x else 0)) using xs }
(FADD, FADD)
(#xs)
return (suml, sum2)
} KF1
kernel F2 (xs : [float], suml : float, sum2 : float) -> [float] {
let (resl, res2) =
MAP { i => let x = xs[i] in (x / suml, x / sum2) using xs, suml, sum2 }
(#xs)
return (resl, res2)

}

run K2 (xs)

function norm2 (xs : [float]) -> ([float], [float]) {
let (suml : float, sum2) = run F1 (xs)
let (resl : [float], res2 : [float]) = run F2 (xs, suml, sum2)

return (resl, res2)
run K3 (xs, suml run K3 (xs, sum2
) (rom w0 ¢) (remos)

Notice how we fused the rILTER into the rREDUCE!

October 2018 Shonan 26

Streaming and piecewise execution

Streaming and piecewise execution

P>)., processes vectors as atomic objects, which can exceed the memory resources of a GPU.

> We could partition kernel execution into smaller pieces (either statically or dynamically) to
improve scalability enable multi-GPU parallelism.

» Palmer et al. describe a post-flattening piecewise execution strategy and there was some
follow-on work by Pfannestiel about scheduling piecewise execution for threaded execution.

October 2018 Shonan 136 — Nessie

Streaming and piecewise execution

Streaming and piecewise execution

P>)., processes vectors as atomic objects, which can exceed the memory resources of a GPU.

> We could partition kernel execution into smaller pieces (either statically or dynamically) to
improve scalability enable multi-GPU parallelism.

» Palmer et al. describe a post-flattening piecewise execution strategy and there was some
follow-on work by Pfannestiel about scheduling piecewise execution for threaded execution.

>

©,1)

2,4)

(1,3)

“4,2)

(3.5)

(0,6)

a7 | “4,8) |

October 2018

——
—
——
—

©,1)

Flat execution

:E

1

1

1

H ! . . .
H i Piecewise execution
H 1

:D

H

H

H

Shonan 136 — Nessie 27

Streaming and piecewise execution

Streaming and piecewise execution (continued ...)

» Connections to Keller and Chakravarty’s Distributed Types and Palmer et al.’s Piecewise
execution of NDP programs.

» Not all operations can be executed in piecewise fashion (e.g., permutations).

» The execution model for Madsen and Filinski’s Streaming NESL also requires piecewise
execution of kernels.

October 2018 Shonan 136 — Nessie 28

	GPU background
	Nested Data Parallelism
	Nesl on GPUs
	Nessie
	Streaming and piecewise execution

