Nessie: A NESL to CUDA Compiler

John Reppy
University of Chicago

October 2018



GPU background

GPUs

» GPU architectures are optimized for arithmetically intensive computation.

» GPUs provide super-computer levels of parallelism at commodity prices.

» For example, the Tesla V100 provides 15.7 TFlops peak single-precision performance and 7.8
TFlops of peak double-precision performance.

NVidia GPUs have two (or three) levels of parallelism:

» A multicore processor that supports Single-Instruction Multiple-Thread (SIMT) parallelism.

» Multiple multicore processors on a single chip.

» Multiple GPGPU boards per system.
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GPUs

For example’ NVldla’s Kepler GKl 10 Streamlng Register File (64K x 32-bit)
Multiprocessor (SMX). (O R o

P> 192 single-precision cores ll
» 64 double-precision cores

P 32 load/store units M

P 32 special function units

P> 4 x 32-lane warps in parallel

AEEEENENNEEENENE-

Lots of parallel compute, but not very much memory

iterconnect Network

=1
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GPU background

GPUs (continued ...)
NVIDIA’s Tesla K40 architecture has 15 GK110 SMXs (2880 Cuda cores).

Thread Engine

Memory Controller

Optimized for processing data in bulk!
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GPU programming model

The design of GPU hardware is manifest in the widely used GPU programming languages (e.g.,
Cuda and OpenCL).

Thread hierarchy Explicit memory hierarchy
» Threads (grouped into warps for SIMT » Disjoint memory spaces
execution) » Per-thread memory maps to registers
» Blocks (mapped to the same SMX) » Per-block shared memory
» Grid (multiple blocks running the same » Global memory
kernel) » Host memory
Synchronization » Also texture and constant memory

» Block-level barriers
» Atomic memory operations

» Task synchronization
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Programming becomes harder!

C code for dot product (map-reduce):

float dotp (int n, const float xa, const float xb)
{
float sum = 0.0f ;
for (int 1 = 0; 1 < n; i++)
sum += a[i] * b[i] ;

return sum ;

Also need CPU-side code!

cudaMalloc ((void #%)&V1_D , N«sizeof (float)) ;

cudaMalloc ((void #*)&V2_D , Nxsizeof (float)) ;

cudaMalloc ((void #+)&V3_D , blockPerGrid«sizeof (£loat)) ;
cudaMemcpy (VI_D , VI_H , Nrsizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy (V2_D , V2_H , N+sizeof (float), cudaMemcpyHostToDevice);

dotp <<<blockPerGrid, ThreadPerBlock>>> (N, V1D, V2_D, V3_D);

V3_H = new float [blockPerGrid] ;

cudaMemcpy (V3_H, V3_D, N+sizeof (float), cudaMemcpyDeviceToHost);

float sum = 0 ;

for (int i = 0 ; i<blockPerGrid ;
sum += V3_H[i] ;

it4)

delete V3_H;

CUDA device code for dot product:

__global _ void dotp (int n, const float *a, const float
{
__shared__ float cache[ThreadsPerBlock] ;

float temp ;

*b, float sresults)

const unsigned int tid = blockDim.x * blockIdx.x + threadIdx.x ;

const unsigned int idx = threadIdx.x ;

while (tid < n) (
temp += al[tid] » b[tid] ;
tid += blockDim.x % gridDim.x ;
)
cache[idx] = temp ;
__synchthreads () ;

int i = blockDim.x / 2 ;
while (i != 0) {
if (idx < i)
cache[idx] += cache[idx + i] ;
__synchthreads () ;
i/=2;
}
if (idx == 0)
results[blockIdx.x] = cache[0] ;
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Nested Data Parallelism

NESL

>

>

NESL is a first-order functional language for parallel programming over sequences designed
by Guy Blelloch [Blelloch *96].
Provides parallel for-each operation (with optional filter)
{ x+vy : x in xs; y in ys }
{x/y:xinxs; yinys | (y /= 0) }
Provides other parallel operations on sequences, such as reductions, prefix-scans, and
permutations.

function dot (xs, ys) = sum ({ x » v ¢ x in xs; y in ys })

Supports Nested Data Parallelism (NDP) — components of a parallel computation may
themselves be parallel.
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Nested Data Parallelism

NDP example: sparse matrix times dense vector

10400 1 .

0300 2 ) Sparse representation tracks non-zero
entries using sequence of sequences of

00050 3 index-value pairs:

67008]||4 Patrs:

00900 5

. . > 0,1 [ 2.4
Want to avoid computing products where

matrix entries are 0. >| (1,3) | 4,2

> (3,5)

> (0,6) | (1,7) | 4,8)

> (0,1)
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Nested Data Parallelism

NDP example: sparse-matrix times vector

In NESL, this algorithm has a compact expression:

function svxv (sv, v) = sum ({ x * v[i] : (i, x) in sv })
function smxv (sm, v) = { svxv (sv, Vv) : sv in sm }

Notice that the smxv function is a map of map-reduce subcomputations; i.e., nested data
parallelism.
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Nested Data Parallelism

NDP example: sparse-matrix times vector

Naive parallel decomposition will be unbalanced because of irregularity in sub-problem sizes.

0.1

2.4

> (1,3)

4.2)

> (3.5

> (0,6)

1.7

4.8)

0,1
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Flattening transformation converts NDP
to flat DP (including AoS to SoA)
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Nested Data Parallelism

Flattening

Flattening (a.k.a. vectorization) is a global program transformation that converts irregular nested
data parallel code into regular flat data parallel code.

> Lifts scalar operations to work on sequences of values

P Flattens nested sequences paired with segment descriptors

» Conditionals are encoded as data

P Residual program contains vector operations plus sequential control flow and
recursion/iteration.
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Nested Data Parallelism

Flattening function calls

{f(e) : xinxs}

if #xs=0
then []
elseletes={e:xinuxs}
in fT(es)
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Nested Data Parallelism

Lifting functions

If we have
functionf (x) =e¢

then f7 is defined to be
function T (xs) = {e : xinxs}

October 2018 Shonan 136 — Nessie 13



Nested Data Parallelism

Flattening conditionals
{if bthene elsee; : xinxs}

—

letfs={b:xinuxs}

let (xs;,xs2) = PARTITION (xs, f5)
let vsi ={e; : xinxs; }

letvs) ={e : xinxsy }

in COMBINE (vsy, vsa, f5)
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Nested Data Parallelism

Flattening example: factorial

function fact (n) = if (n <= 0) then 1 else n * fact (n - 1)
function fact' (ns) = { fact (n) n in ns }
-
function fact' (ns) =

let fs = (ns <=T dist (0, #ns));
(nsl, ns2) = PARTITION (ns, fs);
vsl = dist (1, #nsl);
vs2 = if (#ns2 = 0)
then []
else let
es = (ns2 -T dist (1, #ns2));
rs = fact! (es);
in (ns2 «T rs);

in COMBINE (vsl,

October 2018

vs2, fs)
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NESL on GPUs

NESL on GPUs

> NESL was designed for bulk-data processing on wide-vector machines (SIMD)
P Potentially a good fit for GPU computation

> First try [Bergstrom & Reppy *12] demonstrated feasibility of NESL on GPUs, but was
signficantly slower than hand-tuned CUDA code for some benchmarks (worst case: over 50
times slower on Barnes-Hut [Burtscher & Pingali *11]).
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NESL on GPUs

Areas for improvement

We identified a number of areas for improvement.

» Better fusion:

» Fuse generators, scans, and reductions with maps.
» “Horizontal fusion,” (fuse independent maps over the same index space).

P Better segment descriptor management.

> Better memory management.

It proved difficult/impossible to support these improvements in the context of the VCODE
interpreter.
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Nessie

New NESL compiler built from scratch.

» Front-end produces monomorphic, direct-style IR.

» Flattening eliminates NDP and produces Flan, which is a flat-vector language with
VCODE-like operators.

» Shape analysis is used to tag vectors with size information (symbolic in some cases).

» Flan is converted to \.,, which is where fusion and other optimizations occur.
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Aew — An IR for GPU programs (continued ...)

Acu 18 a three-level language:
» CPU expressions — direct-style extended A-calculus with kernel dispatch
» Kernels — sequences of second-order array combinators (SOAC)

» GPU anonymous functions — first-order functions that are the arguments to the SOACs.
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Nessie

Aew — An IR for GPU programs (continued ...)

prog
dcl

params
blk
bind

exp

October 2018

CPU expressions

kern dcl

kern
bind
function f ( params ) blk dcl
let params = exp dcl

exp

arg

Xi i Xi
{ bind exp }
let params = exp A

blk

run K args

fargs

if exp then blk else blk
exp O exp

exp
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Kernel expressions
kernel K xs { bind return ys }
let xs = SOAC arg
A

rop*
shape

GPU expressions
{ xs => exp using ys }

if exp then exp else exp
let X = exp in exp

exp © exp

xs[i]

X



Nessie

Second-Order Array Combinators

Like Futhark [Henriksen et al. *14], Nova [Collins et al. *14], and other systems, we use
Second-Order Array Combinators (SOACsS) to represent the iteration structure of our operations on

sequences.

October 2018

ONCE

MAP
PERMUTE
REDUCE
SCAN
FILTER
PARTITION

SEG_PERMUTE
SEG_REDUCE
SEG_SCAN
SEG_FILTER
SEG_PARTITION

(unit = 7) — 7

(int = 7) int — 77

(int = 7) (int = int) int — 77
(int = 7) rop,. int — 7

(int = 7) rop, int — 77

(int = 7) (1 = bool) int — 77
(int = 7) (r = bool) int — 7 x 7T
(int = 7) (int = int) sd — 77

(int = 7) rop, sd — 7"

(
(
(

int = 7) (7 = bool) sd — 7T x sd

)
)
int = 7) rop, sd — 7"
)
) (7 = bool) sd — 7T x sd x 7T x sd
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Nessie

Second-Order Array Combinators (continued ...)

There is a key difference between our combinators and previous work: combinators use a pull
thunk, which is parameterized by the array indices, to get their inputs

Example: iota
{1 : 1 in [0 : n-1] }
—>
kernel K (n : int) -> [int] {

let res = MAP { 1 => 1 } n
return res
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Nessie

Second-Order Array Combinators (continued ...)

There is a key difference between our combinators and previous work: combinators use a pull
thunk, which is parameterized by the array indices, to get their inputs

Example: the element-wise product of two sequences

{ x *+ vy : x in xs; y in ys }
—

kernel K (xs : [float], ys : [float]) -> [float] {

let res = MAP { i => xs[i] * ys[i] using xs, ys } (#xs)
return res
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Nessie

Second-Order Array Combinators (continued ...)

There is a key difference between our combinators and previous work: combinators use a pull
thunk, which is parameterized by the array indices, to get their inputs

Example: summing a sequence

sum (xs)
—>
kernel K (xs : [float]) —> float {
let res =
REDUCE { i => xs[i] using xs } (FADD) (#xs)

return res
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Nessie

Nessie backend

D END RN BN D N D)

» Designed to support better fusion, ezc..
» Backend transforms flattened code to CUDA in several steps.

> ILP-based fusion [Megiddo and Sarkar *99; Robinson et al *14].
» Memory analysis based on Uniqueness types [de Vries et al *07].
» Add explicit memory management based on analysis.

October 2018 Shonan 136 — Nessie 23



Nessie

Simple map-reduce fusion

The A, code for the dotp example is

kernel prod (xs : [float], ys : [float]) -> [float] {
let res = MAP { i => xs[i] % ys[i] using xs, ys } (#xs)
return res

}
kernel sum (xs : [float]) —-> float {

let res = REDUCE { i => xs[i] using xs } (FADD) (#xs)
return res

}

function dots (xs : [float], ys : [float]) -> [float] {
let t1 : [float] = run prod (xs, ys)
let t2 : float = run sum (t)
return t2
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Nessie

Simple map-reduce fusion

Step 1: Fuse the two kernels into a combined kernel.

kernel prod (xs : [float], ys : [float]) -> [float] {
let res = MAP { i => xs[i] x ys[i] using xs, ys } (#xs)
return res

}

kernel sum (xs : [float]) —-> float {
let res = REDUCE { i => xs[i] using xs } (FADD) (#xs)
return res

}

function dots (xs : [float], ys : [float]) -> [float] {
[let tl : [float] = run prod (xs, ysq
let t2 : float = run sum (t)
return t2
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Nessie

Simple map-reduce fusion

Step 1: Fuse the two kernels into a combined kernel.

kernel F (xs : [float], ys : [float]) -> float {
let ts = MAP { i => xs[i] » ys[i] using xs, ys } (#xs)
let res = REDUCE { i => ts[i] using ts } (FADD) (#ts)
return res

}

function dots (xs : [float], ys : [float]) -> [float] {
let t2 : float = run F (xs, ys)
return t2

}
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Nessie

Simple map-reduce fusion

Step 2: Fuse the map operation into the rebuce’s pull operation

kernel F (xs : [float], ys : [float]) -> float {
[let ts = MAP { i => xs[i] % ys[i] using xs, ys } (#xsa

let res = REDUCE { i => ts[i] using ts } (FADD) (#ts)
return res

}

function dots (xs : [float], ys : [float]) —-> [float] {
let t2 : float = run F (xs, ys)
return t2

}
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Nessie

Simple map-reduce fusion

Step 2: Fuse the map operation into the rebuce’s pull operation

kernel F (xs : [float], ys : [float]) -> float {
let res = REDUCE { i => xs[i] » ys[i] using xs, ys } (FADD) (#xs)
return res

}

function dots (xs : [float], ys : [float]) —-> [float] {
let t2 : float = run F (xs, ys)
return t2

}
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Fancier fusion

Consider the following Nesl function (adapted from [Robinson et al *14]):
function norm2 (xs) : [float] -> ([float], [float]) =

let suml = sum(xs);
gts = { x : x in xs | (x > 0) };
sum2 = sum(gts);

in

({ x / suml : x in xs }, { x / sum2 : X in xs })
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Nessie

Fancier fusion (continued ...)

Translating to A., produces the following code:

kernel K1 (xs : [float]) -> float {
let res = REDUCE { i => xs[i] using xs } (FADD) (#xs)
return res

}

kernel K2 (xs : [float]) =-> [float] {
let res = FILTER { i => xs[i] using xs } { x => x > 0 } (#xs)
return res

}

kernel K3 (xs : [float], s : float) -> [float] {
let res = MAP { i => xs[i] / s using xs } (#xs)
return res

}

function norm2 (xs : [float]) =-> ([float], [float]) {
let suml : float = run K1 (xs)
let its : [float] = run K2 (xs)
let sum2 = run K1 (its)
let resl : [float] = run K3 (xs, suml)
let res2 : [float] = run K3 (xs, sum2)
return (resl, res2)
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Nessie

Fancier fusion (continued ...)

PDG control region

kernel K1 (xs : [float]) -> float {
let res = REDUCE { i => xs[i] using xs }

(FADD) (#xs)
return res

}
kernel K2 (xs : [float]) =-> [float] {

let res = FILTER { i => xs[i] using xs } { x => x > 0 } (#xs)

return res
} run K2 (xs)
kernel K3 (xs : [float], s : float) -> [float] {

let res = MAP { i => xs[i] / s using xs } (#xs)

return res gts
! run K1 (gts)
function norm2 (xs : [float]) —-> ([float], [float]) { K

suml : float = run Kl (xs) 4éum2

let its : [float] = run K2 (xs) .

let sum2 = run K1 (its) 9

let resl : [float] = run K3 (xs, suml

let res2 : {float} = run K3 ((xs: sumZ; (nm K3 (xs, suml)) (r‘m K3 (xs, Sumz))

return (resl, res2)

resl Tres2

(resl,res2)

October 2018
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Fancier fusion (continued ...)

kernel K1 (xs
let res =

[float]) —-> float {

}

kernel K2

return res

(xs

REDUCE { i => xs[i] using xs } (FADD)

(#xs)

[float]) -> [float] {
let res = FILTER { i => xs[i] using xs } { x => x > 0 } (#xs)
return res
: (zon 1 xe) )
kernel K3 (xs : [float], s : float) —> [£loat] { xun K1_(xs) xun K2 (x5)
let res MAP { i => xs[i] / s using xs } (#xs) X
return res N
} \
K run K1 (gts)
function norm2 (xs [float]) —> ([float], [float]) { ‘.‘ K
let suml : float = run Kl (xs) 3 v
let its : [float] = run K2 (xs) K S
let sum2 = run K1 (its) 3 ¥
let resl [float] = run K3 (xs, suml)
3 , 1 3 , 2
let res2 : [float] run K3 (xs, sum2) [nm K3 _(xs, sum )) [r‘m X3 (xs, sum )]
return (resl, res2) ‘///

Shonan 13
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One possible schedule

26



Fancier fusion (continued ...)

kernel K1 (xs
let res =

[float]) —-> float {

}

kernel K2

return res

(xs

REDUCE { i => xs[i] using xs } (FADD)

(#xs)

[float]) -> [float] {
let res = FILTER { i => xs[i] using xs } { x => x > 0 } (#xs)
return res
: (zon 1 xe) )
kernel K3 (xs : [float], s : float) —> [£loat] { xun K1_(xs) xun K2 (x5)
let res MAP { i => xs[i] / s using xs } (#xs) X
return res N
} \
K run K1 (gts)
function norm2 (xs [float]) —> ([float], [float]) { ‘.‘ K
let suml : float = run Kl (xs) 3 v
let its : [float] = run K2 (xs) K S
let sum2 = run K1 (its) 3 ¥
let resl [float] = run K3 (xs, suml)
3 , 1 3 , 2
let res2 : [float] run K3 (xs, sum2) [nm K3 _(xs, sum )) [r‘m X3 (xs, sum )]
return (resl, res2) ‘///

Shonan 13
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Another possible schedule
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Nessie

Fancier fusion (continued ...)

Using ILP produces the following

kernel F1 (xs : [float]) -> (float, float) { SChedUIe'
let (suml, sum2) =
REDUCE { i => let x = xs[i] in (x, if x > 0 then x else 0) using xs }
(FADD, FADD)
(#xs)
return (suml, sum2)
} KF1
kernel F2 (xs : [float], suml : float, sum2 : float) -> [float] {
let (resl, res2) =
MAP { i => let x = xs[i] in (x / suml, x / sum2) using xs, suml, sum2 }
(#xs)
return (resl, res2)

}

run K2 (xs)

function norm2 (xs : [float]) —-> ([float], [float]) {

let (suml : float, sum2) = run F1 (xs)
let (resl : [float], res2 : [float]) = run F2 (xs, suml, sum2)
return (resl, res2)
run K3 (xs, suml run K3 (xs, sum2
) (rom w0 ¢ ) (remos )

(resl,res2)
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Nessie

Fancier fusion (continued ...)

Using ILP produces the following

kernel F1 (xs : [float]) —-> (float, float) { SChedUIe'
let (suml, sum2) =
REDUCE { i => let x = xs[i] in (x, (if x > 0 then x else 0)) using xs }
(FADD, FADD)
(#xs)
return (suml, sum2)
} KF1
kernel F2 (xs : [float], suml : float, sum2 : float) -> [float] {
let (resl, res2) =
MAP { i => let x = xs[i] in (x / suml, x / sum2) using xs, suml, sum2 }
(#xs)
return (resl, res2)

}

run K2 (xs)

function norm2 (xs : [float]) -> ([float], [float]) {
let (suml : float, sum2) = run F1 (xs)
let (resl : [float], res2 : [float]) = run F2 (xs, suml, sum2)

return (resl, res2)
run K3 (xs, suml run K3 (xs, sum2
) (rom w0 ¢ ) (remos )

Notice how we fused the rILTER into the rREDUCE!
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Streaming and piecewise execution

Streaming and piecewise execution

P> )., processes vectors as atomic objects, which can exceed the memory resources of a GPU.

> We could partition kernel execution into smaller pieces (either statically or dynamically) to
improve scalability enable multi-GPU parallelism.

» Palmer et al. describe a post-flattening piecewise execution strategy and there was some
follow-on work by Pfannestiel about scheduling piecewise execution for threaded execution.
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Streaming and piecewise execution

Streaming and piecewise execution

P> )., processes vectors as atomic objects, which can exceed the memory resources of a GPU.

> We could partition kernel execution into smaller pieces (either statically or dynamically) to
improve scalability enable multi-GPU parallelism.

» Palmer et al. describe a post-flattening piecewise execution strategy and there was some
follow-on work by Pfannestiel about scheduling piecewise execution for threaded execution.

>
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Streaming and piecewise execution

Streaming and piecewise execution (continued ...)

» Connections to Keller and Chakravarty’s Distributed Types and Palmer et al.’s Piecewise
execution of NDP programs.

» Not all operations can be executed in piecewise fashion (e.g., permutations).

» The execution model for Madsen and Filinski’s Streaming NESL also requires piecewise
execution of kernels.
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