
Push vs. Pull-Based Loop Fusion in 
Query Engines

Amir Shaikhha
23/10/2018

NII Shonan Meeting



Introduction

•DBMSes are essential 
components of software systems

•Persistence layer
•Expose a declarative language 
(SQL) to users
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Physical Query Plan
• Join has different implementations

• Hash Join
• Nested Loop Join
• Sort Merge Join

• Each one is appropriate for a particular scenario
• Physical Query Plan

• Annotated Relational Algebra
• Concrete implementation choice for each operator
• Can improve the execution time of a query from 1 year 

to 0.1 seconds
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Query Interpretation

•Runtime library
• Iterator Model (pull based)
•Used in mainstream DBMSes for a 
long time
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Dominating cost is I/O
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In-Memory Databases

•Modern Hardware Technology
•Servers with 1TB of RAM
•The whole database can fit in the RAM
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Code layout is important



Why Query Compilation?
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Push vs. Pull
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Push vs. Pull
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Push versus pull-based loop fusion 5

Fig. 2. Specialized version of the example query in pull and push engines and the
corresponding control-flow graphs (CFG). (a) Inlined query in pull engine. (b) Inlined query
in push engine. (c) The CFG of the inlined query in pull engine. (d) The CFG of the inlined
query in push engine.

implementing inter-operator parallelism in query engines. In the context of query

compilation, stream processing engines such as StreamBase (Tibbetts et al., 2011)

and Spade (Gedik et al., 2008), as well as HyPer (Neumann, 2011) and LegoBase

(Klonatos et al., 2014a; Shaikhha et al., 2018) use a push-based query engine

approach.

In push-based query engines, the control flow is reversed compared to that of

pull-based engines. More concretely, instead of destination operators requesting data

from their source operators, data is pushed from the source operators toward the

destination operators. This is achieved by the source operator passing the data

as an argument to the consume method of the destination operator. This results in

eagerly transferring the data tuple-by-tuple instead of requesting it lazily as in pull-

engines.

A push engine can be implemented using the Visitor design pattern (Vlissides et al.,

1995) from object-oriented programming. This design pattern allows separating an

algorithm from a particular type of data. In the case of query engines, the visitor

pattern allows us to separate the query operators (data processing algorithms) from

a relation of elements. To do so, each operator should be defined as a visitor class,
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CFG of Push vs. Pull
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Pull Engine produces a 
more complicated CFG



Simplifying CFG
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(a) Without any optimization
flags.

(b) With the memory to ref-
erence promotion and CFG
simplification optimizations.

(c) With the most aggressive
optimization flags.

Figure C 1: Control flow graph of the specialized pull-based engine for different version of
the filter.map.sum query, compiled with the CLang compiler.

class LimitOp[R](n: Int) {
var i = 0
def consume(e: R): Unit =
if(i < n) {

dest.consume(e)
i += 1

}
}

(a) Push-based query engine.

class QueryMonad[R] {
def take(n: Int) = build { k =>
var i = 0
for(e <- this)
if(i < n) {

k(e)
i += 1

}
} }

(b) Fold fusion of collections.

Figure D 1: Push-based query engine and fold fusion of collections for the Limit operator.
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Optimizing Compilers 
successfully simplify CFG



Push Engine Issues
• Hard to handle

• Merge & Zip-like operator
• Limit operator

• Solutions
• Give up & materialize
• Ad-hoc fused version of operators
• Rely on hacky mechanisms

• Makes the interface more complicated
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Pipelining in SQL = Fusion in collections
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R.filter(r => r.A < 10)
.map(r => r.B)

.fold(0)((s, r) => s + r)

SELECT SUM(R.B) 
FROM R 

WHERE R.A < 10

var sum = 0.0 
var index = 0
while(index < R.length) { 

val rec = R(index)
index += 1 
if(rec.A < 10) sum += rec.B 

} 
return sum



Pipelining/Fusion History
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DB

PL
1980 1990 2000 2010

Push Engine
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Pull Engine

2018

Fold Fusion
Unfold Fusion
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Push
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Fig. 4. Correspondence between push-based query engines and fold fusion of collections. (a)
Push-based query engine. (b) Fold fusion of collections.

5 An improved pull-based engine

In this section, we first present yet another loop-fusion technique for collection

programs. Then, we suggest a new pull-based query engine inspired by this

fusion technique based on the correspondence between queries and collection

programming.

5.1 Stream fusion

In functional languages, loops are expressed as recursive functions. Reasoning about

recursive functions is very hard for optimizing compilers. Stream fusion tries to solve

this issue by converting all recursive collection operations to non-recursive stream
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Pull
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Push versus pull-based loop fusion 15

Fig. 5. Correspondence between pull-based query engines and unfold fusion of collections.
(a) Pull-based query engine. (b) Unfold fusion of collections.

operations. To do so, first all collections are converted to streams using the stream

method. Then, the corresponding method on the stream is invoked that results in a

transformed stream. Finally, the transformed stream is converted back to a collection

by invoking the unstream method.

The signature of the unstream and stream methods is as follows:
def unstream[T](gen: () => Step[T]): List[T]
class List[T] {
def stream(): Step[T]

}
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Fusion/Pipelining Correspondence

• Fold Fusion = Push Engine

• Unfold Fusion = Pull Engine

• Stream Fusion = Stream-Fusion Engine

17

New



Stream-Fusion Engine

• A pipelined query engine

• Inspired by the Stream Fusion approach 

developed for functional collections

• Combines the benefits of pull and push-

based engines
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Stream Fusion

19
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Fig. 7. Correspondence between stream-fusion query engine and the stream fusion
technique. (a) Stream-fusion query Engine. (b) Stream fusion of collections.

to the continue construct in an imperative language like C. Table 3 summarizes the

differences among the aforementioned query engines.

Consider a relation of two elements for which we select its first element and the

second element is filtered out. The first call to the stream method of the selection

operator in the stream-fusion engine produces a Yield element, which contains the

first element of the relation. The second invocation of the same method returns a

Skip element, specifying that this element, which is the second element of the relation,

is filtered out and should be ignored. The next invocation of this method results in a

Done element, denoting that there is no more element to be produced by the selection

operator. The Done value has the same role as the null value in the pull engine.

The specialized version of the example query (which was introduced in Figure 1)

based on the stream-fusion engine is shown in Figure 8(a). The code is as compact
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Intermediate Step Objects
• Stream-fusion creates intermediate step objects:

• Yield
• Skip
• Done

• Two solutions to remove their allocation
• Scalar replacement
• Church encoding of the sum type

20

28 A. Shaikhha et al.

Table 4. The performance comparison of several variants of different engines on TPC-H
query 19

Type of engine Run time (ms)

Pull (Interpreted) 3,486
Pull (Näıve) 2,405
Pull (Inline-Friendly) 2,165
Stream (Scalar replacement for Step objects) 2,447
Stream (Visitor model for Step objects) 2,217
Stream (No removal of Step objects) 6,886

query. However, the best performance is achieved by generating C code using

query compilation, and then compiling the generated code using the −O3 flag

of the CLang compiler. On average, inlining the pull-based engine gives 67%

improvement. In particular, for TPC-H query 2, we observe a 4 times speedup. This

considerable performance improvement is the result of the removal of intermediate

object allocations, which is achieved after inlining the operators of the query

by DBLAB/LB. One exception is TPC-H query 4, which we see a negligible

performance improvement after inlining. This query uses a semi hash join operator

for implementing the functionality required for the EXISTS clause. The cost required

for building the intermediate hash table (which is implemented using the GLib

library) dominates the cost of (virtual) function calls. Hence, we do not see a

significant improvement by inlining those function calls. The absolute execution

times for all these queries can be found in Table 5. Note that, the performance

difference with LegoBase (Klonatos et al., 2014a; Shaikhha et al., 2018) and

DBLAB/LB (Shaikhha et al., 2016) is due to the lack of additional optimizations

provided by these systems such as data-structure specialization.

Inline-Friendly pull engine implementation. A näıve implementation of the selection

operator in a pull-based query engine, invokes the next method of its source operator

twice. This can exponentially grow the code size in the case of a chain of selection

operators. This case is not frequent in practice, since the selection operator is

mainly used right after the scan operator. However, in the case of TPC-H query 19

the selection operator is used after a join.7 Table 4 shows that the inline-friendly

implementation of the selection operator in pull engines, improves performance by

15%. One of the main reasons is that the inline-friendly implementation generates

around 40% less query processing code in comparison with the näıve implementation

for query processing in these two queries. This improves instruction cache locality,

as a larger part of the code can fit into the instruction cache.

Removing intermediate object allocations. Table 4 shows the impact of intermediate

object allocations on performance. Overall, removing heap allocations of

7 An alternative implementation is to fuse the selections happening after joins in the join operator itself.
The experiments performed in (Schuh et al., 2016) are based on this assumption for join operators.
This means that the join operator is not a pure join operator, but a super operator containing a join
operator followed by a selection operator. For the purposes of this paper, we do not consider this case.
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Micro-Benchmark Results
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Fig. 14. Single-pipeline queries compiled without any optimization flags specified for CLang.

Fig. 15. Single-pipeline queries compiled with the −O3 optimization flag for CLang.

7.1 Micro-benchmarks

The micro-benchmarks belong to three categories, (1) queries consisting of only

selection and aggregation without group by attributes leading to a single result, (2)

queries consisting of a limit operator, which return a list of results, and (3) queries

with selection and different join operators, such as hash join, merge join, and hash

semi-join, which are followed by an aggregation operator resulting to a single result.

All these queries use generated TPC-H databases at scaling factor 8, unless otherwise

specified. The corresponding SQL queries for all these micro-benchmarks are shown

in Table A1.

Aggregated single pipeline. Next, we measure the performance obtained by each

engine for queries with a single pipeline, which aggregate into a single result.

Figure 14 shows the performance of different engines when the generated C code

is compiled without any optimization flags. The push engine is behaving 2X better

than the pull engine in most cases. The visitor-based stream-fusion engine hides

this limitation of the pull engine, and has a similar performance to push engines.

However, the stream-fusion engines that use scalar replacement perform worse than

pull engines.

The difference is more obvious whenever there are chains of selection operations.

A similar effect was shown in HyPer (Neumann, 2011) in the case of using up to

four consecutive selection operations. Again the visitor-based stream-fusion engine

is resolving this practical limitation of pull engines. From a practical point of view,

as the query optimizer is merging all conjunctive predicates into a single selection

operator, the case in which a chain of several selection operators are followed by

each other never happens in practice.

The difference among all types of engines can be removed by using more

aggressive optimizations of the underlying optimizing compiler. Figure 15 shows

that using the −O3 optimization flag of CLang, the performance of all types of

engines is similar. This is mainly thanks to the CFG simplification performed by
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Micro-Benchmark Results (Cont.)
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Fig. 17. Single-join queries using hash join (hJoin), left-semi hash join (sJoin), and merge
join (mJoin) operators.

Fig. 18. The impact of inlining and low-level optimizations of CLang on a pull-based engine
for TPC-H queries.

Section 2.2).6 A more detailed investigation of the merge join operator is given in

Section 9.

7.2 Macro-benchmarks

In this section, we investigate scenarios that are happening more often in practice.

To do so, we use the larger and more complicated analytical queries defined in

the TPC-H benchmark. First, we investigate the difference between an inlined and

an uninlined version of a pull-based query engine on 12 TPC-H queries. Then, we

show the impact of fine-grained optimizations as well as a inline-friendly way of

implementing pull engines on one of the TPC-H queries. Finally, we demonstrate

the performance difference among different types of query engines for 12 TPC-H

queries. The remaining 10 TPC-H queries require features, which are not supported

by all our query engines. All these experiments use 8 GBs of TPC-H generated data.

The impact of inlining on pull engine. As it was explained in Section 2.3, we

expect inlined (compiled) query engines to perform better than their corresponding

uninlined (interpreted) version. Figure 18 demonstrates the normalized execution

time for 12 TPC-H queries for interpreted and compiled pull-based query engines.

The compiled query engine inlines the next function invocations of a pull-based

query engine, whereas the interpreted query engine invokes the (virtual) functions

during run time. Performing aggressive compilation of the interpreted query using

the −O3 flag of the CLang compiler, improves the performance of the interpreted

6 The stream-fusion engine should have a special case for handling merge joins followed by filter
operations. By skipping, the elements in the main loop of merging, many CPU cycles are wasted for
retrieving the next satisfying element. However, accessing them by using a similar approach to the
Iterator model (keep iterating until the next satisfying element is found in a tight loop) gives a better
performance.
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Experimental Results
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Merge Join

In most cases all show 
similar performance

Complicated CFG



Conclusions
• Pipelining == Fusion
• DB ó PL
• Many techniques can be exchanged

• Vectorization == Generalized Stream-Fusion
• Query optimizers
• Column stores
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Thank You!


