Clocks in Data-flow Languages Marc Pouzet Sorbonne Université/ENS/INRIA Paris Marc.Pouzet@ens.fr Monday 22, 2018 NII Shonan Meeting Seminar 136 Function Stream Libraries and Fusion ## The early days Kahn'74 and Kahn & McQueen'75 : semantics of a process network with FIFO communication. a network defines a stream function; can be implemented with co-routines. at about the same time : the data-flow language LUCID by Ashcroft & Wadge. "Iteration is better than recursion" A program is a set of equations over sequences (histories of values), e.g : ``` first nat = 0 next nat = nat + 1 ``` Caspi & Halbwachs'84: the synchronous language Lustre. Lustre = "Lucid Synchrone et temps réel" Lucid data-flow style but with a Kahn semantics with synchronous constraints to ensure compilation into bounded memory and time code. ### Kahn Process Networks A set of processes communicating through FIFOs. It can be represented by a set of equations. E.g., : $$z,t = Q(y)$$ $$y = P(x,r)$$ $$r = R(t)$$ What is the meaning of z,t,y,r if Q, P and R are deterministic processes? ## Kahn Networks [Kahn'74, Kahn'75] The Kahn Principle: The semantics of deterministic parallel processes communicating through (possibly) unbounded buffers is a continuous stream function. - A set of sequential deterministic processes (i.e., sequential programs) written in an imperative language : P, Q, M,... - They communicate **asynchronously** via **message passing** into FIFOs (buffers) using two primitives get/put with the following assumptions: - Read is blocking on the empty FIFO; sending is non blocking. - Channels are supposed reliable (communication delays are bounded). - Read (waiting) on a single channel only, i.e., the program : if (a is not empty) or (b is not empty) then ... is FORBIDDEN ### Kahn Process Networks **Kahn Principle**: The semantics of process networks communicating through unbounded FIFOs is a continuous stream function. #### Lustre: - Lustre has a Kahn semantics (no test of absence) - A dedicated **type system** (clock calculus) to guaranty the existence of an execution with no buffer (no synchronization) ### **Pros and Cons of KPN** (+): Simple semantics: a process defines a function (determinism); composition is function composition (+): Modularity: a network is a continuous function (+): Asynchronous distributed execution: easy; no centralized scheduler. (+/-): **Time invariance**: no explicit timing; but impossible to state that two events happen at the same time. | x | = | x_0 | x_1 | | x_2 | x_3 | x_4 | x_5 | | | ••• | |------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----| | f(x) | = | y_0 | y_1 | | y_2 | y_3 | y_4 | y_5 | | | ••• | | f(x) | = | y_0 | | y_1 | y_2 | | y_3 | | y_4 | y_5 | ••• | This appeared to be a useful model for video apps (TV boxes): Sally (Philips NatLabs), StreamIt (MIT), Xstream (ST-micro) with various "synchronous" restriction à la SDF (Edward Lee) ### A small dataflow kernel Expression (e), constants (i), functions applied pointwise $(op(e_1, ..., e_n))$, data-flow primitives. $$e \quad ::= \quad e \text{ fby } e \mid op(e,...,e) \mid x \mid v$$ $$\mid \text{merge } e \mid e \mid e \mid e \text{ when } e$$ $$op \quad ::= \quad + \mid - \mid \text{not} \mid ...$$ Definition of stream functions, equations: $$\begin{array}{ll} d & ::= & \operatorname{node} \, f(p) = p \, \operatorname{with} \, D \\ \\ p & ::= & x, ..., x \mid x \\ \\ D & ::= & x = e \mid D \, \mathrm{and} \, D \mid \operatorname{var} \, x \, \operatorname{in} \, D \end{array}$$ ## **Dataflow Primitives** | $\underline{\hspace{1cm}}$ | x_0 | x_1 | x_2 | x_3 | x_4 | x_5 | |--------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------| | $\underline{\hspace{1cm}}$ | y_0 | y_1 | y_2 | y_3 | y_4 | y_5 | | x+y | $x_0 + y_0$ | $x_1 + y_1$ | $x_2 + y_2$ | $x_3 + y_3$ | $x_4 + y_4$ | $x_5 + y_5$ | | $x ext{ fby } y$ | x_0 | y_0 | y_1 | y_2 | y_3 | y_4 | | | | | | | | | | \overline{h} | 1 | 0 | 1 | 0 | 1 | 0 | | x' = x when h | x_0 | | x_2 | | x_4 | | | \overline{z} | | z_0 | | z_1 | | z_2 | | $\boxed{\text{merge } h \; x' \; z}$ | x_0 | z_0 | x_2 | z_1 | x_4 | z_2 | ## **Sampling:** - ightharpoonup if h is a boolean sequence, x when h produces a sub-sequence of x - ightharpoonup merge $h \ x \ z$ combines two sub-sequences ## **Kahn Semantics** - If V is a set, V^n is the set of sequences of length n made by concatenating elements from V. $V^\star = \cup_{n=0}^\infty V^n$ is the Kleene star operation. - $V^{\infty} = V^* \cup V^{\omega}$ is the set of finite and infinite sequences. - ϵ is the empty sequence. - v.s is a sequence whose first element is v and tail is s. - The set $(V^{\infty}, \leq, \epsilon)$, with \leq the prefix order between sequences, ϵ the minimum element, is a complete partial order (cpo). ^a - The Kleene theorem applies : if $f: V^{\infty} \to V^{\infty}$ is a continuous function, the equation x = f(x) has a least fix-point $x^{\infty} = \lim_{n \to \infty} (f^n(\epsilon))$. Every operator is interpreted as a stream. If $x \mapsto s_1$ and $y \mapsto s_2$ then the value of x + y is $lift^2(+)(s_1, s_2)$ Clocks in Data-flow languages 9/63 ### Kahn Semantics $$lift^{0}(v) = v.lift^{0}(v)$$ $$lift^{1}(op)(v.s) = op(v).lift^{1}(op)(s)$$ $$lift^{1}(op)(\epsilon) = \epsilon$$ $$lift^{2}(op)(v_{1}.s_{1}, v_{2}.s_{2}) = op(v_{1}, v_{2}).lift^{2}(op)(s_{1}, s_{2})$$ $$lift^{2}(op)(s_{1}, s_{2}) = \epsilon \text{ if } s_{1} = \epsilon \text{ or } s_{2} = \epsilon$$ $$fby(s_{1})(s_{2}) = \epsilon \text{ if } s_{1} = \epsilon$$ $$fby(v_{1}.s_{1})(s_{2}) = v_{1}.s_{2}$$ ## Kahn Semantics All those functions are continuous [2]. ### An other formulation Represent a sequence as a function from an initial segment of $\mathbb N$ to V. **Initial segment :** $I \subseteq \mathbb{N}$ is an initial segment when : $$\forall n, m \in \mathbb{N}. (n \in I) \land (m \le n) \Rightarrow (m \in I)$$ E.g., \emptyset , $\{0,1,2\}$ are initial segment; $\{0,42\}$ is not. **Lemma :** For any subset A of \mathbb{N} , there exists a strictly increasing, one-to-one function ϕ_A between an initial segment I_A of \mathbb{N} and A. A signal u is a sequence $(u_n)_{n\in N}$, finite or not, indexed on an initial segment N. $$lift^{0}(v) = (u)_{n \in \mathbb{N}} \quad with \quad \forall n \in \mathbb{N}. u_{n} = v$$ $$lift^{1}(op)((u_{n})_{n \in \mathbb{N}}) = (v_{n})_{n \in \mathbb{N}} \quad with \quad \forall n \in \mathbb{N}. v_{n} = op(v_{n})$$ $$lift^{2}(op)((u_{n})_{n \in \mathbb{N}}, (v_{n})_{n \in \mathbb{N}}) = (w_{n})_{n \in \mathbb{N}} \quad with \quad \forall n \in \mathbb{N}. w_{n} = op(u_{n}, v_{n})$$ $$fby((u_{n})_{n \in \mathbb{N}})((v_{n})_{n \in \mathbb{N}}) = (w_{n})_{n \in \mathbb{N}} \quad with \quad w_{0} = u_{0}$$ $$and \quad \forall n \in \mathbb{N} \setminus \{0\}. w_{n} = v_{n-1}$$ If $(h_n)_{n \in \mathbb{N}}$ is a boolean sequence, define : $$N_h = \{k \in N \mid h_k = 1\}$$ and $$N_{\overline{h}} = \{ k \in N \mid h_k = 0 \}$$ N_h with $N_{\overline{h}}$ form a partition of N. $$when((u_{n})_{n \in N}, (h_{n})_{n \in N}) = (v_{n})_{n \in I_{N_{h}}} \quad with \quad v_{n} = u_{\phi_{N_{h}}(n)}$$ $$merge((h_{n})_{n \in N}, (u_{n})_{n \in I_{N_{h}}}, (v_{n})_{n \in I_{N_{\overline{h}}}}) = (w_{n})_{n \in N} \quad with \quad w_{n} = u_{n} \text{ if } n \in N_{h}$$ $$and \quad w_{n} = v_{n} \text{ if } n \in N_{\overline{h}}$$ ## Making it a bit more operational ``` constant v n = v lift1 op x n = op(x(n)) notl x = lift1 not lift2 op x y n = op (x(n)) (y(n)) lift3 op x y z n = op (x(n)) (y(n)) (z(n)) x fby y 0 = x(0) x fby y n = y(n-1) x when h n = x(I(h)(n+1)) merge h x y n = if h(n) then x(O(h)(n)) else y(O(notl h)(n) where I and O are (respectively) the index and cumulative functions. ``` ### The index and cumulative functions I and O functions If h is a boolean stream, O(h)(n) is the sum of 1 till index n; I(h)(n) is the index of the n-th 1 in h. $$O(h)(n) = \sum_{i=0}^{n} h(i) \quad I(h)(n) = \min\{k \in \mathbb{N} \mid O_h(k) = n\}$$ $$O(h)(n) = h(n) + (\text{if } n = 0 \text{ then } 0 \text{ else } O(h)(n-1))$$ $$I(h)(n) = I'(h)(0)(n)$$ $$I'(h)(i)(n) = \text{if } h(i) \text{ then if } n = 1 \text{ then i}$$ $$\text{else } I'(h)(i+1)(n)$$ $$\text{else } I'(h)(i+1)(n)$$ It is very possible that I(n) be undefined (no value in \mathbb{N}). E.g., (x when (constant false))(n). The domain of a signal x (values of n for which x(n) exists) is an initial section. ## An implementation in Haskell using lazy lists module Streams where -- lifting constants constant x = x : (constant x)-- pointwise application extend (f:fs) (x:xs) = (f x):(extend fs xs)-- delays (x:xs) 'fby' y = x:ypre x y = x : y-- sampling (x : xs) 'when' (True : cs) = (x : (xs 'when' cs))(x : xs) 'when' (False : cs) = xs 'when' cs merge (True : c) (x : xs) y = x : (merge c xs y)merge (False : c) x (y : ys) = y : (merge c x ys) ## An embedding in Haskell function definition/applications are the regular ones; mutually recursive definitions of streams are represented as mutually recursive definitions of values. We can write many usefull examples and benefit from features of the host language. ``` lift2 f x y = extend (extend (constant f) x) y plusl x y = lift2 (+) x y -- integers greaters than n from n = let nat = n 'fby' (plusl nat (constant 1)) in nat -- resetable counter reset_counter res input = let output = ifthenelse res (constant 0) v v = ifthenelse input (pre 0 (plusl output (constant 1))) (pre 0 output) in output ``` ## Multi-periodic systems ``` every n = let o = reset_counter (pre 0 o = n - 1) (constant True) in o filter n top = top when (every n) hour_minute_second top = let second = filter (constant 10) top in let minute = filter (constant 60) second in let hour = filter (constant 60) minute in hour, minute, second ``` ## Over-sampling (with fixed step) ``` Compute the sequence (o_n)_{n\in\mathbb{N}} such that o_{2n}=x_n and o_{2n+1}=x_n. -- the half clock half = (constant True) 'fby' notl half -- double its input stutter x = o = merge half x ((pre 0 o) when notl half) in o — over-sampling : the internal rate is faster than the rate of inputs — this is still a real-time program — why is it rejected in LUSTRE? ``` ## Over-sampling with variable step Compute the root of an input x (using Newton method) ``` u_n = u_{n-1}/2 + x/2u_{n-1} u_1 = x \text{eps = constant 0.001} \text{root input =} \text{let ic = merge ok input (pre 0 ic) when notl ok)} \text{uc = (pre 0 uc) / 2 + (ic / 2 * pre 0 uc)} \text{ok = true -> uc - pre 0 uc <= eps} \text{output = uc when ok} \text{in output} ``` This example mimics an internal while loop (example due to Paul Le Guernic) ### Where are the monsters? A stream is represented as a lazy data-structure. Nonetheless, lazyness allows streams to be build in a strange manner. ### Structural (Scott) order: ``` \perp \leq_{struct} v, (v:w) \leq_{struct} (v':w') iff v \leq_{struct} v' and w \leq_{struct} w'. ``` The following programs are perfectly correct in Haskell (with a unique non-empty solution) ``` hd (x:y) = x tl (x:y) = y incr (x:y) = (x+1): incr y one = 1: one x = (if hd(tl(tl(tl(x)))) = 5 then 3 else 4) : 1: 2: 3: one output = (hd(tl(tl(tl(x))))): (hd(tl(tl(x)))): (hd(x)): output The values are: -x = 4: 1: 2: 3: 1: ... -output = 3: 2: 4: 3: 2: 4: ... ``` These stream may be constructed lazilly: - $-x^0 = \bot, x^1 = \bot : 1 : 2 : 3 : un, x^2 = 4 : 1 : 2 : 3 : one.$ - $-output^0 = \bot, output^1 = 3:2:4:...$ An other example (due to Paul Caspi) : ``` nat = zero 'fby' (incr nat) ifn n x y = if n <= 9 then hd(x) : if9(n+1) (tl(x)) (tl(y)) else y if9 x y = ifn 9 x y ``` $$x = if9 (incr (tl x)) nat$$ We have $x = 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 10, 11, \dots$ Are they reasonnable programs? Streams are constructed in a reverse manner from the future to the past. We say that they are not "causal". This is because the structural order between streams allows to fill the holes in any order, e.g. : $$(\bot:\bot) \le (\bot:\bot:\bot:\bot) \le (\bot:\bot:2:\bot) \le (\bot:1:2:\bot) \le (0:1:2:\bot)$$ It is also possible to build streams with intermediate holes (undefined values in the middle) through the final program is correct: $$half = 0. \perp .0. \perp ...$$ ``` fail = fail half = 0:fail:half fill x = (hd(x)) : fill (tl(tl x)) ok = fill half ``` We need to model causality, that is, stream should be produced in a sequential order. We take the prefix order introduced by Kahn: #### Prefix order: $x \leq y$ if x is a prefix of y, that is : $\bot \leq x$ and $v.x \leq v.y$ if $x \leq y$ #### Causal function: A function is causal when it is monotonous for the prefix order : $$x \le y \Rightarrow f(x) \le f(y)$$ All the previous program will get the value \perp in the Kahn semantics. ### Kahn Semantics in Haskell It is possible to remove possible non causal streams by forbidding values of the form $\perp x$. In Haskell, the annotation !a states that the value with type a is strict $(\neq \bot)$. ``` module SStreams where -- only consider streams where the head is always a value (not bot) data ST a = Cons !a (ST a) deriving Show constant x = Cons x (constant x) extend (Cons f fs) (Cons x xs) = Cons (f x) (extend fs xs) (Cons x xs) 'fby' y = Cons x y (Cons x xs) 'when' (Cons True cs) = (Cons x (xs 'when' cs)) (Cons x xs) 'when' (Cons False cs) = xs 'when' cs merge (Cons True c) (Cons x xs) y = Cons x (merge c xs y) merge (Cons False c) x (Cons y ys) = Cons y (merge c x ys) ``` This time, all the previous non causal programs have value \perp (stack overflow). ## Some "synchrony" monsters If $x = (x_i)_{i \in I\!\!N}$ then $even(x) = (x_{2i})_{i \in I\!\!N}$ and $x \& even(x) = (x_i \& x_{2i})_{i \in I\!\!N}$. #### **Unbounded FIFOs!** - must be rejected statically - every operator is finite memory through the composition is not : all the complexity (synchronization) is hidden in communication channels - ► the Kahn semantics does not model time, i.e., impossible to state that two event arrive at the same time ## Synchronous (Clocked) streams Complete streams with an explicit representation of absence (abs). $$x: (V^{abs})^{\infty}$$ **Clock:** the clock of x is a boolean sequence $$I\!\!B = \{0,1\}$$ $\mathcal{CLOCK} = I\!\!B^{\infty}$ $\operatorname{clock} \epsilon = \epsilon$ $\operatorname{clock} (abs.x) = 0.\operatorname{clock} x$ $\operatorname{clock} (v.x) = 1.\operatorname{clock} x$ ## **Synchronous streams:** $$ClStream(V,cl) = \{s/s \in (V^{abs})^{\infty} \land \mathtt{clock}\ s \leq_{prefix} cl\}$$ ## Clocks and infinite binary words $\mathcal{O}_h(i) = \mathsf{cumulative} \ \mathsf{function} \ \mathsf{of} \ 1 \ \mathsf{from} \ h$ ### **Dataflow Primitives** ### **Constant:** $$i^{\#}(\epsilon) = \epsilon$$ $i^{\#}(1.cl) = i.i^{\#}(cl)$ $i^{\#}(0.cl) = abs.i^{\#}(cl)$ ### **Point-wise application:** Synchronous arguments must be constant, i.e., having the same clock $$+^{\#}(s_1, s_2)$$ = ϵ if $s_i = \epsilon$ $+^{\#}(abs.s_1, abs.s_2)$ = $abs.+^{\#}(s_1, s_2)$ $+^{\#}(v_1.s_1, v_2.s_2)$ = $(v_1 + v_2).+^{\#}(s_1, s_2)$ ### **Partial definitions** What happens when one element is present and the other is absent? #### **Constraint their domain:** ``` (+): \forall cl: \mathcal{CLOCK}. ClStream(\mathtt{int}, cl) \times ClStream(\mathtt{int}, cl) \rightarrow ClStream(\mathtt{int}, cl) ``` i.e., (+) expect its two input stream to be on the same clock cl and produce an output on the same clock These extra conditions are types which must be statically verified **Remark (notation):** Regular types and clock types can be written separately: - $(+): int \times int \rightarrow int \leftarrow its type signature$ - $(+):: \forall cl.cl \times cl \rightarrow cl \leftarrow \mathsf{its} \; \mathsf{clock} \; \mathsf{signature}$ In the following, we only consider the clock type. ## **Sampling** ``` s_1 when \# s_2 = \epsilon \text{ if } s_1 = \epsilon \text{ or } s_2 = \epsilon (abs.s) when \# (abs.c) = abs.s \, \text{when}^{\#} \, c (v.s) when \# (1.c) = v.s \, \mathrm{when}^{\#} \, c = abs.x \, \text{when}^{\#} \, c (v.s) when \# (0.c) = \epsilon if one of the s_i = \epsilon merge c s_1 s_2 merge(abs.c)(abs.s_1)(abs.s_2) = abs.merge c s_1 s_2 merge(1.c)(v.s_1)(abs.s_2) = v.merge c s_1 s_2 merge(0.c)(abs.s_1)(v.s_2) = v.merge c s_1 s_2 ``` ## **Examples** | base = (1) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ••• | |---------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------|-------| | \overline{x} | x_0 | x_1 | x_2 | x_3 | x_4 | x_5 | x_6 | x_7 | x_8 | x_9 | x_{10} | x_{11} | • • • | | h = (10) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | ••• | | $y = x \mathrm{when} h$ | x_0 | | x_2 | | x_4 | | x_6 | | x_8 | | x_{10} | x_{11} | • • • | | h' = (100) | 1 | | 0 | | 0 | | 1 | | 0 | | 0 | 1 | ••• | | $z=y$ when h^{\prime} | x_0 | | | | | | x_6 | | | | | x_{11} | ••• | | \overline{k} | | | k_0 | | k_1 | | | | k_2 | | k_3 | | ••• | | | x_0 | | k_0 | | k_1 | | x_6 | | k_2 | | k_3 | | ••• | let clock five = let rec f = true fby false fby false fby false fby f in f let node stutter x = o where rec o = merge five x ((0 fby o) whenot five) in o $\mathtt{stutter}(nat) = 0.0.0.0.1.1.1.1.2.2.2.2.3.3...$ ## **Sampling and clocks** - $ightharpoonup x \, \text{when}^{\#} \, y$ is defined when x and y have the same clock cl - \blacktriangleright the clock of x when # c is written cl on c: "c moves at the pace of cl" $$s ext{ on } c$$ $= \epsilon ext{ if } s = \epsilon ext{ or } c = \epsilon$ $(1.cl) ext{ on } (1.cl) ext{ on } c$ $(1.cl) ext{ on } (0.cl) ext{ on } c$ $(0.cl) ext{ on } (abs.c) ext{ on } c$ ### We get: when : $\forall cl. \forall x : cl. \forall c : cl. cl \text{ on } c$ $\mathtt{merge}: \forall cl. \forall c: cl. \forall x: cl \ \mathtt{on} \ c. \forall y: cl \ \mathtt{on} \ \mathit{not} \ c. cl$ #### Written instead: when: $\forall cl.cl \rightarrow (c:cl) \rightarrow cl$ on c $\mathtt{merge}: \forall cl.(c:cl) \rightarrow cl \ \mathtt{on} \ c \rightarrow cl \ \mathtt{on} \ not \ c \rightarrow cl$ ## **Checking Synchrony** The previous program is now rejected. This is a now a typing error #### Final remarks: - We only considered clock equality, i.e., "two streams are either synchronous or not" - Clocks are used extensively to generate efficient sequential code ## **Causality loops** Some equations define a Kahn process networks which deadlocks. E.g. : $$x = y + 1$$ and $y = x + 1$ The least fix-point is $x = \epsilon$ and $y = \epsilon$. It is not possible to generate statically scheduled code. Define a type system which express the input/output dependences relations of a function. ## From Synchrony to Relaxed Synchrony ^a - can we compose non strictly synchronous streams provided their clocks are closed from each other? - communication between systems which are "almost" synchronous - model jittering, bounded delays - Give more freedom to the compiler, generate more efficient code, translate into regular synchronous code if necessary Clocks in Data-flow languages 36/63 a. Joint work with Albert Cohen, Marc Duranton, Louis Mandel and Florence Plateau (PhD. Thesis at https://www.lri.fr/~mandel/lucy-n/~plateau/) # A typical example : Picture in Picture Incrustation of a Standard Definition (SD) image in a High Definition (HD) one - ▶ downscaler : reduction of an HD image $(1920 \times 1080 \text{ pixels})$ to an SD image $(720 \times 480 \text{ pixels})$ - ▶ when : removal of a part of an HD image - merge : incrustation of an SD image in an HD image ### Question: - ▶ buffer size needed between the downscaler and the merge nodes? - delay introduced by the picture in picture in the video processing chain? # Too restrictive for video applications - streams should be synchronous - adding buffer (by hand) difficult and error-prone - compute it automatically and generate synchronous code relax the associated clocking rules # N-Synchronous Kahn Networks - based on the use of *infinite ultimately periodic sequences* - a precedence relation $cl_1 <: cl_2$ # **Ultimately periodic sequences** \mathbb{Q}_2 for the set of infinite periodic binary words. $$(01) = 01\ 01\ 01\ 01\ 01\ 01\ 01\ 01\ \dots$$ $$0(1101) = 0\ 1101\ 1101\ 1101\ 1101\ 1101\ 1101\ 1101\ \dots$$ - 1 for presence - 0 for absence ### **Definition:** $$w ::= u(v)$$ where $u \in (0+1)^*$ and $v \in (0+1)^+$ # Clocks and infinite binary words $\mathcal{O}_w(i) = \text{cumulative function of 1 from } w$ # Clocks and infinite binary words buffer $$size(w_1, w_2) = \max_{i \in \mathbb{N}} (\mathcal{O}_{w_1}(i) - \mathcal{O}_{w_2}(i))$$ sub-typing $$w_1 <: w_2 \stackrel{def}{\Leftrightarrow} \exists n \in \mathbb{N}, \forall i, \ 0 \leq \mathcal{O}_{w_1}(i) - \mathcal{O}_{w_2}(i) \leq n$$ # **Clocks and infinite binary words** buffer $$size(w_1, w_2) = \max_{i \in \mathbb{N}} (\mathcal{O}_{w_1}(i) - \mathcal{O}_{w_2}(i))$$ sub-typing $w_1 <: w_2 \overset{def}{\Leftrightarrow} \exists n \in \mathbb{N}, \forall i, \ 0 \leq \mathcal{O}_{w_1}(i) - \mathcal{O}_{w_2}(i) \leq n$ synchronizability $w_1 \bowtie w_2 \overset{def}{\Leftrightarrow} \exists b_1, b_2 \in \mathbb{Z}, \forall i, \ b_1 \leq \mathcal{O}_{w_1}(i) - \mathcal{O}_{w_2}(i) \leq b_2$ precedence $w_1 \preceq w_2 \overset{def}{\Leftrightarrow} \forall i, \ \mathcal{O}_{w_1}(i) \geq \mathcal{O}_{w_2}(i)$ ## Multi-clock $$c ::= w \mid c \text{ on } w \qquad w \in (0+1)^{\omega}$$ c on w is a sub-clock of c, by moving in w at the pace of c. E.g., 1(10) on (01) = (0100). | base | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ••• | (1) | |---------------------------|---|---|---|---|---|---|---|---|---|---|-----|--------| | p_1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | ••• | 1(10) | | base on p_1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | ••• | 1(10) | | p_2 | 0 | 1 | | 0 | | 1 | | 0 | | 1 | ••• | (01) | | (base on p_1) on p_2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | ••• | (0100) | For ultimately periodic clocks, precedence, synchronizability and equality are decidable (but expensive) # Come-back to the language ### Pure synchrony: - close to an ML type system (e.g., SCADE 6) - structural equality of clocks $$\frac{H \vdash e_1 : ck \qquad H \vdash e_2 : ck}{H \vdash op(e_1, e_2) : ck}$$ ### **Relaxed Synchrony:** we add a sub-typing rule : $$(SUB) \frac{H \vdash e : ck \text{ on } w \quad w <: w'}{H \vdash \text{buffer}(e) : ck \text{ on } w'}$$ - defines synchronization points when a buffer is inserted - ▶ the basis of the language Lucy-N (Plateau and Mandel). # What about non periodic systems? - ➤ The same idea : synchrony + properties between clocks. Insuring the absence of deadlocks and bounded buffering. - ► The exact computation with periodic clocks is expensive. E.g., (10100100) on $0^{3600}(1)$ on $(101001001) = 0^{9600}(10^410^710^710^2)$ - Motivations : - 1. To treat long periodic patterns. To avoid an exact computation. - 2. To deal with almost periodic clocks. E.g., α on w where $w=00.(\ (10)+(01)\)^*$ (e.g. w=00 01 10 01 10 01 10 . . .) Idea: manipulate sets of clocks; turn questions into arithmetic ones # **Abstraction of Infinite Binary Words** A word w can be abstracted by two lines : $abs(w) = \langle b^0, b^1 \rangle (r)$ $$concr\left(\left\langle b^{0},b^{1}\right\rangle (r)\right)\overset{def}{\Leftrightarrow}\left\{ w,\ \forall i\geq1,\ \wedge\ \begin{array}{l} w[i]=1\ \Rightarrow\ \mathcal{O}_{w}(i)\leq r\times i+b^{1}\\ w[i]=0\ \Rightarrow\ \mathcal{O}_{w}(i)\geq r\times i+b^{0} \end{array}\right\}$$ # **Abstraction of Infinite Binary Words** ## **Abstract Clocks as Automata** - \blacktriangleright set of states $\{(i,j)\in\mathbb{N}^2\}$: coordinates in the 2D-chronogram - ► finite number of state equivalence classes - $\blacktriangleright \text{ transition function } \delta: \left\{ \begin{array}{l} \delta(1,(i,j)) = nf(i+1,j+1) & \text{if } j+1 \leq r \times i + b^1 \\ \delta(0,(i,j)) = nf(i+1,j+0) & \text{if } j+0 \geq r \times i + b^0 \end{array} \right.$ - allows to check/generate clocks ## **Abstract Relations** Synchronizability: $r_1 = r_2 \Leftrightarrow \left\langle b^0_1, b^1_1 \right\rangle (r_1) \bowtie^{\sim} \left\langle b^0_2, b^1_2 \right\rangle (r_2)$ $\mathsf{Precedence}: b^1{}_2 - b^0{}_1 < 1 \Rightarrow \left\langle b^0{}_1, b^1{}_1 \right\rangle(r) \preceq^{\sim} \left\langle b^0{}_2, b^1{}_2 \right\rangle(r)$ Subtyping : $a_1 <:^{\sim} a_2 \Leftrightarrow a_1 \bowtie^{\sim} a_2 \land a_1 \preceq^{\sim} a_2$ \triangleright proposition : $abs(w_1) <: \ \ abs(w_2) \Rightarrow w_1 <: w_2$ \triangleright buffer : $size(a_1, a_2) = |b^1_1 - b^0_2|$ # **Abstract Operators** Composed clocks : $c := w \mid not w \mid c on c$ Abstraction of a composed clock: $$abs(not w) = not^{\sim} abs(w)$$ $abs(c_1 on c_2) = abs(c_1) on^{\sim} abs(c_2)$ Operators correctness property: $$egin{array}{lll} {\it not} \ w & \in & concr({\it not}^\sim abs(w)) \ & c_1 \ {\it on} \ c_2 & \in & concr(abs(c_1) \ {\it on}^\sim abs(c_2)) \end{array}$$ # **Abstract Operators** not^{\sim} operator definition : # **Abstract Operators** on^{\sim} operator definition : $$egin{array}{lll} & \left\langle & b^0{}_1 & , & b^1{}_1 & ight angle (& r_1 &) \ & on^\sim & \left\langle & b^0{}_2 & , & b^1{}_2 & ight angle (& r_2 &) \ & = & \left\langle b^0{}_1 imes r_2 + b^0{}_2 \; , b^1{}_1 imes r_2 + b^1{}_2 ight angle (& r_1 imes r_2 \;) \end{array}$$ with $$b_1^0 \le 0$$, $b_2^0 \le 0$ # **Modeling Jitter** - ▶ set of clock of rate $r = \frac{1}{3}$ and jitter 1 can be specified by $\left\langle -\frac{1}{3}, \frac{3}{3} \right\rangle \left(\frac{1}{3}\right)$ - ► $f :: \forall \alpha.\alpha \to \alpha \text{ on}^{\sim} \left\langle -\frac{1}{3}, \frac{3}{3} \right\rangle \left(\frac{1}{3}\right)$ ### Formalization in a Proof Assistant By Louis Mandel and Florence Plateau Most of the properties have been proved in Coq example of property ``` Property on_absh_correctness: forall (w1:ibw) (w2:ibw), forall (a1:abstractionh) (a2:abstractionh), forall H_wf_a1: well_formed_abstractionh a1, forall H_wf_a2: well_formed_abstractionh a2, forall H_a1_eq_absh_w1: in_abstractionh w1 a1, forall H_a2_eq_absh_w2: in_abstractionh w2 a2, in_abstractionh (on w1 w2) (on_absh a1 a2). ``` - number of Source Lines of Code - specifications : about 1600 SLOC - proofs : about 5000 SLOC # **Back to the Picture in Picture Example** abstraction of downscaler output : $$abs((10100100) \ on \ 0^{3600}(1) \ on \ (1^{720}0^{720}1^{720}0^{720}0^{720}1^{720}0^{720}0^{720}1^{720})) \\ = \left<0, \frac{7}{8}\right>\left(\frac{3}{8}\right) \ on \ ^{\sim} \left<-3600, -3600\right>(1) \ on \ ^{\sim} \left<-400, 480\right>\left(\frac{4}{9}\right) = \left<-2000, -\frac{20153}{18}\right>\left(\frac{1}{6}\right)$$ minimal delay and buffer : | | delay | buffer size | | | | |-----------------|-------------------------------------------|-------------------------------------------|--|--|--| | exact result | 9598~(pprox time to receive 5 HD lines) | $192~240~(\approx 267~\mathrm{SD~lines})$ | | | | | abstract result | 11~995~(pprox time to receive 6 HD lines) | $193~079~(\approx 268~\text{SD lines})$ | | | | This is implemented in Lucy-N http://lucy-n.org by Louis Mandel. # Parallel processes communicating through a buffer Buffers allow to desynchronize the execution # FIFO with batching To pop, the consumer has to check for the availability of data. This check is expensive. It is better to communicate by chunks. #### Batch: - ▶ the consumer can read in the fifo only when batch values are available - ▶ the producer can write in the fifo only when batch rooms are available | Batch size : | 001 | Cycles/push: | 23.07 | Bandwidth : | 589.45 MB/s | |--------------|-----|--------------|-------|-------------|--------------| | Batch size : | 002 | Cycles/push: | 15.79 | Bandwidth : | 861.40 MB/s | | Batch size : | 004 | Cycles/push: | 12.06 | Bandwidth : | 1127.83 MB/s | | Batch size : | 800 | Cycles/push: | 10.00 | Bandwidth : | 1359.69 MB/s | | Batch size : | 016 | Cycles/push: | 7.51 | Bandwidth : | 1810.58 MB/s | | Batch size : | 032 | Cycles/push: | 7.33 | Bandwidth : | 1855.32 MB/s | | Batch size : | 064 | Cycles/push: | 7.33 | Bandwidth : | 1855.20 MB/s | Batching: reduce the synchronization with the FIFO # **Integer clocks** What if the clock is a sequence of integers? the current value tells how many values are available. ### Burst: - allows to compute and communicate several values within one instant, that is, streams of arrays; - ► N-synchrony extends to those more general clocks. # **Integer clocks** #### Burst: - ▶ allows to compute several values into one instant - formulas can be easily lifted to integers - impacts causality This has been studied by Adrien Guatto in his PhD. thesis (2016); see also his beautiful paper at LICS'18. ## Type based clock calculus ## **Lucid Synchrone** - stream Kahn semantics, clocks, functions possibly higher-order - experiment several extensions of of Lustre - Version 1 (1995), Version 2 (2001), V3 (2006) ### Quite fruitful: - the Scade 6 language and its compiler (first release in 2008) incorporates several features from Lucid Synchrone - the LCM language at Dassault-Systèmes (Delmia Automation) also reimplemented several language features and compilation techniques. - several features reused in Stimulus, a language for requirement simulation (started in 2013). - high frequency tradding, by Grégoire Hamon (Getco, KCG, Chicago). ## Références - [1] Sylvain Boulmé and Grégoire Hamon. Certifying Synchrony for Free. In *International Conference* on Logic for Programming, Artificial Intelligence and Reasoning (LPAR), volume 2250, La Havana, Cuba, December 2001. Lecture Notes in Artificial Intelligence, Springer-Verlag. Short version of A clocked denotational semantics for Lucid-Synchrone in Coq, available as a Technical Report (LIP6), at www.di.ens.fr/~pouzet/bib/bib.html. - [2] P. Caspi. Clocks in dataflow languages. Theoretical Computer Science, 94:125-140, 1992. - [3] Paul Caspi and Marc Pouzet. Synchronous Kahn Networks. In ACM SIGPLAN International Conference on Functional Programming (ICFP), Philadelphia, Pensylvania, May 1996. - [4] Albert Cohen, Marc Duranton, Christine Eisenbeis, Claire Pagetti, Florence Plateau, and Marc Pouzet. N-Synchronous Kahn Networks: a Relaxed Model of Synchrony for Real-Time Systems. In ACM International Conference on Principles of Programming Languages (POPL'06), Charleston, South Carolina, USA, January 2006. - [5] Albert Cohen, Louis Mandel, Florence Plateau, and Marc Pouzet. Abstraction of Clocks in Synchronous Data-flow Systems. In *The Sixth ASIAN Symposium on Programming Languages and Systems (APLAS)*, Bangalore, India, December 2008. - [6] Jean-Louis Colaço and Marc Pouzet. Clocks as First Class Abstract Types. In *Third International Conference on Embedded Software (EMSOFT'03)*, Philadelphia, Pennsylvania, USA, october 2003. - [7] Adrien Guatto. A Synchronous Functional Language with Integer Clocks. PhD thesis, École normale supérieure, École normale supérieure, 45 rue d'Ulm, 75230 Paris, France, 7 janvier 2016. - [8] Louis Mandel, Florence Plateau, and Marc Pouzet. Lucy-n: a n-Synchronous Extension of Lustre. In 10th International Conference on Mathematics of Program Construction (MPC'10), Manoir St-Castin, Québec, Canada, June 2010. Springer LNCS. - [9] Louis Mandel, Florence Plateau, and Marc Pouzet. Static Scheduling of Latency Insensitive Designs with Lucy-n. In *International Conference on Formal Methods in Computer-Aided Design (FMCAD)*, Austin, Texas, USA, October 30 November 2 2011. - [10] Florence Plateau. Modèle n-synchrone pour la programmation de réseaux de Kahn à mémoire bornée. PhD thesis, Université Paris-Sud 11, Orsay, France, 6 janvier 2010.