
Software
for the SKA telescope

skatelescope.org, ska-sdp.org

Peter J Braam Oct 2018

SKA Science Data Processor

Cavendish Laboratory, Cambridge University
peter@braam.io

Code: https://github.com/SKA-ScienceDataProcessor/RC

Reports and plan: will be published by Nov 18 on braam.io blog.

https://github.com/SKA-ScienceDataProcessor/RC

2

Messages from this talk
1. What is the SKA telescope & what will it do?

2. Some information about its data processing

3. Design studies and prototypes for software.

4. Lessons learned

3

What is SKA – phase 1?
§ Two big radio telescopes

§ 100x sensitivity
§ 1M times faster imaging of the sky

§ Worldwide users of the data – like CERN

▪ SKA Phase 1 – in production 2025: focus of this presentation
▪ SKA Phase 2 – likely 10x more antennas – 2030’s?

4

SKA – a partner to ALMA, EELT,
JWST

ALMA:
• 66 high precision sub-mm
antennas
• Completed in 2013
• ~$1.5 bn

European ELT
• ~40m optical telescope
• Completion ~2025
• ~$1.3 bn

Credit:A.
Marinkovic/XCam/ALMA(ESO/NAOJ/NRAO)

Credit:ESO/L. Calçada (artists impression)

JWST:
• 6.5m space near-infrared
telescope
• Launch 2018
• ~$8 bn

Square Kilometre Array
– phase 1
• Two next generation
antenna arrays
• Completion ~2025
• $0.80 bn

Credit: Northrop Grumman (artists impression) Credit: SKA Organisation (artists impression) 5

Low Frequency
Aperture Array
0.05 – 0.5 GHz

Australia

~1000 stations
256 antennas each
phased array with
beamformers

Murchison Desert
0.05 humans/km2

Compute in Perth

6

Mid Frequency Telescope
500 MHz – 5GHz

South Africa

250 dishes with single receiver
Karoo Desert, SA - 3 humans / km2

Compute in Cape Town (400 km)
7

Antenna array layout

SKA1–MID, –LOW: Max Baseline = 156km, 65 km

8

SKA – data schematic
Antennas Central Signal

Processing (CSP)
Imaging (SDP) – HPC problem

Transfer antennas to CSP
2024: 20,000 PBytes/day
2030: 200,000 PBytes/day

Over 10’s to 1000’s kms

2024: 100 PBytes/day
2030: 10,000 PBytes/day
Over 100’s kms

In: 20 EB in -> out: 100 TB

High Performance
Computing Facility (HPC)
HPC Processing
2024: 300 PFlop
2030: 30 EFlop

9

Science

10

Science Headlines

Fundamental Forces & Particles
Gravity

▪ Radio Pulsar Tests of General Relativity
▪ Gravitational Waves
▪ Dark Energy / Dark Matter

Magnetism

▪ Cosmic Magnetism

Origins
Galaxy & Universe

▪ Cosmic dawn
▪ First Galaxies
▪ Galaxy Assembly & Evolution

Stars Planets & Life

▪ Protoplanetary disks
▪ Bio-molecules
▪ SETI

skatelescope.org – two very large books (free!) with science research articles surrounding SKA 11

Many key questions in theoretical physics relate to astrophysics
Rate of discoveries in the last 30 years is staggering

Epoch of
Re-Ionisation
21 cm Hydrogen
spectral line (Hl)

Difficult to detect

Tells us about the dark age:

400K – 400M years
(current age 13.5G
year)

12

Pulsar Timing Array

What can be found:
• gravitational waves
• Validate cosmic censorship
• Validate “no-hair” hypothesis

• Nano-hertz frequency range
• ms pulsars, fluctuations of 1 in 10^20

• SKA1 should see all pulsars (estimated ~30K) in our galaxy

13

Imaging Problem

14

X X X X X X

SKY Image

Detect &
amplify

Digitise &
delay

Correlate

Process Calibrate, grid, FFT

Integrate

s

B

B . s

1 2

Astronomical signal
(EM wave)

Standard interferometer

Visibility V(B): what is measured on baselines
Image I(s): image
Solve for I(s)

V(B) = E1 E2* = I(s) exp(i ω B.s/c) – image equation

Maximum baseline gives resolution: θmax ~ λ / Bmax

Dish size determines Field of View (FoV): θdish ~ λ / D

15

Interferometry radio telescope
Simplified

Sky is flat
Earth is flat

Visibilty to image is Fourier transform

Actually

Sky is sphere, earth rotates, atmosphere distorts

Now it is a fairly difficult problem:
1. Non-linear phase
2. Direction, frequency, baseline dependent gain factor
3. Everything formulated with a lot of terminology and

formulas

16

Reducing to 2D

Try to go back from 2D to 3D problem by relating (~100) different w values.
Domain specific optimization.

Grid size is 100K x 100K for 64K frequencies – problem is large
Full FFT is O(k log k), sparse FFT: O(#nonzero log #nonzero). SKA approach is close to this.

17

Computing in radio astronomy - 101
@Antennas: wave guides, clocks, beam-forming, digitizers

@Correlator (CSP central signal processing): == DSP for antenna data

Delivers data for every pair of antenna’s (a “baseline”)
Dramatically new scale for radio astronomy ~100K baselines

Correlator averages and reduces data, delivers sample every 0.3 sec

Data is delivered in frequency bands: ~64K bands

3 complex numbers delivered / band / 0.3 sec / baseline

Do math: ~ 1 TB/sec input of so called visibility data

@Science Data Processor (SDP) – process correlator data

Create images (6 hrs) & find transients (5 secs) – “science products”

Adjust for atmospheric and instrument effects calibration

18

Outline of algorithm
About 5 different analysis on the data are envisaged:

e.g. spectral vs continuum (i.e. all frequencies) images.

Imaging pipelines:
§ Iterate until convergence – approximately 10 times
§ Compare with an already known model of the skys k y

§ Subtract everything known and bright, see new faint stuff

§ Incorporates and recalculates calibration data

19

20

21

SDP specific Pipelines
Algorithmic similarities with other image processing
Each step is

▪ Convolution with some kind of a “filter” – e.g. “gridding”
▪ Fourier transform
▪ All-to-all for calibration

Why new & different software?
▪ Data is very distinct from other image processing
▪ Problem is very large – much bigger than RAM
▪ Reconstruction dependencies: sky model & calibration

22

Engineering Problem

23

Requirements & Tradeoffs
Turn telescope data into science products soft real time

1. Transient phenomena: time scale of ~10 seconds
2. Images: 1 image ~6 hours

Agility for software development
Telescope lifetime ~50 years
SDP computing hardware refresh ~5 years: portability
Use of large clusters is new in radio astronomy
New telescopes always need new algorithms

Initial 2025 computing system goal: make SKA #1
So – how difficult is this?

24

Data in the computation
Two principal data types
input is visibility – irregular, sparse uvw - grid of baselines
Image grid - regular grid in sky image

Different kinds of locality
Splitting the stream by frequency
Tiling visibilities by region – visibility “tile” data highly irregular
Analyze visibility structure – 0, sparse, dense:

separate strategies
Remove 3rd dimension by understanding earth rotation
Data flow model with overlapping movement and computation

25

Relative kernel cost

26

Data Movement

Primarily contains grid
data (64Kx64K) at 64K

frequencies

Primarily compute
pipeline steps

10-30% efficiency Processing Elements: 100 PF/sec

Memory: ~1TB/node

Buffer: 25 PB/obs > ~50PB capacity

200 PB/sec memory bandwidth

10 TB/sec read bandwidth

1 TB/sec ingest I/O

27

SDP “performance engineering”
approach
Conservative - this is not computing research

Known-good algorithms, hardware
Perhaps deep math question remains: is problem really
O(#antennas^2)?

Parametric model of the computation – BIG SUCCESS of design
Detailed FLOPs, memory use, data movement, energy
Key outcome: 100 PF/sec & move 200 PB/sec from HBM to CPU

@50 PJ / byte this is ~10MW power

Software
Reference Libraries with Algorithms
Address scalability issues 28

Software Framework for SKA SDP

§ Critical design review is in progress
§ Creating software is a very high risk part of the project
§ Cluster with some 1000’s of computers is required

§ Outcome:
§ Build/use a system like OpenStack with scheduler
§ Talk with telescope control system
§ Be flexible about pipeline execution – any framework should work

29

Imaging 101

30

Aperture Synthesis – planet rotation

31

Next steps are …
§ Weighting, calibration
§ Subtracting bright spots
§ Image correction and bright spots

§ Telescope will see an airport radar 50 light years away
§ Extreme uncertainty if the image is correct
§ Airplane flies through field of few
§ Cell phone is turned on
§ Satellite flies by
§ Sunshine deforms antennas

32

SKA phase 1 design starts 2013

§ 2013-2016

§ Intel and nVidia – explore kernels, e.g. DFT
§ Quickly delivered kernels with performance aligned with hardware

§ I had a small team (3 Haskell programmers)
§ I was given a free reign, everything was a greenfield
§ Explore frameworks for distributed execution
§ Deal with resource management for data

• E.g. schedule for (known) variable execution time and data sizes
§ Address integration of kernels
§ Create DSL for programming

33

SKA phase 1 design starts 2013

§ 2015-2018

§ Many key decisions
§ “You don’t get fired over buying IBM”

§ Early decisions were:
§ Python
§ Use “cloud” framework – should have good industrial support

§ Haskell effort was called “Lunatic Fringe” L
§ Not cutting edge software development
§ Academic institutions decided they would lead development, not

outsource it

34

Haskell project

35

Milestone 1: Cloud Haskell
§ Startup with cluster scheduler SLURM

§ 1 scalability fix: remove all to all communication
§ Remote process spawning awfully slow – not fixed
§ Remote functions – unmanageable “RemoteTable”, “mkclosure”

§ Solved by SPJ + Boespflug – still not landed or documented
§ Fast networking Infiniband with RDMA

§ Multiplex many input + output streams on 1 network stream
§ Protocol stacking, buffer reservations, error handling
§ Facundo Dominguez and I build Haskell binding to CCI (from DOE)
§ Haskell binding was very complex: 2x slower and as big as CCI

§ This phase finished quite upbeat – but already a pile of issues!
§ I learned in Shonan: stream processing is far enough along that H-

CCI would be a beautiful simpler package than FFI solution

36

Visibilities & Baselines distribution
Each pair of telescopes has a baseline

Baselines rotate as time progresses

Each baseline has associated
visibility data (“sample”)

Baselines are sparse & not
regular, but totally predictable

The physical data structure
strongly enables and
constrains concurrency &
parallelism

Simulated data from 250 SKA1-MID dishes

37

Visibility gridding & cache re-use
Time rotation of
UV grid.

Only fetch edges
Re-use core

38

Milestone 2: a “gridding” pipeline
§ Gridding: put visibility data into a regular grid (for FFT later)

§ Convolution and oversampling, get in touch with the baseline spirals
§ complicated convolution kernel, convolution – borrow from C
§ Accelerate: difficulty with irregular visibility data – slow
§ Halide (Stanford Google “image” DSL) – cannot do sparse arrays

• Halide runs (perhaps) in every Android camera pipeline
• Data format conversion between C & Haskell

§ Haskell for kernels looking grim – dropped kernels from project
§ A requirement was to create a DSL

§ Requirements for the DSL were incomplete
§ DSL should have been specified by SKA team
§ Also some success - tree reductions, flood fill trees etc. 1 line

expression
§ We drowned into awful “applied math / physics formulas”

§ Conal Elliott could have saved us, but that wasn’t planned

39

Simple Pipeline

40

Minor cycle:
Imager – make image from visibilities

Major Cycle Subtract model,
repeat for convergence

Load balancing scheduler

41

Milestone 3-5: a “full” pipeline
§ Continued towards a full imaging pipeline

§ Handled node failures in Cloud Haskell
§ Did not yet create a re-execution protocol

• Learned here: stream error handling or clocked networks probably
enable this easily

• Fairly complex protocol is required to asynchronously restart a
computation, on a subset of nodes, when there is a failure (HPC
normally uses a checkpoint)

§ Constructed a load balancing scheduler
§ Different frequency channels create 10x spread in compute time
§ Build a plan – all nodes could finish at the same time

§ Manuel Chakravarty looked into the DSL’s
§ Quickly pointed out what I suspected but couldn’t give proper direction
“it can indeed be much simpler”. We also reinvented Pipes ….

42

43

Fusion

Clocks?

Requirements

Some 60

Milestone 5-7: compare 3rd party solns
§ Scientific Simulation efforts have created a ~6 bigger initiatives

for similar use:
§ Legion (Aiken’s team @Stanford) – data flow graph is call graph of an

imperative program. Nodes are actors. Schedule actors and memory
allocations. Have a few big scale users.

§ Produced 60 core requirements, selected 15 sample programs to
demonstrate, less than 10 made it

§ Others
§ Halide, Parsec (ORNL), Swift/T (Chicago), xStar (nVidia)
§ Many we couldn’t even compile (we were not beginners …)

§ 2018 – progress in Tensorflow may be very promising
§ SKA perhaps prefers a simple solution they can modify

44

Haskell issues

§ Syntax and programming alien to most applied scientists
§ Not ready for new hardware: fast networks, hybrid memory
§ HPC basic libraries not available: need NumHa
§ Scalability sometimes ignored
§ Few real life examples (e.g. of failure recovery)
§ Networking performance has to be “line rate”

Imho
– a few M$ would have gone a long way
– community is amazingly helpful but strapped for time

45

Domain specific problems

§ Problem very poorly documented for non-experts
§ Formulas and all kinds of “field knowledge”
§ Quote: “if you haven’t gone around a radio telescope with an

oscilloscope to understand every signal, you can’t do this”

§ Very troubled history of these software systems – it has always
gone wrong in the past

46

Project specific

§ Cannot fail – too much money involved
§ Everyone wants that money, particularly research institutions
§ Needs to catch buzz – “cloud”, “ML” ….

§ I should have built different relationship
§ require commitment

§ Several things were tried by others, but decision has been to
leave the pipeline implementation for later
§ A library of kernels has been written in Python
§ Full integrated picture was not repeated

47

Conclusions

48

Future outlook
§ Information encoding with correlators is likely sub optimal (cf.

theory of rough paths) – fundamental change of complexity?

§ Bandwidth – Google’s TPU with systolic array gets us close
§ TPU v3: we would “only” need 10K nodes

§ Variable precision number formats – up to 8x smaller
§ Could save 2-5x in bandwidth, storage, memory capacity
§ Best results require a chip change
§ Limited precision formats error estimation – lost art from 1960’s

§ More automatic transitioning from a mathematical model to
numerical models

§ CERN in similarly messy calculations is having success with
replacing “algorithms” with “learning” 49

Thank you.

questions?

skatelescope.org

peter@braam.io

50

