CORESETS FOR SIGNAL PROCESSING

Dan Feldman
 Assistant Professor

New computation models

- Big Data
- Streaming real-time data
- Distributed data

Limited hardware

- Computation: IoT, GPU
- Energy: smartphones, drones

Common solution

- New optimization algorithms

Big Data

- Volume: huge amount of data points
- Variety: huge number of sensors
- Velocity: data arrive in real-time streaming

Need:

- Streaming algorithms (use logarithmic memory)
- Parallel algorithms (use networks, clouds)
- Simple computations (use GPUs)
- No assumption on order of points

Big Data Computation model

- = Streaming + Parallel computation
- Input: infinite stream of vectors
- $n=$ vectors seen so far
- ~log n memory
- M processors
- ~log (n)/M insertion time per point
(Embarrassingly parallel)

Focus on optimization summarization

Challenge:

Find RIGHT data from Big Data

Given data D and Algorithm A with $A(D)$ intractable, can we efficiently reduce D to C so that $A(C)$ fast and $A(C) \sim A(D)$?

Provable guarantees on approximation with respect to the size of C

Generic Coreset definition

Let

- X be a set, called points set
- Q be a set, called query set
- cost: $2^{X} \times Q \rightarrow[0, \infty)$ be a function that maps every set $P \subseteq X$ and query $q \in Q$ into a non-negative number $\operatorname{cost}(P, q)$

For a given $\epsilon>0$ and $P \subseteq X$,
the set $C \subseteq X$ is a corset if
for every $q \in Q$ we have $\operatorname{cost}(P, q) \sim \operatorname{cost}(C, q)$

Up to ($1 \pm \epsilon$) multiplicative error

Naïve Uniform Sampling

Naïve Uniform Sampling

Importance Weights

Coreset for Image Denoising

[F, Feigin , Sochen [SSVM'13]

Uniform sample= only green/white points

First Provable Latent Semantic Analysis on Wikipedia (now Twitter) [SDM'16, with Artem Barger, NIPS'16, with Prof. Daniela Rus]

Running Times of SVD Coreset vs MATLAB svds

Wikipedia approximation log error

Example Coresets

- Deep Learning [F, E. Tolichensky, submitted]
- Logistic Regression [F, Sedat, Murad, submitted]
- Mixture of Gaussians [F, Krause, etc JMLR'17]
- PCA/SVD [F, Rus, and Volkob, NIPS'16]
- k-Means [F, Barger, SDM'16]
- Non-Negative Matrix Factorization [F, Tassa, KDD15]
Pose Estimatoin [F, Cindy, Rus, ICRA'15]
Robots Coverage [F, Gil, Rus, ICRA'13]
Signal Segmentation [F, Rosman, Rus, NIPS'14]
- k-Line Means [F, Fiat, Sharir, FOCS'06]

Related techniques

- Sketch matrix
- Random projections (JL Lemma, compressed sensing)
- Usually lost sparsity of input
- Cons: usually points on a grid
- Pros: Support update of entries
- Sparse approximations (e.g. Frank-Wolfe)
- Not composable coreset (does not support streaming)
- Property testing:
- Construction takes sub-linear time
- Binary answer (testing)

Example: k-means clustering

Arguably most common clustering technique in academy and industry State of the art uses coreset in theory and practice

	Coreset Size	Authors	Extension	Authors
State of the art: theory and practice	$\left(\frac{k}{\varepsilon}\right)^{O(1)}$	F, Sohler, Schmidt,'13	Dynamic Data	F, Gil, Rus
	$\left(\frac{d k}{\varepsilon}\right)^{O(1)}$	F, Sohler...'07	Weak coresets for k-Median	F, Tassa Indyk,
	$\left(\frac{d k \log n}{\varepsilon}\right)^{O(1)}$	Ke-Chen'06 Random	Sketches Outliers Handling	Woodruf,... F, Schulman
$)^{O(d)}$ Deterministic				
	$\left(\frac{k}{\varepsilon}\right)^{O(d)}$	Har-Peled, Kushal,'05	$\frac{10}{\varepsilon^{2}}, k=1$	F, Sedat, Rus'17
Coreset, 4 pages	$\left(\frac{k \log n}{\varepsilon}\right)^{O(d)}$	Har-Peled, Mazumdar,'04	$k^{O\left(1 / \epsilon^{2}\right)}$	Barger, F, '16
Solution Set, 40 pages	$n(\log n)^{\left(\frac{d k}{\varepsilon}\right)^{O(1)}}$	Matousek,'00	$k^{O(k / \epsilon)}$	F, Sohler, Schmidt,'13

EXACT CORESETS

- Input:
P in R^{d} (usually finite)
- Queries set: $\quad Q$ (possibly infinite)
- Cost function: $f: P \times Q \rightarrow[0, \infty)$
- Exact coreset: C is an exact coreset (usually C in P), if for every q in Q we have that the sum of the cost function on P with query q is the same as the sum of the cost function on C with query q.

$$
\forall q \in Q: \sum_{p \in P} f(p, q)=\sum_{c \in C} f(c, q)
$$

1-CENTER / MINIMUM ENCLOSING BALL

- Given a set of n points P in R^{d}, find the point $x \in R^{d}$ that minimizes:

$$
\operatorname{far}(P, x)=\max _{p \in P}\|p-x\|
$$

Motivation:

Where should we place an antenna if the price paid is the antenna's distance to the farthest customer?

1-CENTER QUERIES

- Input: $\quad P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in R^{d}
- Query: \quad a point $x \in R^{d}$
- Result: $\quad \operatorname{far}(P, x)=\max _{\boldsymbol{p} \in \boldsymbol{P}}\|p-x\|^{2}$
$\underline{\text { Exact coreset for 1-center queries when } P \text { in } R \text { and } x \in R^{d}: ~}$

The farthest point from every query $x \in R^{d}$ is one of the edge points!

1-MEAN QUERIES

- Input: $\quad P$ in R^{d}
- Query: a point $x \in R^{d}$
- Cost:

$$
\operatorname{dist}^{2}(P, x)=\sum_{p \in P}\|p-x\|^{2}
$$

1-MEAN QUERIES

-Input: $\quad P$ in R^{d}

- Query: a point $x \in R^{d}$
- Cost:

$$
\operatorname{dist}^{2}(P, x)=\sum_{p \in P}\|p-x\|^{2}
$$

Exact coreset for 1-mean queries using 3 first moments:

$$
\begin{aligned}
& \sum_{\boldsymbol{p} \in \boldsymbol{P}}\|\boldsymbol{p}-\boldsymbol{x}\|^{2}=\sum_{p \in P}\left(\|p\|^{2}+\|x\|^{2}-2 p^{T} x\right)=\sum_{p \in P}\|p\|^{2}+\sum_{p \in P}\|x\|^{2}-2 \sum_{p \in P} p^{T} x \\
& =\sum_{p \in P}\|p\|^{2}+n \cdot\|\boldsymbol{x}\|^{2}-2\left(\sum_{p \in P} p^{T}\right) \boldsymbol{x} \\
& \text { Store those in memory! }
\end{aligned}
$$

1-MEAN QUERIES

Solution \#3:

$$
\sum_{\boldsymbol{p} \in \boldsymbol{P}}\|\boldsymbol{p}-\boldsymbol{x}\|^{2}=\sum_{p \in P}\|p\|^{2}+n *\|\boldsymbol{x}\|^{2}-2\left(\sum_{p \in P} p^{T}\right) \boldsymbol{x}
$$

1) Build new vectors in R^{d+2} :

$$
\boldsymbol{p}_{\boldsymbol{i}}^{\prime}=\left(\begin{array}{c}
\boldsymbol{p}_{\boldsymbol{i}} \\
\left\|\boldsymbol{p}_{\boldsymbol{i}}\right\|^{2} \\
1
\end{array}\right)
$$

2) Use Caratheodory's theorem to compute a weighted subset C^{\prime} of the vectors that has the same 3 first moments.

CONVEX COMBINATION

- A convex combination is a linear combination of points where all coefficients are non-negative and sum to 1 .
- A convex region is a region where, for every pair of points within the region, every point on the straight line segment that joins the pair of points is also within the region.
- A convex hull of a set P is is the smallest convex set that contains P.
- Every point x in a convex hull of a set of points P can be written as a convex combination of a finite number of points in P.

$$
\begin{aligned}
& x=\sum_{i=1}^{5} \lambda_{i} p_{i} \\
& \lambda_{i} \geq 0, \sum_{i=1}^{5} \lambda_{i}=1
\end{aligned}
$$

CARATHEODORY'S THEOREM

- "If a point $x \in R^{d}$ lies in the convex hull of a set P, there is a subset P^{\prime} of P consisting of $d+1$ or fewer points such that x lies in the convex hull of P^{\prime}."

$$
\begin{aligned}
& x=\sum_{i=1}^{3} \lambda_{i} p_{i} \\
& \lambda_{i} \geq 0, \sum_{i=1}^{3} \lambda_{i}=1
\end{aligned}
$$

CARATHEODORY'S THEOREM - INTUITION

Assume that x is the origin.

$$
\ddots \lambda_{1}^{\prime}=\lambda_{1}-\alpha \mu_{1}=0
$$

$$
\begin{aligned}
& \sum \lambda_{i}=1, \sum \mu_{i}=0, \sum \mu_{i} p_{i}=0 \\
& \quad \rightarrow \sum \alpha \mu_{i} p_{i}=\alpha \sum \mu_{i} p_{i}=0 \\
& \quad \rightarrow \sum \lambda_{i}^{\prime}=\sum\left(\lambda_{i}-\alpha \mu_{i}\right) \\
& \quad=\sum \lambda_{i}-\alpha \sum \mu_{i}=1
\end{aligned}
$$

1-MEAN QUERIES WITH INSERTIONS

- Input: $\quad P$ in R^{d} - inserted one at a time!
- Query: a point $x \in R^{d}$
- Result: $\quad \operatorname{dist}(P, x)=\sum_{p \in P}\|p-x\|^{2}$

Solution:

Caratheodory's Theorem - the streaming version.

STREAMING USING CORESETS

STREAMING + DISTRIBUTED (CLOUD, IOT)

CORESET FOR PCA/SVD

-Input:

$$
A=\left[\begin{array}{c}
-a_{1}- \\
\vdots \\
-a_{n}-
\end{array}\right] \in R^{n \times d}\left(n \text { points in } R^{d}\right)
$$

-Query space:

$$
S=\left\{x \mid x \in R^{d}\right\}\left(\text { Hyperplanes in } R^{d}\right)
$$

-Output:

$$
f(A, x)=\|A x\|^{2}
$$

SVD IS A CORESET FOR SVD

-Factorization $A=Q R$ where $Q^{T} \boldsymbol{Q}=I$,
$-\boldsymbol{Q} \in R^{n \times d}, \boldsymbol{R} \in R^{n \times d}, A=U D V^{T}=Q R$ -For every $x \in S$ it holds that:

$$
\begin{gathered}
\quad \begin{array}{l}
\boldsymbol{f}(\boldsymbol{A}, \boldsymbol{x})=\|A x\|^{2}=\|Q \boldsymbol{R} x\|^{2}=\|\boldsymbol{R} x\|^{2} \\
=\boldsymbol{f}(\boldsymbol{R}, x)
\end{array} \\
A=Q R \quad Q^{T} Q=I \\
\bullet \forall x \in S:\|A x\|^{2}=\|R x\|^{2}
\end{gathered}
$$

iDiary

\qquad
Where did I buy books?
Ask iDiary

Co-authors:
Privacy: E. Zhang
Server Code: C. Sung
Smartphone Code: M. Vo-Thanh GPUs: Micha Feigin

Text mining: Rishabh Kabra
Web-site: A. Sugaya

Robots code: S. Gil
Kuka Robots: R. Knepper
Quadrobots: B. Julian

- First text search application on GPS data
- Other GPS managers:
$>$ Foursquare: manual check-ins
> Google Latitude: no text search
\square

Location resolution:

$$
\ll \text { May } 15,2012 \gg
$$

- You left home at 9:17 AM.
- You arrived at Maiden Center Station at 9:26 AM, after traveling by foot for 9 minutes - You arrived at Kendall Station at 9:52 AM, after traveling by public transportation for 26 minutes
- You arrived at work at 9:57 AM, after traveling by foot for 5 minutes.
- You stayed at work for 3 hours, leaving at 1:03 PM.
- You arrived at Quiznos for lunch at 1:09 PM, after traveling by foot for 6 minutes.
- You stayed at Quiznos for 27 minutes, leaving at 1:36 PM.
- You arrived at work at 1:43 PM, after traveling by foot for 7 minutes.
- Vauramed at warlefare haurn laminarat
Diary \quad Summery \quad Search \quad Friends

Restaurants you visited on July 11 ${ }^{\text {th }}, 2012$

1. Anna's Taqueria

You were here on July $11^{\text {th }}$ from 7:03 PM to 7:31 PM, with John Smith, Foo Bar, and 3 others.
You have been here 142 OTHER TIMES.
View similar restaurants

2. Toscanini's Ice Cream

You were here on July $11^{\text {th }}$ from 7:44 PM to 7:58 PM, with Tim Yang, John Smith, and 4 OTHERS. You have been here 17 OTHER TIMES.

iDiary

Location resolution:

You and Tim Yang

Recent encounters:

1. Toscanini's Ice Cream - July $11^{\text {th }}$
2. Home - July $7^{\text {th }}$
3. Home-July $1^{\text {st }}$
4. MIT Student Center - June $25^{\text {th }}$
5. 123 Main Street -June $24^{\text {th }}$
6. Home - June $23^{\text {rd }}$

See more...

Time analysis

1. Home-5 hours/week

- Weekend evenings

2. Leisure -3 hours/week

- Weekday afternoons

GPS tracking using coreset

Data collection Data reduction Sent results to cloud

ili amazon webservices ${ }^{\text {w }}$

T2.micro AWS instance Collecting data No additional computational power needed

GPS core-set

Original data size: 5000
ReSUlts: Compressed with our technique data size: 107
Compression ratio: 0.021 (0.02% from original)

Speed X20 legend:
GPS Coreset \# of points: 25 GPS data \# of points: 200

Compression ratio over time

longitude

latitude

Big Data - Big Noise

Input

- GPS-point $=$ (latitude, longitude, time)

latitude	longitude	time
1.295783	103.7816	$8: 44: 57$
1.295785	103.7816	$8: 44: 59$
1.295782	103.7816	$8: 45: 00$
1.295782	103.7816	$8: 45: 01$
1.29579	103.7817	$8: 45: 04$
1.295802	103.7817	$8: 45: 05$
1.295915	103.7818	$8: 45: 08$
1.29598	103.7819	$8: 45: 09$
1.296015	103.7819	$8: 45: 10$
1.296057	103.782	$8: 45: 11$
..		\ldots

Output

k trajectories

Begin time	End time	Location ID	Speed
8:44:57	8:48:57	c	30
8:49:59	8:51:59	d	24
8:52:00	8:54:00	g	24
8:54:01	8:55:01	q	11
8:56:57	8:57:57	r	120
8:58:57	8:59:57	m	55
..	65

m locations

Location ID		
a	$(42.374,-71.120)$	$(42.374,-71.120)$
b	$(42.386,-71.130)$	$(42.386,-71.130)$
c	$(42.391,-71.128)$	$(42.391,-71.128)$
d	$(42.393,-71.130)$	$(42.394,-71.129)$
\ldots	\ldots	\ldots

From Semantic Database Text Mining

m locations

Reverse Geo-coding

Location		
ID	Besin Point	End Point
	(42.374,-71.120)	(42.374,-71.120)
2	(42.386, -71.130)	(42.386,-71.130)
3	(42.391,-71.128)	(42.391,-71.128)
4	(42.393,-71.130)	(42.394,-71.129)
5	(42.385,-71.132)	(42.384,-71.130)
6	(42.358, -71.091)	(42.358,-71.098)
..

Google
maps,
mapQuest
...

Starbucks, Harvard Square
225 Walden St.
Peabody Preschool
$55-92$ Rice St.
$128-157$ Garden St.
$130-169$ Vassar St, Cambridge

Latent Semantic Analysis (PCA) on Yelp reviews [SODA'13, with Sohler and Schmit]

Now we can use traditional algorithms...

- String Compression (e.g. zip files)
- Data mining (decision tree, k-means, NN)
- Motion Prediction (e.g. to save Battery life)
- Social Network analysis on User/Locations matrix

k-Segment mean

The k-segment f^{*} that minimizes the fitting cost from points to a d-dimensional signal

Related Work

Provable Guarantee:

- Exact solution in $O\left(n^{2} k\right)$ time and $O\left(n^{2}\right)$ space [Bellman'68]
- For monotonic sequences
[Abam, De-berg, Hachenberg, 2010]

Numerous heuristics:

- Off-line [Douglas, Peucker'73, Kaminka et al.'10]
- Streaming [Cao, O. Wolfson, and G. Trajcevski.]
- In Matlab, Oracle, ...

Theorem [with Sung \&Rus, GIS'12]

A $(1+\epsilon)$ approximation to the k-segment mean w.h.p. in the big data computation model

- ~logn memory
- M processors
- ~ $\log (n) / M$ insertion time per point

longitude

latitude

Big Data - Big Noise

k-Segment mean

The k-piecewise linear function f^{*} that minimizes the fitting cost from points to a d-dimensional signal

$$
\operatorname{cost}(P, f)=\sum_{t}\left\|p_{t}-f(t)\right\|^{2}
$$

k - Segment Queries

Input: d-dimensional signal P over time

k - Segment Queries

Input: d-dimensional signal P over time Query: k segments over time

k-Piecewise linear function f over t

k - Segment Queries

Input: d-dimensional signal P over time Query: k segments over time
Output: Sum of squared distances from P

$(1+\epsilon)$-Corset for k-segment queries

A weighted set $C \subseteq P$ such that for every k-segment f :
$\operatorname{cost}(P, f) \sim \operatorname{cost}_{\mathrm{w}}(C, f)$

From Big Data to Small Data

Suppose that we can compute such a corset C of size $\frac{1}{\epsilon}$ for every set P of n points

- in time n^{5},
- off-line, non-parallel, non-streaming algorithm

Read the first $\frac{2}{\epsilon}$ streaming points and reduce them into $\frac{1}{\epsilon}$ weighted points in time $\left(\frac{2}{\epsilon}\right)^{5}$
$1+\epsilon$ corset for P_{1}

Read the next $\frac{2}{\epsilon}$ streaming point and reduce them into $\frac{1}{\epsilon}$ weighted points in time $\left(\frac{2}{\epsilon}\right)^{5}$

Merge the pair of ϵ-coresets into an ϵ-corset of $\frac{2}{\epsilon}$ weighted points

$$
1+\epsilon \text {-corset for } P_{1} \cup P_{2}
$$

Delete the pair of original coresets from memory

$1+\epsilon$-corset for $P_{1} \cup P_{2}$

Reduce the $\frac{2}{\epsilon}$ weighted points into $\frac{1}{\epsilon}$ weighted points by constructing their coreset
$1+\epsilon$-corset for
$1+\epsilon$-corset for $P_{1} \cup P_{2}$

Reduce the $\frac{2}{\epsilon}$ weighted points into $\frac{1}{\epsilon}$ weighted points by constructing their coreset
$1+\epsilon$-corset for
$1+\epsilon$-corset for $P_{1} \cup P_{2}$

$(1+\epsilon)^{2}$-corset for $P_{1} \cup P_{2}$

$(1+\epsilon)$-corset for P_{3}

$(1+\epsilon)^{2}$-corset for $P_{1} \cup P_{2}$

$(1+\epsilon)$-corset for $P_{3} \quad(1+\epsilon)$-corset for P_{4}

$(1+\epsilon)^{2}$-corset for $P_{1} \cup P_{2}$

$(1+\epsilon)^{2}$-corset for $P_{1} \cup P_{2}$

$$
\begin{aligned}
& (1+\epsilon)^{2} \text {-coreset for } \\
& P_{1} \cup P_{2} \cup P_{3} \cup P_{4}
\end{aligned}
$$

$$
\begin{aligned}
& (1+\epsilon)^{3} \text {-coreset for } \\
& P_{1} \cup P_{2} \cup P_{3} \cup P_{4}
\end{aligned}
$$

Parallel Computation

Parallel Computation

Parallel Computation

Run off-line algorithm on corset using single computer

Parallel+ Streaming Computation

ICRA'14 (With Rus, Paul and Newman)

Coreset

A weighted set C such that for every k-segment f : $\operatorname{cost}(P, f) \sim \operatorname{cost}_{\mathrm{w}}(C, f)$

Generic Coreset definition

Let

- X be a set, called points set
- Q be a set, called query set
- cost: $2^{X} \times Q \rightarrow[0, \infty)$ be a function that maps every set $P \subseteq X$ and query $q \in Q$ into a non-negative number $\operatorname{cost}(P, q)$

For a given $\epsilon>0$ and $P \subseteq X$,
the set $C \subseteq X$ is a corset if
for every $q \in Q$ we have $\operatorname{cost}(P, q) \sim \operatorname{cost}(C, q)$

Up to ($1 \pm \epsilon$) multiplicative error

Theorem [Feldman, Langberg, STOC'11]

Suppose that

$$
\operatorname{cost}(P, q):=\sum_{p \in P} w(p) \operatorname{dist}(p, q)
$$

where dist: $P \times Q \rightarrow[0, \infty)$.

A sample $C \subseteq P$ from the distribution

$$
\operatorname{sensitivity}(\mathrm{p})=\max _{q \in Q} \frac{\operatorname{dist}(p, q)}{\sum_{p^{\prime}} \operatorname{dist}\left(p^{\prime}, q\right)}
$$

is a coreset if $|C| \geq \frac{\text { dimension of } Q}{\epsilon^{2}} \cdot \Sigma_{p}$ sensitibity (p)

No corset for k-segment:

If $k>3$ there is a set P such that every weighted $(1+\epsilon)$-coreset must be of size $|P|$

No small coreset $C \subset P$ exists

Input P : $\quad n$ points on the x-axis

Input P : $\quad n$ points on the x-axis
Coreset C: all points except one

Input P: $\quad n$ points on the x-axis
Coreset C: all points except one
Query f: covers all except this one

Input P : $\quad n$ points on the x-axis
Coreset C: all points except one
Query f: covers all except this one
$\operatorname{Cost}(P, f)>0$
$\operatorname{Cost}(C, f)=0$

Input P : $\quad n$ points on the x-axis
Coreset C : all points except one
Query f: covers all except this one
$\frac{\operatorname{Cost}(P, f)>0}{\operatorname{Cost}(C, f)=0} \quad \longrightarrow \quad \begin{aligned} & \text { Unbounded factor } \\ & \text { approximation }\end{aligned}$

Observation:
Points on a segment can be stored by the two indexes of their end-points

Observation:
Points on a segment can be stored by the two indexes of their end-points and the slope of the segment

Observation:
Points on a segment can be stored by the two indexes of their end-points and the slope of the segment

new Coreset definition

A weighted set $C \not X P$ such that for every k-segment f :

$$
\operatorname{cost}(P, f) \sim \operatorname{cost}_{\mathrm{w}}(C, f)
$$

$\sum_{t}\|f(t)-p t\|$

$$
\sum_{p_{t} \in C} w\left(p_{t}\right) \cdot\|f(t)-p t\|
$$

```
longitude
    < lime
```


original data P (input)

k-segment mean \tilde{f} (line 1)

sampled points S
(line 5)

100-segment mean on GPS traces from taxi-cabs in San-Francisco

Optimal Solution
On Coreset

Results on GPS data from 500 Taxi Cabs

Big Data - Big Noise

(k, m)- Hidden Markov Model.

Chain of length k, between m states

abcdefghihgfedcba...

(k, m)-Hidden Markov Model

Minimizes cost over every k-segments whose projection is only m segments

(k, m)-Hidden Markov Model

Minimizes cost over every k-segments whose projection is only m segments Observation: We can use the same coreset for k-segments !

Apply Heuristics for NP-hard problems on Coresets

Coreset For Deep Learning

- Use existing coreset for the sigmoid active function: $f(p, x)=\frac{1}{1+e^{p x}}$
- Technique: Improve each neuron independently

IMPROVED existing state-of-theart using core-sets

Summary

Unified Coreset Framework

Hierarchies Class

Data Models
Computation
Models
Theory

Problems
(functions)

Solutions
(techniques)

Coreset
Types
Data Models
Computation
Models
Theory

Practice/ Industry
streaming
distributed

>	Privacy	H. Encryption	Active
	Solve central open problems in:		
	TCS, CG, ML, DL, HE, DP, ...		Boost performance of existing systems

Novel practical solutions with provable guarantees

Open Problems

- More Coresets
- Deep learning, Decision trees, Sparse data
- More Applications
- Signals, Robotics, FFT, Computer Vision, DL
- Private Coresets
[STOC'11, with Fiat, Nissim and Kaplan]
- Homomorphic Encryption: [F, Akavia, Kaplan]
- Generic software library
- Coresets on Demand on the cloud
- Sensor Fusion (GPS+Video+Audio+Text+..)

