Semantics of programming languages Verification

Probabilistic programming in statistical ML (from mid-2017)

- Semantics of probabilistic programming languages (PPL)
 modelling PPCF / Prob. Idealised Algol in game semantics and ω-quasi Borel spaces, aiming at full abstraction
- S-finite measures and metaprogramming for PPL pragmatics

 classical theorems (e.g. Radon-Nikodym / Lebesgue decomposition, disintegration) for s-finite measures / kernels, and applications to metaprogramming
- Martingales and static analysis of probabilistic programs

 super / martingales for analysing liveness / invariance of
 (higher-order functional) PPL

3

1/6

イロト イボト イヨト イヨト

S-finite measures for probabilistic (meta)programming

The semantic basis of probabilistic programming is s-finite measure theory: fully-fledged PPL computes s-finite kernels. (Staton ESOP17)

DEF. Let μ be a measure on measurable space (X, Σ_X) .

- μ is σ -finite if $X = \biguplus_{i \in \omega} X_i$ with each $X_i \in \Sigma_X$ and $\mu(X_i) < \infty$.
- μ is s-finite if $\mu = \sum_{i \in \omega} \mu_i$, and each $\mu_i(X) < \infty$.

σ -finite \subset s-finite

Standard results for infinite measures assume σ -finite measures; e.g.

- Radon-Nikodym Theorem
- 2 Lebesgue Decomposition Theorem
- Oisintegration Theorem

Matthijs Vákár and I have extended the above to s-finite measures.

イロト イヨト イヨト 一日

Intuition: "bad ∞ " is ∞ concentrated at a point.

- σ -finiteness only admits "good ∞ "
- ullet s-finiteness can admit "bad ∞ ", but only countably many.

Examples (infinite measures)

- **1** The Lebesgue measure, Leb, is σ -finite.
- 2 The ∞ -measure on the point 1 is s-finite, but not σ -finite.
- \bigcirc $\#_S$ on uncountable standard Borel space S is not s-finite.

DEF. $U \in \Sigma_X$ is an ∞ -set w.r.t. measure μ if (i) $\mu(U) = \infty$, and (ii) for all $V \in \Sigma_U$, $\mu(V) = 0$ or ∞ .

IDEA: Presence of ∞ -sets distinguishes s-finite from σ -finite measures.

Theorem. Let μ be an s-finite measure on X. Then there exists $U \in \Sigma_X$ such that μ is σ -finite on $X \setminus U$, and U is an ∞ -set or a null-set.

Luke Ong (University of Oxford)

3/6

Definition: disintegration of a measure

Given measure spaces (X, μ) and (Y, ν) , and measurable $T: X \to Y$.

DEF. A (T, ν) -disintegration of μ is a family $\{\mu_y\}_{y \in Y}$ of measures on X and a ν -null set $N \in \Sigma_Y$ s.t.

- i. Regularity: $(y, U) \mapsto \mu_y(U)$ is a kernel from Y to X;
- ii. Concentration: μ_y concentrates on $\{T = y\}$, for all $y \in Y \setminus N$
- iii. Weighted average: $\mu(V) = \int_{Y} \nu(dy) \ \mu_y(V)$, for all $V \in \Sigma_X$.

Conditional distribution: μ_y "is" $\mu(- | T = y)$.

The standard Disintegration Theorem for σ -finite measures asserts something weaker: disintegration $\mu_y(U)$ is a measure for every fixed y.

Maharam's 1950 Problem: Theorem (Back et al. 2015). *If CH holds,* $\mu_{-}(-)$ *cannot be a kernel.*

A disintegration theorem for s-finite measures

Given measure spaces (X, μ) and (Y, ν) , and measurable $T: X \to Y$.

Existence

Assume

```
(i) \mu and \nu are s-finite
```

(ii) $T_*\mu \ll \nu$

(iii) for all ν - ∞ -sets U, $T^{-1}(U)$ is a μ - ∞ -set or a μ -null-set.

Then there exists a (T, ν) -disintegration of μ , $\{\mu_y\}_{y \in Y}$, which is an s-finite kernel.

Uniqueness

If ν is s-finite, then the (T, ν) -disintegration of μ (qua s-finite kernel) is unique up to ν - ∞ -equivalence.

Problem

Exact Bayesian inf. by symbolic disintegration (Shan & Ramsey POPL17)

Conjecture. Let ρ be an s-finite measure on $X \times Y$ and μ be s-finite measure on X, satisfying condition (C). Then there exists an s-finite kernel $k : X \rightsquigarrow Y$ such that $\rho = \mu \otimes k$. Further the kernel is unique up to μ - ∞ -equivalence.

Desiderata:

1. Higher order & definability. Take \mathcal{L} an idealised higher-order PPL; e.g. core Hakaru^{\rightarrow}(?). Extend ρ and μ to \mathcal{L} -definable measures; prove: k is \mathcal{L} -definable (Staton ESOP17).

2. Constructiveness / relativised computability. Show that k is \mathcal{L} -definable via partial evaluation (type-directed / continuation-based); prove correctness via synthetic measure theory.

3. Compositionality / "parametricity law". Replace ρ and μ by s-finite kernels (appropriately typed).