Radon-Nikodým derivatives and disintegration for s-finite measures:

some semantic bases for probabilistic metaprogramming

Luke Ong Matthijs Vákár

University of Oxford

Seminar 113: Metaprogramming for Statistical Machine Learning 21-25 May 2018, Shonan Village Centre

Outline

- Introduction: s-finite-measure semantics of an idealised 1st-order probabilistic programming language
- 2 Properties of s-finite measures and kernels
- 3 Radon-Nikodým derivatives
- 4 Conditional distribution and disintegration
- 5 Conclusions and further directions

A typed 1st-order probabilistic programming language, PPL

Idealised, 1st-order version of Church, Anglican, Venture, Hakura, etc. (Staton et al. LICS 2016)

PPL Types. $A, B ::= \mathbb{R} | P(A) | 1 | A \times B | \sum_{i \in I} A_i$, where I is countable, nonempty.

- Types A are interpreted as measurable spaces [[A]].
- $[\mathbb{R}]$ is the measurable space of reals with its Borel sets.
- $[\![P(A)]\!]$ is the measurable space of probabilistic measures on $[\![A]\!]$ (i.e. "Giry monad").
- The type of booleans and natural numbers are definable.

PPL Terms-in-context. Two typing judgements:

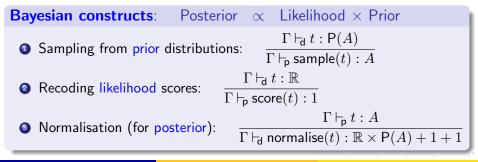
- $\Gamma \vdash_{\mathsf{d}} t : A$ for deterministic terms
- $\Gamma \vdash_{\mathbf{p}} t : A$ for probabilistic terms

Sums and products. The language includes variables, and standard constructors and destructors for sum and product types.

Sequencing: monadic unit, and bind

$$\frac{\Gamma \vdash_{\mathsf{d}} t : A}{\Gamma \vdash_{\mathsf{p}} \mathsf{return}\,(t) : A} \qquad \qquad \frac{\Gamma \vdash_{\mathsf{p}} t : A \qquad \Gamma, x : A \vdash_{\mathsf{p}} u : B}{\Gamma \vdash_{\mathsf{p}} \mathsf{let}\, x = t \,\mathsf{in}\, u : B}$$

Language-specific constructs. Constants for all measurable functions.



Semantics of PPL (Staton, ESOP 2017)

- Interpret $\Gamma \vdash_{\mathsf{d}} t : A$ as a measurable function $\llbracket t \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket A \rrbracket$
- Interpret $\Gamma \vdash_{\mathbf{p}} t : A$ as an s-finite kernel $\llbracket t \rrbracket : \llbracket \Gamma \rrbracket \rightsquigarrow \llbracket A \rrbracket$.

DEF. A kernel k from (X, Σ_X) to (Y, Σ_Y) is function $k : X \times \Sigma_Y \to [0, \infty]$ s.t. i. $\forall x \in X, \ k(x, -) : \Sigma_Y \to [0, \infty]$ is a measure ii. $\forall U \in \Sigma_Y, \ k(-, U) : X \to [0, \infty]$ is a measurable function. (Henceforth identify measures with kernels $\mu : 1 \times \Sigma_Y \to [0, \infty]$)

Kernel $k(-,-)$	Definition
subprobability	$\sup_{x \in X} k(x, Y) \le 1$
finite	$\sup_{x \in X} k(x, Y) < \infty$
σ -finite	$\exists (Y_i \in \Sigma_Y)_{i \in \omega} (Y = \biguplus_i Y_i \& \forall i . \sup_{x \in X} k(x, Y_i) < \infty)$
s-finite	$k = \sum_{i \in \omega} k_i$, each k_i is a finite kernel $X \rightsquigarrow Y$.

The classes above form an increasing chain (ordered by \subseteq).

Examples of σ -finite / s-finite measures

DEF. Let (X, Σ_X) be a measurable space; $\mu : \Sigma_X \to [0, \infty]$ be a measure. • μ is σ -finite if $X = \biguplus_{i \in \omega} X_i$ with each $X_i \in \Sigma_X$ and $\mu(X_i) < \infty$. • μ is s-finite if $\mu = \sum_{i \in \omega} \mu_i$, and each $\mu_i(X) < \infty$.

Intuition: "bad ∞ " is ∞ concentrated at a point.

- σ -finiteness only admits "good ∞ "
- ullet s-finiteness can admit "bad ∞ ", but only countably many.

Examples

- **1** The Lebesgue measure, Leb, is σ -finite.
- 2 The ∞ -measure on the point 1 is s-finite, but not σ -finite;
- **③** Counting measure $\#_S$ on any uncountable standard Borel space S is not s-finite
- $\infty \cdot Leb$ is not s-finite. (Convention: $0 \cdot \infty = 0$.)

白 医水疱 医水黄 医水黄素 医

s-finite-measure semantics of PPL (Staton, ESOP 2017)

Context
$$\Gamma = (x_1 : A_1, \cdots, x_n : A_n)$$
, with $\llbracket \Gamma \rrbracket := \prod_{i=1}^n \llbracket A_i \rrbracket$.

Semantics of PPL

- Interpret $\Gamma \vdash_{\mathsf{d}} t : A$ as a measurable function $\llbracket t \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket A \rrbracket$
- Interpret $\Gamma \vdash_{\mathbf{p}} t : A$ as an s-finite kernel $\llbracket t \rrbracket : \llbracket \Gamma \rrbracket \rightsquigarrow \llbracket A \rrbracket$.

Theorem (Definability) If kernel $k : \llbracket \Gamma \rrbracket \rightsquigarrow \llbracket A \rrbracket$ is s-finite, then there is a term $\Gamma \vdash_{p} t : A$ s.t. $k = \llbracket t \rrbracket$.

This is a very useful result (for us)!

- 本間下 本臣下 本臣下 三臣

Infinite measures seem unavoidable.

- No known useful syntactic restriction that enforces finite measures.
- A program with finite measure may have subexpression with infinite measure.

 σ -finite measures are a much-studied class of infinite measures, but they are not suitable for interpreting probabilistic programming languages.

- The pushforward of a s-finite measure is s-finite; but the pushforward of a σ -finite measure is generally only s-finite.
- Failure of kernel composition of σ -finite measures: let $U \in \Sigma_1$

$$[\vdash_{\mathsf{p}} \mathsf{let}\, x = Leb \,\mathsf{in}\,\mathsf{return}\,\,():1]](U) = \int_{\mathbb{R}} Leb(\mathrm{d}z)\,\chi_{()}(U) = \infty \cdot \chi_{()}(U).$$

Leb (Lebesgue measure) is σ -finite, however the composite is s-finite, and not σ -finite

Talk outline

- Introduction: s-finite-measure semantics of an idealised 1st-order probabilistic programming language
- 2 Properties of s-finite measures and kernels
- 3 Radon-Nikodým derivatives
- 4 Conditional distribution and disintegration
- 5 Conclusions and further directions

Outline

Introduction: s-finite-measure semantics of an idealised 1st-order probabilistic programming language

2 Properties of s-finite measures and kernels

3 Radon-Nikodým derivatives

4 Conditional distribution and disintegration

5 Conclusions and further directions

Product measures

Given measure μ on X and kernel ν from X to Y, call measure Ψ on $X \times Y$ a product measure of μ and ν if $\Psi(U \times V) = \int_U \mu(\mathrm{d}x) \nu(x, V)$, for all $U \times V \in \Sigma_{X \times Y}$.

- By Carathéodory Extension Theorem, a maximal product measure $\mu\otimes\nu$ always exists:

$$(\mu \otimes \nu)(W) := \inf \left\{ \sum_{i \in \omega} \int_{U_i} \mu(\mathrm{d}x) \nu(x, V_i) \mid W \subseteq \bigcup_{i \in \omega} (U_i \times V_i) \in \Sigma_{X \times Y} \right\}$$

- Product measures may be defined via iterated integration:

$$(\mu \otimes^l \nu)(W) := \int_X \mu(\mathrm{d}x) \int_Y \nu(x, \mathrm{d}y) \ \chi_W(x, y)$$

and, in case $\nu(x)$ is independent of x, i.e., ν is a measure on Y

$$(\mu \otimes^r \nu)(W) := \int_Y \nu(\mathrm{d}y) \int_X \mu(\mathrm{d}x) \ \chi_W(x,y).$$

Fubini theorem—for swapping order of integration

Even when \otimes^l and \otimes^r are well-defined, they may not be equal: - For non-*Leb*-null $V \in \Sigma_{\mathbb{R}}$:

$$\otimes^{l}: \quad \int \#_{\mathbb{R}}(\mathrm{d}x) \Big(\int Leb(\mathrm{d}y) \left\{ (r,r) \mid r \in V \right\} \Big) = 0$$
$$\otimes^{r}: \quad \int Leb(\mathrm{d}y) \Big(\int \#_{\mathbb{R}}(\mathrm{d}x) \left\{ (r,r) \mid r \in V \right\} \Big) = Leb(V).$$

Theorem (Fubini)

For an s-finite measure μ on X, and an s-finite kernel ν from X to Y

- i. $\mu \otimes^{l} \nu$ is well-defined, and $\mu \otimes \nu = \mu \otimes^{l} \nu$.
- ii. Further, if ν is simply a measure on Y, $\mu \otimes^r \nu$ is also well-defined, and $\mu \otimes \nu = \mu \otimes^l \nu = \mu \otimes^r \nu$.

s-finite kernels: T.F.A.E.

- $\textcircled{0} \ \nu \text{ is a s-finite kernel from } X \text{ to } Y$
- 2 $\nu = \sum_{n \in \omega} \nu_n$ for subprobability kernels ν_n .
- **③** ν is the pushforward of a σ -finite kernel.

Given kernel $k: X \rightsquigarrow Y$ and measurable function $f: Y \to Z$, define the pushforward kernel $f_*k: X \rightsquigarrow Z$ by: for $x \in X$, $U \in \Sigma_Z$, $f_*k(x, U) := k(x, f^{-1}(U))$.

s-finite measures

• ν is a s-finite measure iff there is a σ -finite measure μ on X and a measurable function $f: X \to \{1, \infty\}$ such that $\nu = \mu(f)$.

A weak converse: if *ν* is an s-finite measure on *X*, then either *ν* is zero or *ν* = P(*f*) for a probability measure P and a measurable function *f* : *X* → [0, ∞] with P([*f* = 0]) = 0.

s-finite measures and ∞ -sets

Fix a measure μ on a measurable space (X, Σ_X) .

DEF. $U \in \Sigma_X$ is an ∞ -set w.r.t. μ if (i) $\mu(U) = \infty$, and (ii) for all $V \in \Sigma_U$, $\mu(V) = 0$ or ∞ .

- If μ is σ -finite then it does not have any ∞ -sets (:: any set U of infinite μ -measure must have a countable partition of finite μ -measure, i.e., 0). - IDEA: presence of ∞ -sets distinguishes s-finite from σ -finite measures.

Call $U \in \Sigma_X$ a σ -finite complement of X if (i) U is an ∞ -set or a null-set, and (ii) μ is σ -finite on $X \setminus U$.

Theorem. Let μ be an s-finite measure on X. Then

- i. There exists a σ -finite complement in Σ_X .
- ii. μ is σ -finite iff there are no μ - ∞ -sets in Σ_X .

The converse of (i) fails: not every measure μ which has a σ -finite complement need be s-finite. Take $\mu = \#_{\mathbb{R}} \cdot \infty$.

Ong & Vákár (University of Oxford) R-N derivatives, disintegration & s-finiteness

Outline

- Introduction: s-finite-measure semantics of an idealised 1st-order probabilistic programming language
- Properties of s-finite measures and kernels
- 3 Radon-Nikodým derivatives
 - 4 Conditional distribution and disintegration
 - 5 Conclusions and further directions

Let μ and ν be measures on X. A Radon-Nikodým derivative of μ w.r.t. ν is a measurable function $X \to [0, \infty]$, typically written $d\mu/d\nu$, s.t.

$$\mu = \nu \left(\frac{\mathrm{d}\mu}{\mathrm{d}\nu}\right) := \int_X \nu(\mathrm{d}x) \frac{\mathrm{d}\mu}{\mathrm{d}\nu}(x). \qquad \text{Notation. } \nu(f) = \int_X \nu(\mathrm{d}x) f(x).$$

Recall: μ is absolutely continuous w.r.t. ν (written $\mu \ll \nu$) if $\forall U \in \Sigma_X . \nu(U) = 0 \implies \mu(U) = 0.$

Theorem (Radon-Nikodým – standard version)

Let $\mu \ll \nu$ be σ -finite measures on a space (X, Σ_X) . Then μ has a R-N derivative w.r.t. ν , which is unique up to ν -equivalence.

The pdf of a r.v. is the R-N derivative of the induced measure with respect to some stock measure (usually the Lebesgue measure for continuous r.v.).

- Provides existence proof of conditional expectation for probability measures key concept in probability theory.
- Basis of compilation of prob. programs to densities (Bhat et al. POPL12; LMCS17; etc.)

Let μ, ν be s-finite measures on (X, Σ_X) .

DEF. μ is ∞ -absolutely continuous w.r.t. ν (written $\mu \ll \nu$) if (i) $\mu \ll \nu$, and (ii) for all ν - ∞ -sets U, U is a μ - ∞ -set or a μ -null-set.

- For σ -finite measure ν , we have $\mu \overset{\infty}{\ll} \nu$ iff $\mu \ll \nu$, vacuously.
- If μ has density f w.r.t. ν (i.e. $\mu = \nu(f)$) then $\mu \stackrel{\infty}{\ll} \nu$.

DEF. Let $f, g: X \to [0, \infty]$ be measurable, and let $X_{\infty} \in \Sigma_X$ be a σ -finite complement w.r.t. ν . Say f and g are ν - ∞ -equivalent if $\nu([f \neq g] \cap (X \setminus X_{\infty})) + \nu([g = 0 \neq f] \cap X_{\infty}) + \nu([f = 0 \neq g] \cap X_{\infty}) = 0$

- On the $\sigma\text{-finite}$ part of X:~f and g are $\nu\text{-equivalent}$

- On σ -finite complement of X: the points where one has value 0 and the other strictly positive are ν -negligible.

Theorem (Radon-Nikodým for s-finite measures)

Let $\mu \stackrel{\infty}{\ll} \nu$ be s-finite measures on a space (X, Σ_X) . Then μ has a R-N derivative w.r.t. ν , which is unique up to ν - ∞ -equivalence. [False if only assume $\mu \ll \nu$.]

Application

Let $\mu \ll \nu$ be s-finite measures on X. Then there exists an RN-derivative $d\mu/d\nu : X \to [0,\infty]$, satisfying $\nu(d\mu/d\nu) = \mu$, unique up to ν - ∞ -equivalence.

1 Importance sampling of μ w.r.t. ν .

sample
$$\mu = \text{let} (\text{sample } \nu)$$
 be x in $\left(\text{score}\left(\frac{\mathrm{d}\mu}{\mathrm{d}\nu}(x)\right); \text{return } x\right)$.

2 Rejection sampling of μ w.r.t. ν . Assume $d\mu/d\nu \leq M \in [0, \infty)$. Let

$$\begin{split} f(z) &:= \mathsf{let}\;(\mathsf{sample}\;\nu)\;\mathsf{be}\;x\;\mathsf{in}\\ &(\mathsf{sample}\;\mathbb{U}_{[0,1]})\;\mathsf{be}\;y\;\mathsf{in}\\ & \mathsf{if}\;\Big(y \leq \frac{1}{M}\frac{\mathrm{d}\mu}{\mathrm{d}\nu}(x)\Big)\;\mathsf{then}\;(\mathsf{return}\,x)\;\mathsf{else}\;z. \end{split}$$

Then, we get a rejection sampling procedure for μ : sample $\mu = \mathbf{Y}(f)$.

Shonan Seminar 113

Outline

- Introduction: s-finite-measure semantics of an idealised 1st-order probabilistic programming language
- 2 Properties of s-finite measures and kernels
- 3 Radon-Nikodým derivatives
- 4 Conditional distribution and disintegration

Conclusions and further directions

Disintegration

- Disintegration formalises the idea of a non-trivial "restriction" of a measure to a measure-zero subset of the measure space in question.
- It is closely related to the existence of conditional probability measures.
- Disintegration may be viewed as a process opposite to the construction of a product measure.

And hence it is related to Fubini theorem.

Let x be a point on Earth's surface drawn from a uniform distribution. If x lies on the equator, its longitude should be uniformly distributed over $[-\pi, \pi]$.

But there is nothing special about the equator: it's just a great circle. In particular, for a great circle through the poles (i.e. conditioning on the longitude) there should be conditional probability 1/4 that x lies north of latitude $45^{\circ}N$.

Now "average out" over the longitude to deduce that x has probability 1/4 of lying in the spherical cap extending from the north pole down to the 45° parallel of latitude.

Alas, that cap does not cover 1/4 of the Earth's surface area, as would be required for a point uniformly distributed over Earth's surface.

(Pollard 2002)

Kolmogorov (1930): "The concept of a conditional probability with regard to an isolated hypothesis whose probability equals 0 is inadmissible."

Review: Conditioning for discrete random variables

Straightforward – provided we eschew conditioning on probability-0 events.

DEF. Conditional probability. Assume \mathbb{P} is a probability measure on (X, Σ_X) . Suppose r.v. T takes value in $R \subseteq_{\text{fin}} Y$. For $A \in \Sigma_X, y \in R$

$$\mathbb{P}(A \mid T = y) := \frac{\mathbb{P}(A \cap \{T = y\})}{\mathbb{P}(\{T = y\})}$$

Properties: Writing $\mathbb{P}_y(-)$ for the measure $\mathbb{P}(- \mid T = y)$

- i. Pre-regularity. \mathbb{P}_y is a probability measure on X, for all $y \in R$.
- ii. Concentration. \mathbb{P}_y concentrates on $\{T = y\}$:

$$\mathbb{P}_{y}(\{T \neq y\}) = \frac{\mathbb{P}(\{T \neq y\} \cap \{T = y\})}{\mathbb{P}(\{T = y\})} = 0.$$

iii. Weighted average. For all $A \in \Sigma_X$, $\mathbb{P}(A) = \sum_{y \in R} \mathbb{P}(\{T = y\}) \mathbb{P}_y(A)$

Question: How to extend conditional probability $\mathbb{P}(A \mid T = y)$ to general spaces (X, Σ_X) and arbitrary measurable T?

Fundamental Theorem & Definition (Kolmogorov, 1933)

Given triple $(\Omega, \mathcal{F}, \mathbb{P})$, r.v. X with $E(|X|) < \infty$, and \mathcal{G} a sub- σ -algebra of \mathcal{F} . There exists r.v. Y s.t. (i) Y is \mathcal{G} measurable, (ii) $E(|Y|) < \infty$, and (iii) $\forall G \in \mathcal{G}$. $\int_{G} \mathbb{P}(\mathrm{d}\omega) Y(\omega) = \int_{G} \mathbb{P}(\mathrm{d}\omega) X(\omega)$. Moreoever, if Y' is another r.v. satisfying the above, then Y = Y' a.s., and is called a version of conditional expectation $E(X \mid \mathcal{G})$ of X given \mathcal{G} .

- There is a gap between intuition and rigour in conditioning arguments.

- An accounting problem: for $F \in \mathcal{F}$ define $\mathbb{P}(F \mid \mathcal{G})$ to be $E(\chi_F \mid \mathcal{G})$. For a fixed seq. (F_n) of disjoint elts of \mathcal{F} , $\mathbb{P}(\bigcup F_n \mid \mathcal{G}) = \sum \mathbb{P}(F_n \mid \mathcal{G})$ a.s. In general, there are uncountably many such sequences; we cannot conclude (:: uncountably many null-sets) that there is a kernel $P: \Omega \times \mathcal{F} \to [0, 1)$ s.t. (a) $\forall F \in \mathcal{F}, P(-, F)$ is (version of) $\mathbb{P}(F \mid \mathcal{G})$, (b) for almost every w, $\mathbb{P}(w, -)$ is a probability measure on \mathcal{F} .

Definition: disintegration of a measure

Let $T:X\to Y$ be measurable; μ and ν be measures on X and Y resp.

DEF. A (T, ν) -disintegration (or -conditional distribution) of μ are a family $\{\mu_y\}_{y \in Y}$ of measures on X and a ν -null set $N \in \Sigma_Y$ s.t.

- i. Regularity: $(y, U) \mapsto \mu_y(U)$ is a kernel from Y to X;
- ii. Concentration: $\forall y \in Y \setminus N$, μ_y concentrates on $\{T = y\}$, i.e., μ_y is supported in $T^{-1}(y)$: $\forall V \in \Sigma_X$, $\mu_y(V) = \mu_y(V \cap T^{-1}(y))$;
- iii. Weighted average: $\forall V \in \Sigma_X$, $\mu(V) = \int_Y \nu(\mathrm{d}y) \ \mu_y(V)$.

Often write $\mu(- | T = y)$ for μ_y . iii'. For all measurable $f : X \to [0, \infty]$,

$$\int_X \mu(\mathrm{d} x) \ f(x) = \int_Y \nu(\mathrm{d} y) \ \int_{T^{-1}(y)} \mu_y(\mathrm{d} x) \ f(x).$$

Shonan Seminar 113

24 / 30

The standard Disintegration Theorem for σ -finite measures satisfies a weaker definition: if CH holds, $\mu_{-}(-)$ cannot be a kernel (Maharam's 1950 Problem: Back et al. 2015).

Ong & Vákár (University of Oxford) R-N derivatives, disintegration & s-finiteness

A disintegration theorem for s-finite measures

Let $T:X\to Y$ be measurable from a standard Borel space X to a measurable space Y, let μ and ν resp. be measures on X and Y.

Existence

Assume (i) μ, ν s-finite, (ii) $T_*\mu \ll \nu$, and (iii) for all ν -∞-sets U, $T^{-1}(U)$ is a μ -∞-set or a μ -null-set^a. Then there exists a (T, ν) -disintegration of μ , $\{\mu_y\}_{y\in Y}$, which is an s-finite kernel.

N.B. Theorem fails for s-finite μ, ν if we only demand $T_*\mu \overset{\infty}{\ll} \nu$.

^a(ii) and (iii) are strictly stronger than $T_*\mu \stackrel{\infty}{\ll} \nu$.

Uniqueness

If ν is s-finite, then the (T, ν) -disintegration of μ (qua s-finite kernel) is unique up to ν - ∞ -equivalence.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Fubini's theorem for s-finite measures

Let $\mu = \alpha \otimes \beta$ be a product of s-finite measures on product space $X \times Y$. Let $T : X \times Y \to Y$ be $(x, y) \mapsto y$.

Then the (T,β) -disintegration of μ is $\{\mu_y\}_{y\in Y}$, where $\mu_y = (R_y)_*(\alpha)$ with $R_y: x \mapsto (x,y)$. So μ_y is just a copy of α .

Take measurable $f: X \times Y \rightarrow [0, \infty]$. By property (iii) of disintegration:

$$\begin{split} \mu(f) &= \int_{Y} \beta(\mathrm{d}y) \int_{T^{-1}(y)} \mu_{y}(\mathrm{d}(x,y)) f(x,y) \\ &= \int_{Y} \beta(\mathrm{d}y) \int_{T^{-1}(y)} (R_{y})_{*}(\alpha)(\mathrm{d}(x,y)) f(x,y) \quad (\because \mu_{y} = (R_{y})_{*}(\alpha)) \\ &= \int_{Y} \beta(\mathrm{d}y) \int_{X} \alpha(\mathrm{d}x) \underbrace{f \circ R_{y}(x)}_{f(x,y)} \quad \text{(by change of variable)} \end{split}$$

which is precisely Fubini's theorem for s-finite measures.

・同ト・ヨト・ヨト ヨークQへ

Bayes' Law: Posterior \propto Likelihood \times Prior $p(\Theta = \theta \mid X = x) = \frac{p(X = x \mid \Theta = \theta) p(\Theta = \theta)}{p(X = x)}$

- Bayes' Law says that the posterior times the probability of an observation equals a joint probability.

- But the observation of a continuous quantity usually has probability 0; in which case, Bayes' Law says: "unknown \times 0 = 0"!

(Shan & Ramsey POPL 2017) introduces a new inference algorithm by symbolic manipulation of the prior and an observable expression:

- It can draw exact inference from the observation of a probability-0 continuous quantity.
- Idea: the observable expression denotes a conditional distribution *qua* disintegration of a measure.
- These disintegrations (of s-finite measures) are s-finite kernels, which are denotable by PPL terms.

A B A B A B A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

Problem

Conjecture. Let ρ be an s-finite measure on $X \times Y$ and μ be s-finite measure on X, satisfying condition (C). Then there exists an s-finite kernel $k : X \rightsquigarrow Y$ such that $\rho = \mu \otimes k$. Further the kernel is unique up to μ - ∞ -equivalence.

Desiderata:

1. Higher order & definability. Take \mathcal{L} an idealised higher-order PPL; e.g. core Hakaru \rightarrow (?). Extend ρ and μ to \mathcal{L} -definable measures; prove that k is \mathcal{L} -definable (Staton ESOP17).

2. Constructiveness / relativised computability. Design an algorithm for constructing k as an \mathcal{L} -term, given representations of ρ and μ as \mathcal{L} -terms, via partial evaluation (type-directed / continuation-based); prove correctness via synthetic measure theory.

3. Compositionality / "parametricity law". Replace ρ and μ by s-finite kernels (appropriately typed).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

- Introduction: s-finite-measure semantics of an idealised 1st-order probabilistic programming language
- 2 Properties of s-finite measures and kernels
- 3 Radon-Nikodým derivatives
- 4 Conditional distribution and disintegration
- 5 Conclusions and further directions

Conclusions and further directions

- S-finite kernels have good closure properties.
- Padon-Nikodým and Disintegration theorems extend to s-finite measures.

Further directions

- Methods to construct Radon-Nikodým derivatives and disintegrating measures / kernels
- Deriving disintegration by program transformation & synthesis an approach to Bayesian inference (Shan & Ramsey, POPL 2017)