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A typed 1st-order probabilistic programming language, PPL

Idealised, 1st-order version of Church, Anglican, Venture, Hakura, etc.
(Staton et al. LICS 2016)

PPL Types. A,B ::= R | P(A) | 1 | A×B |
∑

i∈I Ai, where I is
countable, nonempty.

Types A are interpreted as measurable spaces JAK.

JRK is the measurable space of reals with its Borel sets.

JP(A)K is the measurable space of probabilistic measures on JAK
(i.e. “Giry monad”).

The type of booleans and natural numbers are definable.

PPL Terms-in-context. Two typing judgements:

Γ d̀ t : A for deterministic terms

Γ p̀ t : A for probabilistic terms
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Terms-in-contexts of PPL

Sums and products. The language includes variables, and standard
constructors and destructors for sum and product types.

Sequencing: monadic unit, and bind

Γ d̀ t : A

Γ p̀ return (t) : A

Γ p̀ t : A Γ, x : A p̀ u : B

Γ p̀ letx = t inu : B

Language-specific constructs. Constants for all measurable functions.

Bayesian constructs: Posterior ∝ Likelihood × Prior

1 Sampling from prior distributions:
Γ d̀ t : P(A)

Γ p̀ sample(t) : A

2 Recoding likelihood scores:
Γ d̀ t : R

Γ p̀ score(t) : 1

3 Normalisation (for posterior):
Γ p̀ t : A

Γ d̀ normalise(t) : R× P(A) + 1 + 1
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Semantics of PPL (Staton, ESOP 2017)

Interpret Γ d̀ t : A as a measurable function JtK : JΓK→ JAK
Interpret Γ p̀ t : A as an s-finite kernel JtK : JΓK ; JAK.

DEF. A kernel k from (X,ΣX) to (Y,ΣY ) is function
k : X × ΣY → [0,∞] s.t.

i. ∀x ∈ X, k(x,−) : ΣY → [0,∞] is a measure
ii. ∀U ∈ ΣY , k(−, U) : X → [0,∞] is a measurable function.

(Henceforth identify measures with kernels µ : 1× ΣY → [0,∞])

Kernel k(-, -) Definition

subprobability supx∈X k(x, Y ) ≤ 1

finite supx∈X k(x, Y ) <∞
σ-finite ∃(Yi ∈ ΣY )i∈ω.

(
Y =

⊎
i Yi & ∀i . supx∈X k(x, Yi) <∞

)
s-finite k =

∑
i∈ω ki, each ki is a finite kernel X ; Y .

The classes above form an increasing chain (ordered by ⊆).
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Examples of σ-finite / s-finite measures

DEF. Let (X,ΣX) be a measurable space; µ : ΣX → [0,∞] be a measure.

µ is σ-finite if X =
⊎

i∈ωXi with each Xi ∈ ΣX and µ(Xi) <∞.

µ is s-finite if µ =
∑

i∈ω µi, and each µi(X) <∞.

Intuition: “bad ∞” is ∞ concentrated at a point.

σ-finiteness only admits “good ∞”

s-finiteness can admit “bad ∞”, but only countably many.

Examples

1 The Lebesgue measure, Leb, is σ-finite.

2 The ∞-measure on the point 1 is s-finite, but not σ-finite;

3 Counting measure #S on any uncountable standard Borel space S is
not s-finite

4 ∞ · Leb is not s-finite. (Convention: 0 · ∞ = 0.)
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s-finite-measure semantics of PPL (Staton, ESOP 2017)

Context Γ = (x1 : A1, · · · , xn : An), with JΓK :=
∏n

i=1 JAiK.

Semantics of PPL

Interpret Γ d̀ t : A as a measurable function JtK : JΓK→ JAK
Interpret Γ p̀ t : A as an s-finite kernel JtK : JΓK ; JAK.

Theorem (Definability)

If kernel k : JΓK ; JAK is s-finite, then there is a term Γ p̀ t : A
s.t. k = JtK.

This is a very useful result (for us)!
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Why s-finite (and not σ-finite) measures?

Infinite measures seem unavoidable.

No known useful syntactic restriction that enforces finite measures.

A program with finite measure may have subexpression with infinite
measure.

σ-finite measures are a much-studied class of infinite measures, but they
are not suitable for interpreting probabilistic programming languages.

The pushforward of a s-finite measure is s-finite; but the pushforward
of a σ-finite measure is generally only s-finite.

Failure of kernel composition of σ-finite measures: let U ∈ Σ1

J p̀ letx = Leb in return () : 1K(U) =

∫
R
Leb(dz)χ()(U) =∞·χ()(U).

Leb (Lebesgue measure) is σ-finite, however the composite is s-finite,
and not σ-finite

Ong & Vákár (University of Oxford) R-N derivatives, disintegration & s-finiteness Shonan Seminar 113 8 / 30



Talk outline

1 Introduction: s-finite-measure semantics of an idealised 1st-order
probabilistic programming language

2 Properties of s-finite measures and kernels

3 Radon-Nikodým derivatives

4 Conditional distribution and disintegration

5 Conclusions and further directions

Ong & Vákár (University of Oxford) R-N derivatives, disintegration & s-finiteness Shonan Seminar 113 9 / 30



Outline

1 Introduction: s-finite-measure semantics of an idealised 1st-order
probabilistic programming language

2 Properties of s-finite measures and kernels

3 Radon-Nikodým derivatives

4 Conditional distribution and disintegration

5 Conclusions and further directions

Ong & Vákár (University of Oxford) R-N derivatives, disintegration & s-finiteness Shonan Seminar 113 10 / 30



Product measures

Given measure µ on X and kernel ν from X to Y , call measure Ψ on
X × Y a product measure of µ and ν if Ψ(U × V ) =

∫
U µ(dx) ν(x, V ), for

all U × V ∈ ΣX×Y .

- By Carathéodory Extension Theorem, a maximal product measure µ⊗ ν
always exists:

(µ⊗ ν)(W ) := inf

{∑
i∈ω

∫
Ui

µ(dx)ν(x, Vi) |W ⊆
⋃
i∈ω

(Ui × Vi) ∈ ΣX×Y

}
.

- Product measures may be defined via iterated integration:

(µ⊗l ν)(W ) :=

∫
X
µ(dx)

∫
Y
ν(x,dy) χW (x, y)

and, in case ν(x) is independent of x, i.e., ν is a measure on Y

(µ⊗r ν)(W ) :=

∫
Y
ν(dy)

∫
X
µ(dx) χW (x, y).
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Fubini theorem—for swapping order of integration

Even when ⊗l and ⊗r are well-defined, they may not be equal:

- For non-Leb-null V ∈ ΣR:

⊗l :
∫

#R(dx)
( ∫

Leb(dy) {(r, r) | r ∈ V }
)

= 0

⊗r :
∫
Leb(dy)

( ∫
#R(dx) {(r, r) | r ∈ V }

)
= Leb(V ).

Theorem (Fubini)

For an s-finite measure µ on X, and an s-finite kernel ν from X to Y

i. µ⊗l ν is well-defined, and µ⊗ ν = µ⊗l ν.

ii. Further, if ν is simply a measure on Y , µ⊗r ν is also well-defined,
and µ⊗ ν = µ⊗l ν = µ⊗r ν.
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Characterisations of s-finite kernels v from X to Y (6=∅)

s-finite kernels: T.F.A.E.

1 ν is a s-finite kernel from X to Y

2 ν =
∑

n∈ω νn for subprobability kernels νn.

3 ν is the pushforward of a σ-finite kernel.

Given kernel k : X ; Y and measurable function f : Y → Z, define
the pushforward kernel f∗k : X ; Z by: for x ∈ X, U ∈ ΣZ ,
f∗k (x, U) := k(x, f−1(U)).

s-finite measures
1 ν is a s-finite measure iff there is a σ-finite measure µ on X and a

measurable function f : X → {1,∞} such that ν = µ(f).
2 A weak converse: if ν is an s-finite measure on X, then either ν is

zero or ν = P(f) for a probability measure P and a measurable
function f : X → [0,∞] with P([f = 0]) = 0.
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s-finite measures and ∞-sets

Fix a measure µ on a measurable space (X,ΣX).

DEF. U ∈ ΣX is an ∞-set w.r.t. µ if (i) µ(U) =∞, and (ii) for all
V ∈ ΣU , µ(V ) = 0 or ∞.

- If µ is σ-finite then it does not have any ∞-sets (∵ any set U of infinite
µ-measure must have a countable partition of finite µ-measure, i.e., 0).
- IDEA: presence of ∞-sets distinguishes s-finite from σ-finite measures.

Call U ∈ ΣX a σ-finite complement of X if (i) U is an ∞-set or a null-set,
and (ii) µ is σ-finite on X \ U .

Theorem. Let µ be an s-finite measure on X. Then

i. There exists a σ-finite complement in ΣX .

ii. µ is σ-finite iff there are no µ-∞-sets in ΣX .

The converse of (i) fails: not every measure µ which has a σ-finite
complement need be s-finite. Take µ = #R · ∞.
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Let µ and ν be measures on X. A Radon-Nikodým derivative of µ w.r.t. ν
is a measurable function X → [0,∞], typically written dµ/dν, s.t.

µ = ν
(dµ

dν

)
:=

∫
X
ν(dx)

dµ

dν
(x). Notation. ν(f) =

∫
X
ν(dx) f(x).

Recall: µ is absolutely continuous w.r.t. ν (written µ� ν) if
∀U ∈ ΣX . ν(U) = 0 =⇒ µ(U) = 0.

Theorem (Radon-Nikodým – standard version)

Let µ� ν be σ-finite measures on a space (X,ΣX). Then µ has a R-N
derivative w.r.t. ν, which is unique up to ν-equivalence.

The pdf of a r.v. is the R-N derivative of the induced measure with respect
to some stock measure (usually the Lebesgue measure for continuous r.v.).
- Provides existence proof of conditional expectation for probability
measures – key concept in probability theory.
- Basis of compilation of prob. programs to densities (Bhat et al. POPL12;
LMCS17; etc.)
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Let µ, ν be s-finite measures on (X,ΣX).

DEF. µ is ∞-absolutely continuous w.r.t. ν (written µ
∞
� ν) if (i) µ� ν, and (ii)

for all ν-∞-sets U , U is a µ-∞-set or a µ-null-set.

For σ-finite measure ν, we have µ
∞
� ν iff µ� ν, vacuously.

If µ has density f w.r.t. ν (i.e. µ = ν(f)) then µ
∞
� ν.

DEF. Let f, g : X → [0,∞] be measurable, and let X∞ ∈ ΣX be a σ-finite
complement w.r.t. ν. Say f and g are ν-∞-equivalent if

ν([f 6= g] ∩ (X \X∞)) + ν([g = 0 6= f ] ∩X∞) + ν([f = 0 6= g] ∩X∞) = 0

- On the σ-finite part of X: f and g are ν-equivalent
- On σ-finite complement of X: the points where one has value 0 and the other
strictly positive are ν-negligible.

Theorem (Radon-Nikodým for s-finite measures)

Let µ
∞
� ν be s-finite measures on a space (X,ΣX). Then µ has a R-N derivative

w.r.t. ν, which is unique up to ν-∞-equivalence. [False if only assume µ� ν.]
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Application

Let µ
∞
� ν be s-finite measures on X. Then there exists an RN-derivative

dµ/dν : X → [0,∞], satisfying ν(dµ/dν) = µ, unique up to
ν-∞-equivalence.

1 Importance sampling of µ w.r.t. ν.

sample µ = let (sample ν) be x in
(

score
(dµ

dν
(x)
)

; returnx
)
.

2 Rejection sampling of µ w.r.t. ν.
Assume dµ/dν ≤M ∈ [0,∞). Let

f(z) := let (sample ν) be x in

(sample U[0,1]) be y in

if
(
y ≤ 1

M

dµ

dν
(x)
)

then (returnx) else z.

Then, we get a rejection sampling procedure for µ: sample µ = Y(f).
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Disintegration

Disintegration formalises the idea of a non-trivial “restriction” of a
measure to a measure-zero subset of the measure space in question.

It is closely related to the existence of conditional probability
measures.

Disintegration may be viewed as a process opposite to the
construction of a product measure.

And hence it is related to Fubini theorem.
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Borel’s Paradox: conditioning on a measure-0 subset

Let x be a point on Earth’s surface drawn from a uniform distribution.
If x lies on the equator, its longitude should be uniformly distributed over
[−π, π].

But there is nothing special about the equator: it’s just a great circle.
In particular, for a great circle through the poles (i.e. conditioning on the
longitude) there should be conditional probability 1/4 that x lies north of
latitude 45◦N .

Now “average out” over the longitude to deduce that x has probability
1/4 of lying in the spherical cap extending from the north pole down to
the 45◦ parallel of latitude.

Alas, that cap does not cover 1/4 of the Earth’s surface area, as would be
required for a point uniformly distributed over Earth’s surface.

(Pollard 2002)

Kolmogorov (1930): “The concept of a conditional probability with regard
to an isolated hypothesis whose probability equals 0 is inadmissible.”
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Review: Conditioning for discrete random variables

Straightforward – provided we eschew conditioning on probability-0 events.

DEF. Conditional probability. Assume P is a probability measure on
(X,ΣX). Suppose r.v. T takes value in R ⊆fin Y . For A ∈ ΣX , y ∈ R

P(A | T = y) :=
P(A ∩ {T = y})
P({T = y})

Properties: Writing Py(−) for the measure P(− | T = y)

i. Pre-regularity. Py is a probability measure on X, for all y ∈ R.
ii. Concentration. Py concentrates on {T = y}:

Py({T 6= y}) =
P({T 6= y} ∩ {T = y})

P({T = y})
= 0.

iii. Weighted average. For all A ∈ ΣX , P(A) =
∑

y∈R P({T = y})Py(A)

Question: How to extend conditional probability P(A | T = y) to general
spaces (X,ΣX) and arbitrary measurable T?
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Standard “abstract” approach to conditional expectation

Fundamental Theorem & Definition (Kolmogorov, 1933)

Given triple (Ω,F ,P), r.v. X with E(|X|) <∞, and G a sub-σ-algebra of
F . There exists r.v. Y s.t. (i) Y is G measurable, (ii) E(|Y |) <∞, and

(iii) ∀G ∈ G .
∫
G P(dω)Y (ω) =

∫
G P(dω)X(ω).

Moreoever, if Y ′ is another r.v. satisfying the above, then Y = Y ′ a.s.,
and is called a version of conditional expectation E(X | G) of X given G.

- There is a gap between intuition and rigour in conditioning arguments.

- An accounting problem: for F ∈ F define P(F | G) to be E(χF | G).
For a fixed seq. (Fn) of disjoint elts of F , P(

⋃
Fn | G) =

∑
P(Fn | G) a.s.

In general, there are uncountably many such sequences; we cannot
conclude (∵ uncountably many null-sets) that there is a kernel
P : Ω×F → [0, 1) s.t. (a) ∀F ∈ F , P (−, F ) is (version of) P(F | G), (b)
for almost every w, P(w,−) is a probability measure on F .
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Definition: disintegration of a measure

Let T : X → Y be measurable; µ and ν be measures on X and Y resp.

DEF. A (T, ν)-disintegration (or -conditional distribution) of µ are a family
{µy}y∈Y of measures on X and a ν-null set N ∈ ΣY s.t.

i. Regularity: (y, U) 7→ µy(U) is a kernel from Y to X;

ii. Concentration: ∀y ∈ Y \N , µy concentrates on {T = y}, i.e., µy is
supported in T−1(y): ∀V ∈ ΣX , µy(V ) = µy(V ∩ T−1(y));

iii. Weighted average: ∀V ∈ ΣX , µ(V ) =
∫
Y ν(dy) µy(V ).

Often write µ(− | T = y) for µy.

iii’. For all measurable f : X → [0,∞],∫
X
µ(dx) f(x) =

∫
Y
ν(dy)

∫
T−1(y)

µy(dx) f(x).

The standard Disintegration Theorem for σ-finite measures satisfies a
weaker definition: if CH holds, µ−(−) cannot be a kernel (Maharam’s
1950 Problem: Back et al. 2015).
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A disintegration theorem for s-finite measures

Let T : X → Y be measurable from a standard Borel space X to a
measurable space Y , let µ and ν resp. be measures on X and Y .

Existence

Assume (i) µ, ν s-finite, (ii) T∗µ� ν, and (iii) for all ν-∞-sets U , T−1(U)
is a µ-∞-set or a µ-null-seta. Then there exists a (T, ν)-disintegration of
µ, {µy}y∈Y , which is an s-finite kernel.

N.B. Theorem fails for s-finite µ, ν if we only demand T∗µ
∞
� ν.

a(ii) and (iii) are strictly stronger than T∗µ
∞
� ν.

Uniqueness

If ν is s-finite, then the (T, ν)-disintegration of µ (qua s-finite kernel) is
unique up to ν-∞-equivalence.
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Fubini’s theorem for s-finite measures

Let µ = α⊗ β be a product of s-finite measures on product space X × Y .
Let T : X × Y → Y be (x, y) 7→ y.

Then the (T, β)-disintegration of µ is {µy}y∈Y , where µy = (Ry)∗(α) with
Ry : x 7→ (x, y). So µy is just a copy of α.

Take measurable f : X × Y → [0,∞]. By property (iii) of disintegration:

µ(f) =

∫
Y
β(dy)

∫
T−1(y)

µy(d(x, y)) f(x, y)

=

∫
Y
β(dy)

∫
T−1(y)

(Ry)∗(α)(d(x, y)) f(x, y) (∵ µy = (Ry)∗(α))

=

∫
Y
β(dy)

∫
X
α(dx) f ◦Ry(x)︸ ︷︷ ︸

f(x,y)

(by change of variable)

which is precisely Fubini’s theorem for s-finite measures.
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Bayes’ Law: Posterior ∝ Likelihood × Prior

p(Θ = θ | X = x) =
p(X = x | Θ = θ) p(Θ = θ)

p(X = x)

- Bayes’ Law says that the posterior times the probability of an observation
equals a joint probability.
- But the observation of a continuous quantity usually has probability 0; in
which case, Bayes’ Law says: “unknown × 0 = 0”!

(Shan & Ramsey POPL 2017) introduces a new inference algorithm by
symbolic manipulation of the prior and an observable expression:

It can draw exact inference from the observation of a probability-0
continuous quantity.

Idea: the observable expression denotes a conditional distribution qua
disintegration of a measure.

These disintegrations (of s-finite measures) are s-finite kernels, which
are denotable by PPL terms.
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Problem

Conjecture. Let ρ be an s-finite measure on X × Y and µ be s-finite
measure on X, satisfying condition (C). Then there exists an s-finite
kernel k : X ; Y such that ρ = µ⊗ k. Further the kernel is unique up to
µ-∞-equivalence.

Desiderata:

1. Higher order & definability. Take L an idealised higher-order PPL;
e.g. core Hakaru→(?). Extend ρ and µ to L-definable measures; prove that
k is L-definable (Staton ESOP17).

2. Constructiveness / relativised computability. Design an algorithm for
constructing k as an L-term, given representations of ρ and µ as L-terms,
via partial evaluation (type-directed / continuation-based); prove
correctness via synthetic measure theory.

3. Compositionality / “parametricity law”. Replace ρ and µ by s-finite
kernels (appropriately typed).
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Conclusions and further directions

1 S-finite kernels have good closure properties.

2 Radon-Nikodým and Disintegration theorems extend to s-finite
measures.

Further directions

Methods to construct Radon-Nikodým derivatives and disintegrating
measures / kernels

Deriving disintegration by program transformation & synthesis – an
approach to Bayesian inference (Shan & Ramsey, POPL 2017)
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