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Outline

@ Introduction: s-finite-measure semantics of an idealised 1st-order
probabilistic programming language
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A typed 1st-order probabilistic programming language, PPL

Idealised, 1st-order version of Church, Anglican, Venture, Hakura, etc.
(Staton et al. LICS 2016)
PPL Types. A,B =R |P(A)[1|Ax B[} ;c; Ai, where I is
countable, nonempty.

@ Types A are interpreted as measurable spaces [A].

o [R] is the measurable space of reals with its Borel sets.

o [P(A)] is the measurable space of probabilistic measures on [A]

(i.e. “Giry monad").
@ The type of booleans and natural numbers are definable.

PPL Terms-in-context. Two typing judgements:
o I'kyt: A for deterministic terms

@ 'yt A for probabilistic terms
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Terms-in-contexts of PPL

Sums and products. The language includes variables, and standard
constructors and destructors for sum and product types.

Sequencing: monadic unit, and bind

T'hyt: A et A MNz: Ak u:B
't return(t) @ A ' letz =tinu: B

Language-specific constructs. Constants for all measurable functions.

Bayesian constructs:  Posterior o< Likelihood x Prior
Thyt:P(A)
I' b, sample(t) : A
I'Ht:R
'k score(t) = 1
'kt A
I' k4 normalise(t) : R x P(A) +1+1

@ Sampling from prior distributions:
© Recoding likelihood scores:

© Normalisation (for posterior):
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Semantics of PPL  (Staton, ESOP 2017)
@ Interpret I' ¢ : A as a measurable function [¢] : [T'] — [A]
o Interpret I', ¢t : A as an s-finite kernel [¢] : [I'] ~ [A].

DEF. A kernel k from (X, Xx) to (Y, Xy) is function
k:X x 3y —[0,00] s.t.

. Ve e X, k(x,—): Xy — [0,00] is a measure

i. YU € ¥y, k(—,U) : X — [0, 0] is a measurable function.
(Henceforth identify measures with kernels 1 : 1 x Xy — [0, o0])

Kernel k(-,-) | Definition

subprobability | sup,cx k(z,Y) <1

finite supex k(z,Y) < oo
o-finite Y € By)icw- (Y =W, Vi & Vi. sup,ex k(z,Y;) < 00)
s-finite k=>ic. ki, each k; is a finite kernel X ~ Y.

The classes above form an increasing chain (ordered by C).
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Examples of o-finite / s-finite measures

DEF. Let (X, Xx) be a measurable space; i : ¥x — [0, 00] be a measure.
o p is o-finite if X = 4, X; with each X; € ¥x and p(X;) < oo.
o p is s-finite if u =Y. p;, and each p;(X) < oo.

Intuition: “bad oco” is co concentrated at a point.

@ o-finiteness only admits “good oco”

@ s-finiteness can admit “bad o0”, but only countably many.
Examples

© The Lebesgue measure, Leb, is o-finite.

@ The co-measure on the point 1 is s-finite, but not o-finite;

© Counting measure #g on any uncountable standard Borel space S is
not s-finite

Q o0 - Leb is not s-finite.  (Convention: 0- 0o = 0.)
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s-finite-measure semantics of PPL (Staton, ESOP 2017)

Context I' = (ZCl AL T An), with [[F]] = H?:l [[Az]]

Semantics of PPL
@ Interpret I'Hy ¢ : A as a measurable function [t] : [I'] — [A]
o Interpret I', t : A as an s-finite kernel [¢] : [I'] ~ [A].

Theorem (Definability)

If kernel k : [I'] ~ [A] is s-finite, then there is a term T'k, ¢+ A
s.t. k= [t].

This is a very useful result (for us)!
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Why s-finite (and not o-finite) measures?

Infinite measures seem unavoidable.

@ No known useful syntactic restriction that enforces finite measures.

@ A program with finite measure may have subexpression with infinite
measure.

o-finite measures are a much-studied class of infinite measures, but they
are not suitable for interpreting probabilistic programming languages.

@ The pushforward of a s-finite measure is s-finite; but the pushforward
of a o-finite measure is generally only s-finite.

@ Failure of kernel composition of o-finite measures: let U € ¥

[Fpletz = Lebinreturn () : 1J(U) = /RLeb(dZ) X0 (U) = oo-x()(U).

Leb (Lebesgue measure) is o-finite, however the composite is s-finite,
and not o-finite
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Talk outline

@ Introduction: s-finite-measure semantics of an idealised 1st-order
probabilistic programming language

© Properties of s-finite measures and kernels
© Radon-Nikodym derivatives
@ Conditional distribution and disintegration

© Conclusions and further directions
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Outline

© Properties of s-finite measures and kernels
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Product measures

Given measure 1 on X and kernel v from X to Y, call measure ¥ on
X x Y a product measure of i and v if U(U x V) = [; p(dz) v(z, V), for
Al U xV € ¥xxy.

- By Carathéodory Extension Theorem, a maximal product measure u ® v
always exists:

(@ V)(W) = inf{z / u(dz)v(z, Vi) | W | W x Vi) € zm}.
icw Y Ui €W
- Product measures may be defined via iterated integration:

(@' v)(W) = / u(dz) /Y (e, dy) yw (1)

b's
and, in case v(x) is independent of x, i.e., v is a measure on Y

(4 & ) (W) = / v(dy) /X u(dz) xow ().

Y
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Fubini theorem—for swapping order of integration

Even when ®' and ®@" are well-defined, they may not be equal:
- For non-Leb-null V € Yg:

@t [ #w(dn)( [ Leb(ay) {(rr) [ € V}) =0

@ [ Leb(dy)( [ #g(dz) {(r,r) |7 € V}) = Leb(V).

Theorem (Fubini)
For an s-finite measure . on X, and an s-finite kernel v from X to Y
i. u®' v is well-defined, and p® v = p @ v.

ii. Further, if v is simply a measure on'Y, Q" v is also well-defined,
and pRv=puv=pe v
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Characterisations of s-finite kernels v from X to Y (#£0)

s-finite kernels: T.F.A.E.
@ v is a s-finite kernel from X to Y
Q= ZnEw vy, for subprobability kernels v,.
© v is the pushforward of a o-finite kernel.

Given kernel k : X ~» Y and measurable function f : Y — Z, define
the pushforward kernel fuk : X ~ Z by: forz € X, U € Yz,

f«k (:U? U) = k‘(.%', fﬁl(U))

s-finite measures
@ v is a s-finite measure iff there is a o-finite measure  on X and a
measurable function f: X — {1,000} such that v = u(f).
@ A weak converse: if v is an s-finite measure on X, then either v is
zero or v = P(f) for a probability measure P and a measurable
function f: X — [0, 00] with P([f = 0]) = 0.
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s-finite measures and co-sets

Fix a measure p on a measurable space (X, Xx).

DEF. U € ¥x is an oo-set w.r.t. p if (i) u(U) = oo, and (ii) for all
Ve 3y, w(V) =0 or co. J

- If 1 is o-finite then it does not have any oo-sets (*." any set U of infinite
p-measure must have a countable partition of finite y-measure, i.e., 0).
- IDEA: presence of oo-sets distinguishes s-finite from o-finite measures.

Call U € Xx a o-finite complement of X if (i) U is an oo-set or a null-set,
and (ii) p is o-finite on X \ U.
Theorem. Let p be an s-finite measure on X. Then

i. There exists a o-finite complement in Xx.

ii. w is o-finite iff there are no p-oo-sets in X x.

The converse of (i) fails: not every measure p which has a o-finite
complement need be s-finite. Take u = #g - cc.
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© Radon-Nikodym derivatives
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Let 1 and v be measures on X. A Radon-Nikodym derivative of u w.r.t. v
is a measurable function X — [0, oo], typically written du/dv, s.t.

= u<d'u> = /Xu(d:n) d—’u(af;) Notation. v(f) :/ v(dz) f(x).

5 dl/ X

Recall: p is absolutely continuous w.r.t. v (written p < v) if
YU € Xx.v(U) =0 = pu(U) = 0.
Theorem (Radon-Nikodym — standard version)

Let u < v be o-finite measures on a space (X,¥x). Then p has a R-N
derivative w.r.t. v, which is unique up to v-equivalence.

The pdf of a r.v. is the R-N derivative of the induced measure with respect
to some stock measure (usually the Lebesgue measure for continuous r.v.).
- Provides existence proof of conditional expectation for probability
measures — key concept in probability theory.

- Basis of compilation of prob. programs to densities (Bhat et al. POPL12;
LMCS17; etc.)
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Let u, v be s-finite measures on (X, Y x).

DEF. p is co-absolutely continuous w.r.t. v (written p < v) if (i) p < v, and (ii)
for all v-oco-sets U, U is a p-oo-set or a u-null-set.

@ For o-finite measure v, we have <02 v iff p < v, vacuously.

o If p has density f w.r.t. v (i.e. p=v(f)) then u L.

DEF. Let f,g: X — [0, 00] be measurable, and let X, € Xx be a o-finite
complement w.r.t. v. Say f and g are v-oo-equivalent if

v([f # 91N (X \ Xoo)) +v(lg = 0 # f1N Xoo) +v([f =0 # 9] N Xoo) = 0

- On the o-finite part of X: f and g are v-equivalent
- On o-finite complement of X: the points where one has value 0 and the other
strictly positive are v-negligible.

Theorem (Radon-Nikodym for s-finite measures)

Let p & v be s-finite measures on a space (X,Xx). Then p has a R-N derivative
w.r.t. v, which is unique up to v-co-equivalence.  [False if only assume p < v.]
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Application

Let Z v be s-finite measures on X. Then there exists an RN-derivative
dp/dv : X — [0, 00], satisfying v(du/dv) = u, unique up to
v-oo-equivalence.

© Importance sampling of p w.r.t. v.

d
sample 1 = let (sample v/) be z in (score(d—ﬂ(x)); return a:)
v

@ Rejection sampling of p w.r.t. v.
Assume du/dv < M € [0,00). Let

f(2) :=let (sample v) be x in
(sample Uy 17) be y in

1
if (y < Mi—(m)) then (return z) else z.

Then, we get a rejection sampling procedure for u: sample = Y (f).
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@ Conditional distribution and disintegration
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Disintegration

o Disintegration formalises the idea of a non-trivial “restriction” of a
measure to a measure-zero subset of the measure space in question.

o It is closely related to the existence of conditional probability
measures.

@ Disintegration may be viewed as a process opposite to the
construction of a product measure.

And hence it is related to Fubini theorem.
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Borel’s Paradox: conditioning on a measure-0 subset

Let = be a point on Earth's surface drawn from a uniform distribution.

If = lies on the equator, its longitude should be uniformly distributed over
[—7, 7).

But there is nothing special about the equator: it's just a great circle.

In particular, for a great circle through the poles (i.e. conditioning on the
longitude) there should be conditional probability 1/4 that x lies north of
latitude 45°N.

Now “average out” over the longitude to deduce that x has probability
1/4 of lying in the spherical cap extending from the north pole down to
the 45° parallel of latitude.

Alas, that cap does not cover 1/4 of the Earth's surface area, as would be
required for a point uniformly distributed over Earth’s surface.

(Pollard 2002)

Kolmogorov (1930): “The concept of a conditional probability with regard
to an isolated hypothesis whose probability equals 0 is inadmissible.”
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Review: Conditioning for discrete random variables

Straightforward — provided we eschew conditioning on probability-0 events

DEF. Conditional probability. Assume PP is a probability measure on
(X,Xx). Suppose r.v. T takes value in R Cq, Y. For Aec ¥x,y € R

PANA{T = y})
PA|T =y):=
T =9 = " =yy)
Properties: Writing P, (—) for the measure P(— | T' = y)

i. Pre-regularity. P, is a probability measure on X, for all y € R.
ii. Concentration. PP, concentrates on {T' = y}:

P,({T #y}) = P({T;E/T} 2{;}?): v _ .
ii. Weighted average. For all A € ¥x, P(A) =3 .o P({T = y}) Py(4)

Question: How to extend conditional probability P(A | 7' = y) to general
spaces (X, Y x) and arbitrary measurable 77
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Standard “abstract” approach to conditional expectation

Fundamental Theorem & Definition (Kolmogorov, 1933)

Given triple (2, F,P), r.v. X with E(|X]) < oo, and G a sub-o-algebra of
F. There exists r.v. Y s.t. (i) Y is G measurable, (ii) E(]Y]) < oo, and
(i) VGeG. [(P(dw)Y (w) = [, P(dw) X (w).

Moreoever, if Y’ is another r.v. satisfying the above, then Y =Y ass.,
and is called a version of conditional expectation E(X | G) of X given G.

- There is a gap between intuition and rigour in conditioning arguments.

- An accounting problem: for F' € F define P(F' | G) to be E(xr | G).
For a fixed seq. (F7,) of disjoint elts of F, P(JF,, | G) = > _P(F, | G) ass.
In general, there are uncountably many such sequences; we cannot
conclude (*." uncountably many null-sets) that there is a kernel
P:QxF—10,1)st. (a) VF € F, P(—, F) is (version of) P(F' | G), (b)
for almost every w, P(w, —) is a probability measure on F.
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Definition: disintegration of a measure

Let T : X — Y be measurable; u and v be measures on X and Y resp.

DEF. A (T, v)-disintegration (or -conditional distribution) of y are a family
{1ty }yey of measures on X and a v-null set N € Xy s.t.

i. Regularity: (y,U) — py(U) is a kernel from Y to X;

ii. Concentration: Yy € Y\ N, pu, concentrates on {T' =y}, i.e., py is
supported in T71(y): VV € Xy, uy(V) = u,(VNT (y));

iii. Weighted average: YV € Xx, u(V fY v(dy) py(V).

Often write u(— | T =y) for p,.
iii". For all measurable f: X — [0, o],

[ 5@ = o) [ i) s

The standard Disintegration Theorem for o-finite measures satisfies a
weaker definition: if CH holds, u—(—) cannot be a kernel (Maharam's
1950 Problem: Back et al. 2015).
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A disintegration theorem for s-finite measures

Let T: X — Y be measurable from a standard Borel space X to a
measurable space Y, let i and v resp. be measures on X and Y.

Existence

Assume (i) u, v s-finite, (i) Tup < v, and (iii) for all v-oo-sets U, T—(U)
is a p-oo-set or a p-null-set?. Then there exists a (7, v)-disintegration of
t, {1ty }yey, which is an s-finite kernel.

N.B. Theorem fails for s-finite u, v if we only demand T} p <.

?(ii) and (iii) are strictly stronger than Ty L.

Uniqueness

If v is s-finite, then the (T, v)-disintegration of 1 (qua s-finite kernel) is
unique up to v-oo-equivalence.
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Fubini’s theorem for s-finite measures

Let 1 = o ® B be a product of s-finite measures on product space X x Y.
Let T: X xY — Y be (z,y) — v.

Then the (T, §)-disintegration of y is {“y}er' where 1, = (Ry)« () with
Ry, :x+— (x,y). So uy is just a copy of a.

Take measurable f: X XY — [0,00]. By property (iii) of disintegration:
u = [ s [ i) Sy
y
= / B(dy)/ (Ry)«(a)(d(z, ) f(z,y) (7 py = (Ry)«(e))
Y T=(y)

:/ B(dy)/ a(dz) foRy(z) (by change of variable)
i * fz:y)

which is precisely Fubini's theorem for s-finite measures.
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Bayes’ Law: Posterior o Likelihood x Prior
pX =2|0=10)p®© =0)
p(X =)

pO@=0|X=2x) =

- Bayes' Law says that the posterior times the probability of an observation
equals a joint probability.

- But the observation of a continuous quantity usually has probability 0; in
which case, Bayes' Law says: “unknown x 0 = 0"!

(Shan & Ramsey POPL 2017) introduces a new inference algorithm by
symbolic manipulation of the prior and an observable expression:
@ It can draw exact inference from the observation of a probability-0
continuous quantity.
@ |dea: the observable expression denotes a conditional distribution qua
disintegration of a measure.
@ These disintegrations (of s-finite measures) are s-finite kernels, which
are denotable by PPL terms.
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Problem

Conjecture. Let p be an s-finite measure on X X Y and p be s-finite
measure on X, satisfying condition (C'). Then there exists an s-finite
kernel k : X ~» Y such that p = u ® k. Further the kernel is unique up to
pu-oo-equivalence.

Desiderata:

1. Higher order & definability. Take £ an idealised higher-order PPL;
e.g. core Hakaru™(?). Extend p and i to L-definable measures; prove that
k is L-definable (Staton ESOP17).

2. Constructiveness / relativised computability. Design an algorithm for
constructing k as an L-term, given representations of p and u as L-terms,
via partial evaluation (type-directed / continuation-based); prove
correctness via synthetic measure theory.

3. Compositionality / “parametricity law"”. Replace p and p by s-finite
kernels (appropriately typed).

Ong & Vakar (University of Oxford) R-N derivatives, disintegration & s-finiteness Shonan Seminar 113 28 /30



Outline

© Conclusions and further directions

Ong & Vakar (University of Oxford) R-N derivatives, disintegration & s-finiteness Shonan Seminar 113 29 /30



Conclusions and further directions

@ S-finite kernels have good closure properties.
@ Radon-Nikodym and Disintegration theorems extend to s-finite
measures.

Further directions
@ Methods to construct Radon-Nikodym derivatives and disintegrating
measures / kernels

@ Deriving disintegration by program transformation & synthesis — an
approach to Bayesian inference (Shan & Ramsey, POPL 2017)
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