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Plan of the Lecture

@ Monads and computational effects

@ Relating monadic semantics

@ Effect systems

@ Effect soundness

@ Graded monads and related categorical structures
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Monads

1. Monads in a Category

Any endofunctor T:X—X has compositess T*=T-T:X—X and
T3=T%T:X—X. If u:T>>T is a natural transformation, with
components ,: T>x— Tx for each xe X, then Tu: T3 T? denotes
the natural transformation with components (Tu), = T(u,): T>x— T?x
while ¢ T: T3> T? has components (uT), = piy,. Indeed, Ty and uT
are “horizontal” composites in the sense of § IL.5.

Definition. A monad T={T,n, 1> in a category X consists of a
functor T: X — X and two natural transformations

n:LkoT, p:T?~T (1)
which make the following diagrams commute
R IT— 5 7211 T]
MTJ [u I Iu [ (2)
TP B LT T = ¢ = T

Partial photocopy of p. 137 of Saunders Mac Lane.
Categories for the Working Mathematician (2nd ed).
Springer, 1998.
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@ The structure was descerned by Godement
(standard construction / triple).
» R. Godemant. Topologie Algébrique et Théorie des
Faisceaux. Hermann 1958.

@ Jean Bénabou coined the word monad in 1966.

Michael Barr. Subject: Re: Where does the term monad come from?
Newsgroups: gmane.science.mathematics.categories, Wednesday 1st April 2009 18:13:55 UTC
http:/permalink.gmane.org/gmane.science.mathematics.categories/214

@ Moggi applied it to represent the notions of
computation:

» E. Moggi. Computational Lambda-Calculus and
Monads. In Proc. LICS, 1989.
— A.-calculus

» E. Moggi. Notions of computation and monads.
Information and Computation 93 (1), 1991
= Amc-calculus
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... Then, in 1987, Eugenio Moggi completed his PhD thesis at the
University of Edinburgh under Gordon Plotkin, with Martin Hyland
his external examiner. At precisely that point, Moggi’s new idea of
computational effects came to the attention of experienced
category theorists.

A defining moment came at Moggi’s oral defence. Moggi had
completed a technical thesis on partiality, and the discussion
turned to future work. He then introduced his new idea of notions
of computation and proposed using monads to model them. It
immediately struck Hyland as a particularly elegant idea, involving
an enrichment of a basic type theory with terms having
computational meaning. He was very encouraging. ...

Quoted from p. 451 of M. Hyland and J. Power.

The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads
ENTCS 172, April, 2007, pp. 437458
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Monad (as Kileisli Triple) on Set

Definition
A monad (on Set) consists of:
@ T sending a set A to a set TA.
@ unit functionns : A — TA.
@ Kleisli extension
()" : (A= TB)— (TA = TB).
They satisfy, forallf: A - TB,g: B — TC,

nf —idy., ffopa=»f (g7 of)* =g of"

Following Haskell, define x == f to be f#(x).
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List Monad / Free Monoid Monad

@ Kleene closure (-)".
@ The unit function is

na - A— A*, T]A(X) = (X)

@ The Kleisli extension is

f:A—B”

# —
A B f™(ay---an) = f(ar)---f(an)
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Powerset Monad

@ The powerset construction #.
@ The unit function is

na A —)PA, nA(X):{X}

@ The Kleisli extension is

f:A > PB
f#:PA > PB’

X = Jf(x)

xeX
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Monads from Algebraic Theory

@ X : aranked alphabet; e.g.
Y = {e% m?)
@ E: a set of equational axioms on X-terms; e.g.
E ={m(e,x) = x,m(x, e) = x,
m(x, m(y,z)) = m(m(x, y), z)}
@ TsA: the set of >-terms over A
Tx{1,2,3} > m(1, m(e, 3))

@ We call an E-equivalence class of Tz A a
(X, E)-polynomial over A.

Katsumata (NII) Shonan school15 May, 2017 10/52



Monads from Algebraic Theory

(¥, E) determines a monad:
@ TA = the set of (¥, E)-polynomials over A.
@ na(a) = a (as a polynomial)
@ Forf: A — TB, its extension f* : TA —» TB
performs the simultaneous substitution:

f7(t) = t[f(a)/a]aca
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Monads from Algebraic Theory

® ;7 = idma because
tla/alaca =t
@ f on, = f because
alf(a)/alaca = f(a)
@ g” o f* = (g” o f)” because

t[f(a)/a]aeA [g(b)/b]beB — t[f(a)[g(b)/b]beB/a]aeA
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Continuation Monad

@ “Double negation” CfX = (X = R) = R
@ The unit function is

na(a) = 1p . pa

@ The Kleisli extension is

f-A— CFB

Fo
F CRFAS cRgs | 9=4-9g(1a. fap)
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Other Monads

@ Writer monad TA = A* X A
@ Statemonad TA =S = (A X S)
@ Finite distribution monad
TA ={f: A —in [0,1] | Zzeaf(a) =1}
@ ... and some combinations of them
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Algebraic Operations

... Is a family of functions:
ap TAX---xXTA > TA

aa(ty, - ty)>=f=apg(ty >="1,-- ,tp>=f),
corresponding to derived operations on polynomials.
(():A"XA" > A" (V) : PAXPA - PA

p:A"XA*"XA" > A" p(x,y,z) = xyzyx

Exercise
Show that an n-ary algebraic operation for T bijectively
corresponds to an element in T{1,--- , n}.
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Why Monads in Semantics?

Let functions speak about what they do!

f:A—-B
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Why Monads in Semantics?
Let functions speak about what they do!

f:A—>TB
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A2 Lambda Calculus with Choice

Extend the STLC with natural numbers:

['-M:nat [+ N: nat
[+ n: nat [ M+ N : nat

and a choice operation:

F'+-My:7t TeM: 7
rI-M1OI'M21T

Examples:

(3or2)+ (3or2)
(Ax . x +x)(3 or2)
(Ax . x) or (AX . X + Xx)
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Monadic Semantics of 1Y

Interpretation of types:
[nat] =N, [r=17]=1[7] = T[]
Interpretation of judgements:
[MD - [T] - Tl

[xle = n(p(x))
[2x . M]p = n(av. [M]p{x — v})
[MN]p = [M]o>= (am.
[NJo >= (an . m(n)))
[MorNIp = a([Mlp. [No)
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Monadic Semantics of 1Y

Interpretation of types:
[nat] =N, [r=17]=1[7] = T[]
Interpretation of judgements:
[MD - [T] - Tl

[xle = n(o(x))
[2x . M]p n(av . [M]p{x — v})
[M+ N]p = [M]o>=(am.
[N]o == (An . n(m + n)))
[MorNlo = o([Mlp. [N]p)
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Powerset Semantics of 1Y

Interpretation of types:
[nat] =N, [r=7]=][r] = P[]
Interpretation of judgements:
[M] - IT] — #l7]

[xle = {p(x))
[Ax . M]p {av . [M]p{x — v}}

[M+ N]p = U {m+nj
me[M]p.ne[N]p

[MorN]p = [M]pu [N]p
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Part [l

Relating Monadic Semantics
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Relating Monadic Semantics

Semantics using £
[M]:[1] - #lz]. [MorN]p = [M]e v [N]p

[(3or4)+ (20r3)] = {5,6,7)
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Relating Monadic Semantics

Semantics using £
[M]:[1] - #lz]. [MorN]p = [M]e v [N]p

[(3or4)+ (20r3)] = {5,6,7)

But wait — | learned to use the list monad to represent
nondeterminism!

[M]:[T] = [<]", [MorN]p = [M]p-[N]p

[(3ord)+ (20r3)] = (56 67)
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Relating Monadic Semantics

How about using the continuation monad?

[M] : [Tl — ([r] = PR) = PR,
[Mor N]p = Ak . [M]pk U [N]pk

... or 2-continuation monad [Wand&Vaillancourt'04]?

IM]:[T] = ([r]=X=X)= X=X,
[Mor NJp = Ak . [M]pk o [N]pk
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Relating Monadic Semantics

They interpret the same term differently:

[(3or4)+ (20r3)] =1{5,6,7}
—(5667)
= Ak . K5 U k6 U k7
= Ak . kK5 o k6 o k6 o k7

... but they appear to be related somehow.

Problem

How do we formally establish relationships
between them?
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Relating Monadic Semantics

There are many variations of this problem:
@ Computational effects
(nondeterminism, states, writer, 1/0, ...)
@ Monadic semantics (P, (-)*,C*R,C*=%,...)
@ Their relationships
We want to solve a generalized problem!
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Effect Simulation Problem

One language: an extension of the STLC with

FeMi:b (1<i<n) TeEM:7t (1<i<n)
FFop(My,--- ,My):b Tref(My,---,My):1

Two semantics: [-]; using monad T; (i = 1, 2)

[op]i : [b1]i x - - - x [ba]i = [b]
ﬂef]]i,A : TIAX---xXTA - TA

Relationship:

Vb C [b]s x [b]2s Cb C Tq[b]1 x T2[b]2
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Effect Simulation Problem

Effect Simulation Problem
For any

@l =xy:by,---,X,: by
el+-M:b
@ p1 € [1,p02 € [z such that

(o1(x), p2(x;)) € Vb (1 <i<n)

do we have

([Ml1p1, [M]2p2) € Cb?
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Effect Simulation Problem

Theorem

The answer of the effect simulation problem is yes if
@ ([op]s, [op]2) : Vby x ---x Vb, > Vb,
Q ([efl1 1o1,- [eflzp,) : CoXx---x Cb = Cb for all b,
Q ((71)by,» (m2)pep,) : Vb = Cb for all b.

W

Notation: for

@ RCAxXxBandScCxD

@ f:AXx---xA,—>Candg:Byx---xB, - D,
(f,g) : Ry x---x R, > S means

VX,y. (V1 <i<n.(x,y) € R) = (fX,gy) € S
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A candidate relational model
Construct Rt C [r]1 x [r]2 by induction:

Rb = Vb
R(t = 7') = Rt = T(R7)

Here, for R C Ay x A and S C By X Bo,

R= S ={(f,g)|VY(a,b) e R.(fa,gb) € S}
- (A1 = B1)X(A2 = Bg)
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A candidate relational model
Construct Rt C 7]+ X [7]2 by induction:

Rb = Vb
R(r=>17)=Rr= T(RT’)

Here, for R C Ay X Ay,
TR ={(c,d)|VbeB.V¥(f,g) e R=Cb.
(f*1(c), g"?(d)) € Cb}
C TH1A1 X T2A2

a semantic version of TT-lifting [Lindley&Stark’05]
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Forany R C Ay x Ao and S C By X By,

Lemma
(n1.4,-12.4,) - BR— TR.

Lemma
(f,g) : R TS implies (f#1,g#?): TR > TS

Lemma (proof uses assumption 2)
(|[ef]]1,A1, |[ef]|2,A2) : TR X oo X TR - TR
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Lemma (R is indeed a relational model)
Forany x; : 4, -- ,Xp . Th F M : 7,

([M]1.[M]2) : Rty x --- x R, = TRx.

Lemma (proof uses assumption 3)
Forallb e B, T(Vb) C Cb.
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Essense of Proof

... is to build the logical relation T for monads using Cb.

https://en.wikipedia.org/wiki/Aikido#/media/File:Shihonage.jpg
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Part Il

Effect Systems
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Effect System

... extends type system to estimate side-effects caused
by programs.
r'FM:7&e
We read it as:
@ The side-effect of M is at most e.
@ M will not do anything outside the scope of e.

The latter is useful for effect-dependent program
transformations.
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Effect System

... extends system F with
-M:7&e
where
e € P(rd(R) + wr(R) + al(R)) (as a join semilattice)
and R is the set of regions.
M:7&rd(p)Vvwr(p) N:t& wr(p)

== M and N do not interfere with each other
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Effect System

Allocation at region p:

M:t&e
newptM:refpt&eVallp)

Read from region p:

M:refpté&e
getM: 7t & eVrd(p)

Write to region p:

M:refptr&e N:7&e TECrt
setMN:()&eve Vvwrp)
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Effect System

@ Communication analysis in CML [Nielson&Nielson'93]
@ Exception analysis of Java

@ Effect-dependent program optimizations
[Benton&Kennedy&Hofmann&Beringer'06]+,
[Thamsborg&Birkedal’11]

@ Session types and effects [Orchard&Yoshida'16]

@ Cardinality analysis
[Benton&Kennedy&Hofmann&Nigam’16]

@ Cost analysis [Cicek, Garg, Acar *17]
@ ... and many more
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A Simple Cardinality Analysis

Effects
E =(N,<).
Types
TypE s 7= nat|T=e>T
Judgements

N+-M: 7&e

“M returns at most e choices”
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A Simple Cardinality Analysis

Variable
[(x)=r1
FNMex:7&1
Abstraction
lex:TeEM: 7T & e
rl—/lX:T.I\/I:T=e>T’&1
Application

M:T—iwr’&e’ N:t&e”
MN: v & e’e”’e
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A Simple Cardinality Analysis

Number
+n:nat & 1
Addition
'-M:nat& e T +N:nat& e
- M+ N : nat & ee’
Choice

FrNY-M:7&e TEN:7&€
W-MorN:7&e+¢e

Subeffecting

N-M:7&e e<e
Fr-M:17&¢€

Shonan school15 May, 2017
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Effect Soundness

Problem: Effect soundness
Under the powerset semantics, forany 0 - M : 7 & e,
do we have

[M]] < e?
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Effect Soundness

There are many variations of this problem:
@ Computational effects and operations on them
@ Monadic semantics
@ Definition of effects
@ Soundness statement
We formulate a general effect soundness problem.
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Generic Effect System

In many papers,
o Effects are ordered: to compare the extent / scope
of effects.
@ Effects are composable: to give the effect of the
sequential execution.

M:nat& e N :nat& e
M4 N : nat & ee’

The postulate on effects in this lecture
Effects form a preordered monoid.

E=(E, s, 1€E, ():(E<)? - (Ex))
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Generic Effect System

A preordered monoid of effects
(E, <,1,0).

Types
TypE s 1= nat|T:e>T

Effect erasure | — | : Typ® — Typ
Inat| = nat, t=7|== I

Judgements
'FM:7&e
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Generic Effect System

Variable
[(x)=r1
FNMex:7&1
Abstraction
lex:TeEM: 7T & e
rl—/lX:T.I\/I:T=e>T’&1
Application

M:T—iwr’&e’ N:t&e”
MN: 7 &e -e”’- e
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Generic Effect System

Base type operation

[FMi:b&e (1<i<n)
F+rop(My,--- ,M,):b&ei-... e,

Subeffecting

N+M:7&e e<e
Fr-M:7&e¢e
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Generic Effect System

Effectful Operation

FFMi:t&e (1<i<n)
[Fef(My,--- ,Mp) : 7 & f(er, -+, €n)

where f : E" — E is a monotone function such that
fler,---,en)-e=f(e;-e,---,€e,-€)
This reflects the axiom of algebraic operation:

alci, - ,cn)>=k =a(ci>=k, - ,cp>=K)
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Generic Effect Soundness

Definition
A semantics of E for T is an E x TypE-family of
subsets Cet C T[||], monotone on e.

Question: Effect Soundness
@ [-]: a monadic semantics using @ monad T,
ignoring effect annotations

@ C: asemanticsof Efor T
Forany 0 - M : 7 & e, do we have

[M] € Cet?
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Effect Soundness

Theorem
The effect soundness holds if
@ 7y : [Ifl] = Ci7 for all T € TypF,
° I[ef]l[[|r|]] :Ceyt X ---x Cept — C(f(e1’ voo en))‘l' for
aIITeTypE and ey, ---,e, € E.

Notation (redefining):

@ forP,CAiand SCB

@ forf: Ay x---xA,— B
f: Py x-xC,— S means

VX.(V1<i<n.xeP) = fXe$§
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A candidate predicate model
Deifne Pt C [|7]] (where T € Typ®) inductively by

Pb=[b]. P(r=1)=Pr= Te(Pr)

where for e € E and X C A, TeX is given by

TeX ={ceTA|Vd e E .Vt e TypE.
Vfe X = Cdr.

f*c e C(ed)r)
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Let XCA,Y C Bbesubsetsandd,eq,---,e,, e €E.

Lemma
na: X5 T1X.

Lemma
Forany f: X =5 TeY, we have f# : TdX = T(de)Y.

Lemma
[efla : TesX x---x TepX = T(f(eq,--- . en))X.
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Lemma
Forany xq : 7q,- -, Xp:Th - M: 7 & €,

[M] : Pty x---x P, <> Te(P1).

Lemma
For any 7 € TypF, we have Te(Pr) C Te[|r]] C Cer.

The goal is immediate from these two lemmata.
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