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AC®

A family of Boolean circuits (C,,)neN are AC-circuits if for every n € N

(i) C, computes a Boolean function from {0,1}" to {0,1};
(i) the depth of C, is bounded by a fixed constant;

(iii) the size of G, is polynomially bounded in n.

Remark
1. Without (ii), we get a family of polynomial-size circuits (C,) e’
decides a language in P/poly.
2. If C, is computable by a TM in time O(log n), then (C,) "
dlogtime-uniform, which corresponds to FO(<, +, x) [Barrington,
Immerman, and Straubing, 1990].

which



The k-clique problem

Definition
Let G be a graph and k € N. Then a subset C C V(G) is a k-clique if

(i) for every two vertices u, v € V(G) either u = v or {u,v} € E(G),
(i) and |C| = k.

A graph with a 5-clique.



k-clique by AC?

Let n € N and we encode a graph G with V(G) = [n] as follows. For every
1 </ < j < nthe Boolean variable Xy; ;; is defined by

X 1 if there is an edge between i and j
Gy = 0 otherwise.

Then the k-clique problem can be computed by circuits
w=V N Xon
ke(®) (%)
(i) Cgpy < {0, 13(2) = 0,1}
(ii) The depth of C(g) is 2.

(iii) C(n) has size n*to®)
2



Rossman’s Theorem

Theorem (Rossman, 2008)
Let k € N. There are no AC°-circuits (C(n)) of size O(n"/*) such that for
2

neN
every n-vertex graph G

G has a k-clique <= C(;)(G) =1



A uniform version

Corollary

There are no circuits (C(n) k) which satisfy the following conditions.
2)"%) nkeN

(i) The size ofC(g)’k is bounded by f(k) - n*/*.
(i) The depth of C(n) . is bounded by g(k).

2)s
(iii) Let G be an n-vertex graph G and k € N. Then

G has a k-clique <= C(g)(G) =1
Remark
1. It is about the circuit complexity of the parameterized clique problem.

2. If true without (ii), then the parameterized clique problem is not
fixed-parameter tractable. Thus it is an AC° version of FPT # W[1].



Outline

1. Parameterized AC°

2. Some lower bounds
> for fpt-approximation of the clique problem.

3. Some upper bounds:
> a descriptive characterizations of parameterized AC?,
> the color coding technique in parameterized AC°.



Parameterized AC®



Parameterized problems

Definition
A parameterized problem (Q, k) consists of a classical problem Q C X* and a
function x : ©* — N, the parameterization, computable in polynomial time.

Example

p-CLIQUE
Input: A graph G and k € N.
Parameter: k.
Problem: Does G contain a clique of size k7

p-DOMINATING-SET
Input: A graph G and k € N.

Parameter: k.
Problem: Does G contain a dominating set of size k?




Parameterized AC°

Definition (Bannach, Stockhusen, and Tantau, 2015)

A parameterized problem (Q, k) is in para-AC® if there exists a family
(Cn’k)n ey Of circuits such that:

The depth of every C, « is bounded by a fixed constant.
|Chk| < F(k) - n°W for every n, k € N.
Let x € X*. Then (x € Q if and only if Cj .(x)(x) = 1).

B W hh o=

There is a TM that on input (17,1%) computes the circuit C, 4 in time
g(k) + O(log n).

Both f, g : N — N are computable functions.



Some equivalent characterizations

Proposition
Let (Q, k) be a parameterized problem with k. computable by AC-circuits.
Then all the following are equivalent.

(i) (Q, k) € para-AC°.

(i) [ACO after a precomputation] There is a computable function pre: N — ¥*
and dlogtime-uniform AC®-circuits (Cp)nen Such that for x € ¥,

x€Q = Ciupren(x) (X, pre(r(x))) = 1.

(i) [Eventually in AC°] Q is decidable and there is a computable function
h: N — N and dlogtime-uniform AC°-circuits (C,,)"EN such that for every
x € ¥ with |x| > h(k(x)),

xeQ <= C(ykx)=1.



Some Lower Bounds



Theorem (Rossman, 2008)
p-CLIQUE ¢ para-AC°.

By appropriate reductions, i.e., para-AC’-reductions:
Corollary

1. p-DOMINATING-SET ¢ para-AC®, an AC® version of FPT # W][2].
2. p-WSAT(+,4) ¢ para-AC® for t +d > 3, an AC® version of FPT # W][t].



Inapproximability of p-CLIQUE by para-AC®



A major open problem in parameterized complexity

Can we approximate p-CLIQUE in fpt time?



Approximation of p-CLIQUE

Let p: N — R>; be a computable function with nondecreasing and unbounded
k — k/p(k).

Definition

An algorithm A is a parameterized approximation for p-CLIQUE with
approximation ratio p if for every graph G and k € N with w(G) > k the
algorithm A computes a clique C of G such that |C| > k/p(k).

w(G) is the size of a maximum clique of G.

Conjecture

p-CLIQUE has no parameterized approximation for any p.



Theorem (Chalermsook, Cygany, Kortsarz, Laekhanukit, Manurangsi,
Nanongkai, and Trevisan, 2017)

Under the gap Exponential Time Hypothesis, p-CLIQUE has no parameterized
approximation for any p.

Remark

The gap Exponential Time Hypothesis might require the construction of linear
PCP, which seems to be out of reach at this point.



Approximation in para-AC°

p-GAP,-CLIQUE
Input: A graph G and k € N such that either

k < w(G)/p(w(G)) or k > w(G).
Parameter: k.
Problem: s k < w(G)/p(w(G))?

Lemma
If p-GaP,-CLIQUE ¢ FPT, then p-CLIQUE has no parameterized

approximation with ratio p.

Theorem (C. and Flum, 2016)

p-Gap,-CLIQUE ¢ para-AC® for any p.

The proof is based on an AC® version of the planted clique conjecture with
respect to Erd6s-Rényi random graphs.



Erdds-Rényi random graphs

Definition

Let n€ Nand p € Rwith 0 < p <1 Then G € ER(n, p) is the Erdés-Rényi
random graph on vertex set [n] constructed by adding every edge e € (['2’])
independently with probability p.

Example
ER(n,1/2) is the uniform distribution on graphs with vertex set [n].

Let G € ER(n,1/2). Then the expected w(G) is approximately 2 - log n.



Erdés-Rényi random graphs with a planted clique

Definition
Let n € N and p € R with 0 < p < 1. Moreover let ¢ € [n]. Then
(G + A) € ER(n, p, ) is the distribution:

1. Pick G € ER(n, p).

2. Pick a uniformly random subset A C [n] with |A] = c.

3. Plant in G a clique C(A) on A, thus getting the graph G + C(A).

Example
With high probability, the maximum clique in G + C(A) with

(G+ A) € ER(n,1/2,4 - log n)

is the clique C(A).



The planted clique conjecture

Conjecture (Jerrum, 1992; Kucera, 1995)
For every polynomial time algorithm A and for all sufficiently large n € N

46+ C(a) #£A] > %

Pr
(G+A)€ER(n,1/2,4-log n)

That is, A fails to find the planted clique with high probability.



An ACP version of the planted clique conjecture

Theorem (C. and Flum, 2016)

Let k : N — R with lim,—o0 k(n) = 0o, and ¢ : N — N with c(n) < n¢ for
some 0 < & < 1. Then for all AC°-circuits (Cp)nen,

lim Pr [cn(G) —C.(G+ C(A))] -1

n—00 (G,A)EER(n,n=1/k(n), ¢(n))

Let (G,A) € ER(n, =X ¢(n)), then

w(G + C(A))
w(G)
can be arbitrarily large. Hence

Theorem (C. and Flum, 2016)
p-GAP,-CLIQUE ¢ para-AC’.



Inapproximability of p-DOMINATING-SET by para-AC®

Theorem (C. and Lin, 2017)
p-GAP,-DOMINATING-SET ¢ para-AC® for
log k

PR = Clioglog k)



FPT \ para-AC® # ()

p-STCONN
Input: A graph G, s,t € V(G), and k € N.
Parameter: k.

Problem: Does G contain a path from s to t of length
< k?

Theorem (Beame, Impagliazzo, and Pitassi, 1995)

p-STCONN is not in parameterized AC®, even on graphs of degree at most 2.



Some Upper Bounds



p-VERTEX-COVER
Input: A graph G and k € N.
Parameter: k.
Problem: Does G contain a vertex cover of size k?

Theorem (Bannach, Stockhusen, and Tantau, 2015)
p-VERTEX-COVER is in parameterized AC°.

Remark
The proof of Bannach et al. is direct by circuits, which can be rephrased in
first-order logic by a descriptive characterization of para-AC°.



The k-vertex-cover problem

Definition
Let G be a graph and k € N. Then a subset C C V/(G) is a k-vertex-cover if

(i) for every edge {u,v} € V(G) either uc Corv € C,
(ii) and |C| = k.

The peterson graph with a 6-vertex-cover.



k-vertex-cover by FO

G has a k-vertex-cover <= G =

wherewkzﬂxl---HXk( /\ Xi # X

1<i<j<k

AVuvv(Euv — \/ (u=xVvv= X,'))).
i€[k]

Can we do better?



Better in what sense?

The quantifier rank of
i :3X1-~~E|Xk( /\ Xi # X
1<i<j<k

AVu¥v(Euv — \/ (u=xVv= Xi)))

i€[K]
is qr(vk) = k + 2.
There is an algorithm which checks whether
AEe
in time O(| g - [[A[|#)).
Definition

Let g € N. Then FOy is the fragment of FO consisting of all formulas of
quantifier rank at most q.



By simple Ehrenfeucht-Fraissé games

Theorem
There is no ¢ € FOk_1 such that for every graph G

G has a k-vertex cover <— G E .



With arithmetics

Theorem (C. , Flum, and Huang, 2017)
For every k € N there is a ¢y € FO17 such that for every graph G

G has a k-vertex cover = (G, <,+,%,0,...,k') = ¢x.

Moreover, the mapping is
k — ’l/Jk

is computable (hence, so is k — k').



The slicewise definability of the vertex cover problem

Theorem

p-VERTEX-COVER is slicewise definable in FO17. That is, for every k € N, the
kth slice of VERTEX-COVER i.e., the k-vertex-cover problem, is definable by
some )i € FO17.

Moreover, k — i is computable.



The descriptive characterization of para-AC®

Theorem (C. , Flum, and Huang, 2017)

Let (Q, k) be a parameterized problem. Then (Q, k) is slicewise definable in
FO, for some q € N if and only if (@, x) € para-AC°.



The main theorem

Theorem
p-VERTEX-COVER Js slicewise definable in FO17.



The proof strategy

1. There is a polynomial time algorithm K which for every graph G and
k € N computes a graph G’ and k’ such that

1.1 G has k-vertex-cover if and only if G’ has a k’-vertex-cover.
1.2 |V(G")| < k> + k and K < k.

K is known as Buss' kernelization of VERTEX-COVER.
2. We show that K can be implemented in FO17.

3. Any class of graphs with at most k* + k vertices can be defined in FOq
with the constants 0, ..., k> + k.



Buss' kernelization

1. If v is a vertex of degree at least k 4 1, then v must be in every k-vertex
cover. Thus we can remove all such v and decrease k accordingly.

2. Remove all isolated vertices.

3. Let G’ and k’ be the resulting instance. If
V(G > K+ k > K'(k+1),

then G’, and hence also G, is a no instance.



Implementing Buss' kernelization in FO177?

The main difficulty is how to count in FO17, e.g. how to identify a vertex v
with degree at least k + 1.

dxq -+ - Ixkr /\ Xi # Xj A /\ Evx;

1<i<j<k+1 ie[k]

would not work.



Color coding

Lemma (Alon, Yuster, and Zwick, 1995)

For every sufficiently large n € N, it holds that for all k < n and for every
k-element subset X of [n], there exists a prime p < K? - log,n and q < p such
that the function h, q : [n] — {0,..., k* — 1} given by

hp,e(m) :=(q-m mod p) mod k>

is injective on X.



Color coding in FO,

Corollary
Let k € N and (X, y) be an FO-formula. Then there exists an FO-formula
Xe,k(X) of the form

pV 3pdg \/ /\ Hy( “hpa(y) =ii" A ‘P(ZY)) )

0<iy <+ < <k? jE[K]

such that

1. for every graph G and i € V(G)M there are k vertices v in G satisfying
o(d, v) if and only if

(G7 <7+7 X,O,. . '7k3) ': X(P;k(ﬁ)7

2. and qr(x,.«) = max {12,qr(y) + 3}.



Degree constraints by color coding

Let
w(x,y) = Exy.
Then for every k € N, every graph G and v € V(G)
(G,<,+,%,0,....K) E Xe,k(v) <= the degree of v in G is at least k.

Moreover, qr(xe,«) = 12.



Recall Buss' kernelization

1. If v is a vertex of degree > k + 1, then v must be in every k-vertex cover.
Thus we can remove all such v and decrease k accordingly.

2. Remove all isolated vertices.

3. Let G’ and k' be the resulting instance. If |V(G’)| > k* + k > K'(k + 1),
then G’, and hence also G, is a no instance.



Buss' kernelization in FO17

Corollary
For every k € N and k' < k there are

@vertex(x): (r9edge(x~, y)7 Pkernel € F()177
such that for every graph G if we define G' with

V(G') = {veV(G) | GE pune(v)},
E(G") == {{u,v} ‘ u,v € V(G'),u+# v,and G = Qegge(u, v) },

then
G has a k-vertex-cover
< (G,<,+,%,0,...) = Qkemer and G’ has a k'-vertex-cover.
Moreover, |V(G")| < K> + k if (G, <, 4, %,0,...) = Qkernel-




The final step

Lemma
Let H be a graph with |V(H)| = k. Then there is an FOg-sentence @y such
that for every graph G

G and H are isomorphic <> (G,0,... k) = pn.

Corollary

Let K be a finite class of graphs closed under isomorphisms. Then there is an
FOo-sentence @k such that for every graph G

GeK < (G,0,...) = ¢«.



Recall:

Corollary

For every k € N and k' < k there are uertex(X), Qedge(X, ¥), Prernel € FO17, such
that for every graph G if we define G’ with

V(G') = {v e V(G) | Gk prenex(V)},
E(G"):={{u,v} | u,ve V(G'),u+# v,and G = Qegge(u, v) },

then
G has a k-vertex-cover <= G |= Qemel and G’ has a k’'-vertex-cover

Moreover, |V(G')| < k* + k if G & Qrernel-

But how to define 0,1,... of G' in G?



Final step by color-coding

What we really need to define a finite graph is to say, e.g.,
there is an edge between the first and the twelfth vertices.

So if we know the subgraph G’ of G constructed by Buss' kernelzation, and its
size ¢, then for some p and g, and 0 < iy < --- < ip < £* we have

p,q V(G {11,...7 }

Thus we can say, the first, the second, ..., vertices in G’ in FO17.



Hitting set problems with bounded hyperedge size

d-HITTING-SET
Input: A hypergraph H in which every hyperedge has size
at most d and k € N.
Problem: Does G contain a vertex set of size at most k such
that it intersects every hyperedge?

Theorem
Let d € N. Then d-HITTING-SET is slicewise definable in FO, with ¢ = O(d?).



What makes vertex-cover/d-hitting-set slicewise definable?

Let X be a set variable. Then p-VERTEX-COVER is Fagin-defined by

o(X) = VxVy(—\Exy Vv Xx V Xy).
More precisely, for every graph G and S C V(G)

Sis a vertex cover of G < G = ¢(S).

p-CLIQUE is Fagin-defined by

VxVy(x =yVExyVvV-XxV ﬁXy).
It is not slicewise definable in any FO, [Rossman, 2008].
p-DOMINATING-SET is Fagin-defined by

Vxdy (Xy A (x = y V Exy)).

It is not slicewise definable in any FO4 [C. and Flum, 2016].



A meta-theorem

Theorem (C. , Flum, and Huang, 2017)

Let (X)) be a formula in which the set variable X does not occur in the scope
of an existential quantifier or negation symbol. Then the problem Fagin-defined
by ©(X) is slicewise definable in FO,, where q only depends on .



Another meta-theorem

Theorem (C. and Flum, 2017)
Let K be a class of graphs of bounded tree depth. Then

p-MC(K, MSO)

Input: A graph G € K and ¢ € MSO.
Parameter:  |o|.

Problem:  Decide whether G |= ¢.

is in para-AC°.

If K has unbounded tree depth, and is closed under subgraphs, then
p-MC(K, FO) ¢ para-AC°.



Some lower bounds

Building on [Hastad, 1988],

Theorem (C. , Flum, and Huang, 1988)
Let g € N. Then there is a problem slicewise definable in FOq411 but not in FO,.



Conclusions

1. As in classical AC°-complexity, we can prove many unconditional para-AC°
lower bounds. They might increase our confidence in those parameterized
complexity assumptions.

2. Proving classical AC’-lower bounds likely leads to lower bounds for
para-AC°. Conversely, proving lower bounds for para-AC® might require
proving optimal AC’-lower bounds.

3. Can we go beyond AC®, e.g., circuits with modular counting gates?
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