Logics with Invariantly Used Relations

Kord Eickmeyer

NII-Shonan Meeting Logic and Computational Complexity September 19th, 2017 Let τ be a (finite, relational) signature with $\langle \notin \tau$ for a binary relation symbol \langle . A formula φ is order-invariant if its truth value is the same whenever \langle is interpreted by a linear order, regardless of which order is chosen. Let au be a (finite, relational) signature with $<
ot\in au$ for a binary relation symbol <.

A formula φ is order-invariant if its truth value is the same whenever < is interpreted by a linear order, regardless of which order is chosen.

More exactly:

 Let A be a τ-structure. φ over the signature τ ∪ {<} is order-invariant on A if

$$(A, L_1) \models \varphi \qquad \Leftrightarrow \qquad (A, L_2) \models \varphi$$

for all linear orders L_1, L_2 on A.

• φ is order-invariant on a class C of τ -structures if it is order-invariant on all $A \in C$.

We define

 ${\scriptstyle <-\text{inv-FO}:=\{\varphi\in {\sf FO}\,|\,\varphi\,\, {\rm order-invariant}\,\, {\rm on}\,\, {\rm all}\,\, {\rm finite}\,\, {\rm structures}\}}$

- similarly: <-inv-MSO, ...
- similarly: successor-invariant logics (succ-inv-FO, succ-inv-MSO, ...)

We define

 ${\scriptstyle <-\text{inv-FO}:=\{\varphi\in {\sf FO}\,|\,\varphi\,\, {\rm order-invariant}\,\, {\rm on}\,\, {\rm all}\,\, {\rm finite}\,\, {\rm structures}\}}$

- similarly: <-inv-MSO, ...
- similarly: successor-invariant logics (succ-inv-FO, succ-inv-MSO, ...)
- usually not interested in infinite structures (Craig interpolation → expressive power does not increase)
- invariance only on certain finite structures might increase expressivity on these structures

We define

 ${\scriptstyle <-\text{inv-FO}:=\{\varphi\in {\sf FO}\,|\,\varphi\,\, {\rm order-invariant}\,\, {\rm on}\,\, {\rm all}\,\, {\rm finite}\,\, {\rm structures}\}}$

- similarly: <-inv-MSO, ...
- similarly: successor-invariant logics (succ-inv-FO, succ-inv-MSO, ...)
- usually not interested in infinite structures (Craig interpolation → expressive power does not increase)
- invariance only on certain finite structures might increase expressivity on these structures
- note: capturing sometimes gives order-invariant sentences

• <-invariance is a semantical condition

- <-invariance is a semantical condition
- undecidable in most cases, notable exception:

E, Elberfeld, Harwath; MFCS2014

 $<\!\!$ -invariance and $\operatorname{succ}\!$ -invariance of FO and MSO is decidable on coloured sets

proof uses algorithmic language theory: check if semantic monoid is commutative (E, Elberfeld, Harwath)

- <-invariance is a semantical condition
- undecidable in most cases, notable exception:

E, Elberfeld, Harwath; MFCS2014

 $<\!\!$ -invariance and $\operatorname{succ}\!$ -invariance of FO and MSO is decidable on coloured sets

proof uses algorithmic language theory: check if semantic monoid is commutative (E, Elberfeld, Harwath)

that's about it:

E, Elberfeld, Harwath; MFCS2014

<-invariance of FO undecidable on star forests

- <-invariance is a semantical condition
- undecidable in most cases, notable exception:

E, Elberfeld, Harwath; MFCS2014

 $<\!\!$ -invariance and $\operatorname{succ}\!$ -invariance of FO and MSO is decidable on coloured sets

proof uses algorithmic language theory: check if semantic monoid is commutative (E, Elberfeld, Harwath)

that's about it:

E, Elberfeld, Harwath; MFCS2014

<-invariance of FO undecidable on star forests

• no structural induction,

no Feferman-Vaught Theorem,

no Ehrenfeucht-Fraïsee-Games

Part I: Expressive Power

Kord Eickmeyer Logics with Invariantly Used Relations

∃ → ∢

- <-inv-MSO \equiv succ-inv-MSO
- MSO \prec CMSO \preceq <-inv-MSO already on sets

- <-inv-MSO \equiv succ-inv-MSO
- MSO \prec CMSO \preceq <-inv-MSO already on sets

- <-inv-MSO \equiv succ-inv-MSO
- MSO \prec CMSO \preceq <-inv-MSO already on sets
 -
- in general CMSO ≺ <-inv-MSO (Ganzow, Rubin; STACS 2008)

- <-inv-MSO \equiv succ-inv-MSO
- MSO \prec CMSO \preceq <-inv-MSO already on sets
 -
- in general CMSO ≺ <-inv-MSO (Ganzow, Rubin; STACS 2008)
- <-inv-FO ≻ FO (Gurevich) (use boolean algebra to emulate set quantification in FO, then express "even number of atoms")

- <-inv-MSO \equiv succ-inv-MSO
- MSO \prec CMSO \preceq <-inv-MSO already on sets
 -
- in general CMSO ≺ <-inv-MSO (Ganzow, Rubin; STACS 2008)
- <-inv-FO ≻ FO (Gurevich) (use boolean algebra to emulate set quantification in FO, then express "even number of atoms")
- much more complicated: succ-inv-FO ≻ FO (Rossman 2003) (< induces linear order on set of atoms, succ does not → enrich boolean algebra)

- <-inv-MSO \equiv succ-inv-MSO
- MSO \prec CMSO \preceq <-inv-MSO already on sets
 -
- in general CMSO ≺ <-inv-MSO (Ganzow, Rubin; STACS 2008)
- <-inv-FO ≻ FO (Gurevich) (use boolean algebra to emulate set quantification in FO, then express "even number of atoms")
- much more complicated: succ-inv-FO ≻ FO (Rossman 2003) (< induces linear order on set of atoms, succ does not → enrich boolean algebra)
- logic with consistent choice operator (ϵ -logic) is contained in <-inv-FO, but already stronger than FO (Otto)

- <-inv-MSO \equiv succ-inv-MSO
- MSO \prec CMSO \preceq <-inv-MSO already on sets
 -
- in general CMSO ≺ <-inv-MSO (Ganzow, Rubin; STACS 2008)
- <-inv-FO ≻ FO (Gurevich) (use boolean algebra to emulate set quantification in FO, then express "even number of atoms")
- much more complicated: succ-inv-FO ≻ FO (Rossman 2003) (< induces linear order on set of atoms, succ does not → enrich boolean algebra)
- logic with consistent choice operator (ε-logic) is contained in <-inv-FO, but already stronger than FO (Otto)

All separating examples for FO are graph-theoretically complex

くロト く得ト くヨト くヨトー

Expressive Power on Restricted Classes of Structures

• How could we show <-inv-FO \equiv FO on a class ${\cal C}$ of structures?

Expressive Power on Restricted Classes of Structures

 \bullet How could we show <-inv-FO \equiv FO on a class ${\cal C}$ of structures?

q-Equivalent Orderability

Call two structures A and B q-equivalently orderable (written $A \sim_{q,<} B$) if there are linear orders L_A and L_B such that

$$(A, L_A) \equiv_q (B, L_B)$$

(FO-equivalence up to quantifier rank q)

Expressive Power on Restricted Classes of Structures

 \bullet How could we show <-inv-FO \equiv FO on a class ${\cal C}$ of structures?

q-Equivalent Orderability

Call two structures A and B q-equivalently orderable (written $A \sim_{q,<} B$) if there are linear orders L_A and L_B such that

$$(A, L_A) \equiv_q (B, L_B)$$

(FO-equivalence up to quantifier rank q)

- $\sim_{q,<}$ not in transitive, transitive closure $\approx_{q,<}$ is equivalence relation
- $pprox_{q,<}$ is stronger than <-inv-FO $-\equiv$

Blueprint for Collapse Results

Main Tool

Suppose for every q there is a q' such that

$$A \equiv_{q'} B \qquad \Rightarrow \qquad A \sim_{q,<} B$$

for all $A, B \in \mathcal{C}$. Then <-inv-FO \equiv FO on \mathcal{C} .

Suppose for every q there is a q' such that

$$A \equiv_{q'} B \qquad \Rightarrow \qquad A \sim_{q,<} B$$

for all $A, B \in \mathcal{C}$. Then <-inv-FO \equiv FO on \mathcal{C} .

$$ullet$$
 in this case $\equiv_{q'} \subseteq \sim_{q,<}$, so also $\equiv_{q'} \subseteq pprox_{q,<}$

Suppose for every q there is a q' such that

$$A \equiv_{q'} B \implies A \sim_{q,<} B$$

for all $A, B \in \mathcal{C}$. Then <-inv-FO \equiv FO on \mathcal{C} .

$$ullet$$
 in this case $\equiv_{q'} \subseteq \sim_{q,<}$, so also $\equiv_{q'} \subseteq pprox_{q,<}$

• Collapse is shown even if invariance is assumed on C (rather than all finite structures)

Suppose for every q there is a q' such that

$$A \equiv_{q'} B \implies A \sim_{q,<} B$$

for all $A, B \in \mathcal{C}$. Then <-inv-FO \equiv FO on \mathcal{C} .

$$ullet$$
 in this case $\equiv_{q'} \subseteq \sim_{q,<}$, so also $\equiv_{q'} \subseteq pprox_{q,<}$

- Collapse is shown even if invariance is assumed on C (rather than all finite structures)
- ∼_{q,<} can be shown with EF-games on suitably ordered pairs of structures

Suppose for every q there is a q' such that

$$A \equiv_{q'} B \quad \Rightarrow \quad A \sim_{q,<} B$$

for all $A, B \in \mathcal{C}$. Then <-inv-FO \equiv FO on \mathcal{C} .

$$ullet$$
 in this case $\equiv_{q'} \subseteq \sim_{q,<}$, so also $\equiv_{q'} \subseteq pprox_{q,<}$

- Collapse is shown even if invariance is assumed on C (rather than all finite structures)
- $\sim_{q,<}$ can be shown with EF-games on suitably ordered pairs of structures
- still, getting winning strategies only from A ≡_{q'} B is too complicated

<-inv-FO \equiv FO on Trees

Benedikt, Segoufin; CSL 2005, Niemisto 2005

 $<-inv-FO \equiv FO$ on

- unsiblinged trees (ranked and unranked)
- siblinged ranked trees
- proof uses algebraic tree language theory
- main tool: if $S \equiv_{q'} T$ there is a sequence

$$S = T_0 \sim T_1 \sim \cdots \sim T_\ell = T,$$

where $A \sim B$ if B is obtained from A by pumping or swapping subtrees.

<-inv-FO \equiv FO on Trees

Benedikt, Segoufin; CSL 2005, Niemisto 2005

 ${\rm <-inv}{\rm -FO}\equiv{\rm FO}$ on

- unsiblinged trees (ranked and unranked)
- siblinged ranked trees
- proof uses algebraic tree language theory
- main tool: if $S \equiv_{q'} T$ there is a sequence

$$S = T_0 \sim T_1 \sim \cdots \sim T_\ell = T,$$

where $A \sim B$ if B is obtained from A by pumping or swapping subtrees.

$$ullet$$
 then show $\sim \,\subseteq \, \sim_{q,<}$

<-inv-FO \equiv FO on Trees

Benedikt, Segoufin; CSL 2005, Niemisto 2005

 ${\rm <-inv}{\rm -FO}\equiv{\rm FO}$ on

- unsiblinged trees (ranked and unranked)
- siblinged ranked trees
- proof uses algebraic tree language theory
- main tool: if $S \equiv_{q'} T$ there is a sequence

$$S = T_0 \sim T_1 \sim \cdots \sim T_\ell = T,$$

where $A \sim B$ if B is obtained from A by pumping or swapping subtrees.

- then show $\sim \,\subseteq \, \sim_{q,<}$
- also <-inv-FO ≡ FO on siblinged unranked trees of bounded depth (Dawar, E; unpublished)

E, Elberfeld, Harwath, MFCS 2014

On graphs of tree-depth at most d:

$\phi \in$	<-inv-FO	MSO	<-inv-MSO
$\psi \in$	FO	FO	FO+MOD
$\ \psi\ $	(2d+1)-exp (q)	$\mathcal{O}(d^2) ext{-}\exp(q)$	non-elementary
$qad(\psi)$	$\mathcal{O}(d)$	$\mathcal{O}(d)$	$\mathcal{O}(d)$

- bounded depth tree-decomposition definable in FO
- collapse results follow by Benedikt/Segoufin
- to get succintness: define FO-type of a canonically ordered expansion

Elberfeld, Frickenschmidt, Grohe; LICS2016

On classes of graphs of bounded tree-width and classes of graphs excluding some $K_{3,\ell}$ as a minor, the following hold:

<-inv-MSO \equiv CMSO and <-inv-FO \preceq MSO

Elberfeld, Frickenschmidt, Grohe; LICS2016

On classes of graphs of bounded tree-width and classes of graphs excluding some $K_{3,\ell}$ as a minor, the following hold:

 ${<}\text{-inv-MSO} \equiv {\sf CMSO}$ and ${<}\text{-inv-FO} \preceq {\sf MSO}$

Schweikardt, Segoufin; LICS 2010

+-inv-FO can define the same regular string languages as FO with length-modulo counting.

Elberfeld, Frickenschmidt, Grohe; LICS2016

On classes of graphs of bounded tree-width and classes of graphs excluding some $K_{3,\ell}$ as a minor, the following hold:

 ${<}{\text{-inv-MSO}} \equiv {\text{CMSO}} \qquad \text{and} \qquad {{<}{\text{-inv-FO}}} \preceq {\text{MSO}}$

Schweikardt, Segoufin; LICS 2010

+-inv-FO can define the same regular string languages as FO with length-modulo counting.

Grohe, Schwentick; MFCS 1998

Gaifman-locality for <-inv-FO (but no Gaifman normal form)

Anderson, van Melkebeek, Schweikardt, Segoufin; ICALP 2011

Arb-invariant FO has polylogarithmic locality radius.

- 4 戸 2 4 三 2 4 三 2

Part II: Model Checking

∃ → < ∃</p>

Complexity of Model Checking

- \bullet model checking: decide algorithmically whether ${\it G}\models\varphi$
- PSPACE-complete even for FO with fixed graph with only two vertices.

Complexity of Model Checking

- \bullet model checking: decide algorithmically whether ${\cal G} \models \varphi$
- PSPACE-complete even for FO with fixed graph with only two vertices.
- typically: φ small, G large; seek running time

 $f(|\varphi|) \cdot |G|^c$

for some $f : \mathbb{N} \to \mathbb{N}$ and $c \in \mathbb{N}$ (fixed-parameter tractability, fpt)

Complexity of Model Checking

- $\bullet\,$ model checking: decide algorithmically whether ${\cal G}\models\varphi$
- PSPACE-complete even for FO with fixed graph with only two vertices.
- ullet typically: arphi small, G large; seek running time

 $f(|\varphi|) \cdot |G|^c$

for some $f: \mathbb{N} \to \mathbb{N}$ and $c \in \mathbb{N}$ (fixed-parameter tractability, fpt)

brute force for FO gives

 $O(|V|^{\operatorname{qr}(\varphi)}),$

which is not fpt

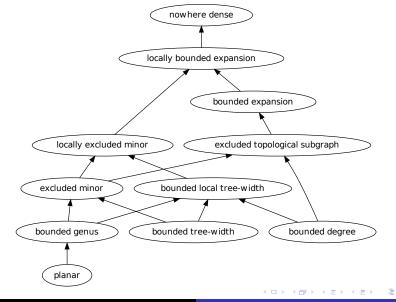
 for MSO, even checking G ⊨ φ_{3-col} is NP-complete (~→ fpt on arbitrary graphs unlikely) \bullet power tool for FO: Gaifman Locality Theorem reduces to φ of the form

$$\exists x_1 \ldots \exists x_k \left(\bigwedge_i \psi^{(r)}(x_i) \land \bigwedge_{i < j} d(x_i, x_j) > 2r \right)$$

for some $r \in \mathbb{N}$ and *r*-local formula $\psi^{(r)}$.

- reduces FO-model checking to:
 - ullet evaluating $\psi^{(r)}$ on local parts of the graph and
 - finding 2r-independent subsets of a set $S \subseteq V$.

FO Model Checking on Monotone Graph Classes



Kord Eickmeyer Logics with Invariantly Used Relations

Model Checking for *R*-invariant Logics

- basically all known algorithms add the relation in question in a clever way
- clever means: retain desirable structural properties
- this does not seem to be possible for <-invariance (stability theory!)

Model Checking for *R*-invariant Logics

- basically all known algorithms add the relation in question in a clever way
- clever means: retain desirable structural properties
- this does not seem to be possible for <-invariance (stability theory!)

Engelmann, Kreutzer, Siebertz; LICS 2012, also Chen, Flum; LICS 2012

Given a graph G = (V, E) of tree-width k, it is possible to compute in fpt a supergraph G' which has a hamiltonian path and has tree-width at most k + 5.

- \bullet note: ${\rm succ} \leftrightarrow {\sf directed}$ hamiltonian path
- this shows: <-inv-MSO model checking on bounded tree-width is fixed-parameter tractable
- works also for bounded clique-width

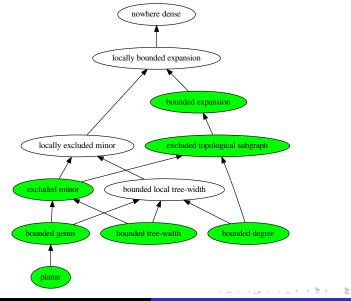
van den Heuvel, Kreutzer, Pilipczuk, Quiroz, Rabinovich, Siebertz, LICS 2017

Model checking for succ-inv-FO is fixed-parameter tractable on classes of graphs of bounded expansion

builds on earlier work:

- planar graphs (Engelmann, Kreutzer, Siebertz; LICS 2012)
- excluded minors (E, Kawarabayashi, Kreutzer; LICS 2013)
- excluded topological minors (E, Kawarabayashi; CSL 2016)

Model Checking for succ-inv-FO



Kord Eickmeyer Logics with Invariantly Used Relations

E, Kawarabayashi, Kreutzer; LICS 2013

If G contains a k-walk, there is an edge-colouring G' of G such that $\varphi_k(x, y)$ defines a successor-relation on G', for an FO-formula φ_k depending only on k. Moreover G' can be computed from G and the k-walk.

- k-walk: visit each vertex at least once, at most k times
- idea: jump over vertices if they have already been visited
- problem: cannot jump more than a constant number of times in a row
- ullet somewhat technical, but can define $arphi_k$ by induction on k

E, Kawarabayashi, Kreutzer; LICS 2013

If G contains a k-walk, there is an edge-colouring G' of G such that $\varphi_k(x, y)$ defines a successor-relation on G', for an FO-formula φ_k depending only on k. Moreover G' can be computed from G and the k-walk.

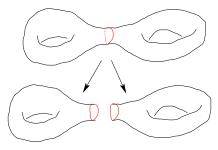
- k-walk: visit each vertex at least once, at most k times
- idea: jump over vertices if they have already been visited
- problem: cannot jump more than a constant number of times in a row
- ullet somewhat technical, but can define $arphi_k$ by induction on k
- k-walk \leftrightarrow spanning tree of degree k'

k-walks: Excluded (Topological) Minors

- Gao/Richter: cyclic 2-walks exist in 3-connected planar graphs
- (recall: 4-connected planar graphs are hamiltonian)

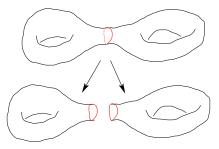
k-walks: Excluded (Topological) Minors

- Gao/Richter: cyclic 2-walks exist in 3-connected planar graphs
- (recall: 4-connected planar graphs are hamiltonian)
- lift this to higher genus graphs by induction



k-walks: Excluded (Topological) Minors

- Gao/Richter: cyclic 2-walks exist in 3-connected planar graphs
- (recall: 4-connected planar graphs are hamiltonian)
- lift this to higher genus graphs by induction



 then lift to excluded (topological) minors using The Big Theorem (Robertson/Seymour, Grohe/Marx)

Kord Eickmeyer Logics with Invariantly Used Relations

- natural extensions for FO and other logics
- wide gap between classes for which <-inv-FO \equiv FO is known and those for which \prec is known
- succinctness?
- model checking for succ-inv-FO on nowhere dense graphs?
- model checking for <-inv-FO???