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Order-Invariance

Let τ be a (�nite, relational) signature with < 6∈ τ for a binary
relation symbol <.
A formula ϕ is order-invariant if its truth value is the same
whenever < is interpreted by a linear order, regardless of which
order is chosen.

More exactly:

Let A be a τ -structure. ϕ over the signature τ ∪ {<} is
order-invariant on A if

(A, L1) |= ϕ ⇔ (A, L2) |= ϕ

for all linear orders L1, L2 on A.

ϕ is order-invariant on a class C of τ -structures if it is
order-invariant on all A ∈ C.
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Order-Invariant Logics

We de�ne

<-inv-FO := {ϕ ∈ FO |ϕ order-invariant on all �nite structures}

similarly: <-inv-MSO, . . .

similarly: successor-invariant logics (succ-inv-FO, succ-inv-MSO,
. . . )

usually not interested in in�nite structures
(Craig interpolation ; expressive power does not increase)

invariance only on certain �nite structures might increase
expressivity on these structures

note: capturing sometimes gives order-invariant sentences
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Undecidability of Order-Invariance

<-invariance is a semantical condition

undecidable in most cases, notable exception:

E, Elberfeld, Harwath; MFCS2014

<-invariance and succ-invariance of FO and MSO is decidable on
coloured sets

proof uses algorithmic language theory: check if semantic
monoid is commutative (E, Elberfeld, Harwath)

that's about it:

E, Elberfeld, Harwath; MFCS2014

<-invariance of FO undecidable on star forests

no structural induction,
no Feferman-Vaught Theorem,
no Ehrenfeucht-Fraïsee-Games
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Expressive Power

Part I: Expressive Power
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Expressive Power

<-inv-MSO ≡ succ-inv-MSO

MSO ≺ CMSO � <-inv-MSO already on sets

in general CMSO ≺ <-inv-MSO (Ganzow, Rubin; STACS 2008)

<-inv-FO � FO (Gurevich)
(use boolean algebra to emulate set quanti�cation in FO,
then express �even number of atoms�)

much more complicated: succ-inv-FO � FO (Rossman 2003)
(< induces linear order on set of atoms, succ does not
; enrich boolean algebra)

logic with consistent choice operator (ε-logic) is contained in
<-inv-FO, but already stronger than FO (Otto)

All separating examples for FO are graph-theoretically complex
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Expressive Power on Restricted Classes of Structures

How could we show <-inv-FO ≡ FO on a class C of structures?

q-Equivalent Orderability

Call two structures A and B q-equivalently orderable
(written A ∼q,< B) if there are linear orders LA and LB such that

(A, LA) ≡q (B, LB)

(FO-equivalence up to quanti�er rank q)

∼q,< not in transitive, transitive closure ≈q,< is equivalence
relation

≈q,< is stronger than <-inv-FO−≡
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Blueprint for Collapse Results

Main Tool

Suppose for every q there is a q′ such that

A ≡q′ B ⇒ A ∼q,< B

for all A,B ∈ C. Then <-inv-FO ≡ FO on C.

in this case ≡q′ ⊆ ∼q,<, so also ≡q′ ⊆ ≈q,<

Collapse is shown even if invariance is assumed on C (rather
than all �nite structures)

∼q,< can be shown with EF-games on suitably ordered pairs of
structures

still, getting winning strategies only from A ≡q′ B is too
complicated
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<-inv-FO ≡ FO on Trees

Benedikt, Segou�n; CSL 2005, Niemisto 2005

<-inv-FO ≡ FO on

unsiblinged trees (ranked and unranked)

siblinged ranked trees

proof uses algebraic tree language theory

main tool: if S ≡q′ T there is a sequence

S = T0 ∼ T1 ∼ · · · ∼ T` = T ,

where A ∼ B if B is obtained from A by pumping or swapping
subtrees.

then show ∼ ⊆ ∼q,<

also <-inv-FO ≡ FO on siblinged unranked trees of bounded
depth (Dawar, E; unpublished)
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Bounded Tree-Depth

E, Elberfeld, Harwath, MFCS 2014

On graphs of tree-depth at most d :

φ ∈ <-inv-FO MSO <-inv-MSO

ψ ∈ FO FO FO+MOD

‖ψ‖ (2d + 1)-exp(q) O(d2)-exp(q) non-elementary
qad(ψ) O(d) O(d) O(d)

bounded depth tree-decomposition de�nable in FO

collapse results follow by Benedikt/Segou�n

to get succintness: de�ne FO-type of a canonically ordered
expansion
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Further Results

Elberfeld, Frickenschmidt, Grohe; LICS2016

On classes of graphs of bounded tree-width and classes of graphs
excluding some K3,` as a minor, the following hold:

<-inv-MSO ≡ CMSO and <-inv-FO � MSO

Schweikardt, Segou�n; LICS 2010

+-inv-FO can de�ne the same regular string languages as FO with
length-modulo counting.

Grohe, Schwentick; MFCS 1998

Gaifman-locality for <-inv-FO (but no Gaifman normal form)

Anderson, van Melkebeek, Schweikardt, Segou�n; ICALP 2011

Arb-invariant FO has polylogarithmic locality radius.
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Model Checking

Part II: Model Checking
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Complexity of Model Checking

model checking: decide algorithmically whether G |= ϕ

PSPACE-complete even for FO with �xed graph with only two
vertices.

typically: ϕ small, G large; seek running time

f (|ϕ|) · |G |c

for some f : N→ N and c ∈ N
(�xed-parameter tractability, fpt)

brute force for FO gives

O(|V |qr(ϕ)),

which is not fpt

for MSO, even checking G |= ϕ3−col is NP-complete
(; fpt on arbitrary graphs unlikely)
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FO Model Checking

power tool for FO: Gaifman Locality Theorem
reduces to ϕ of the form

∃x1 . . . ∃xk
(∧

i

ψ(r)(xi ) ∧
∧
i<j

d(xi , xj) > 2r

)

for some r ∈ N and r -local formula ψ(r).

reduces FO-model checking to:

evaluating ψ(r) on local parts of the graph and

�nding 2r -independent subsets of a set S ⊆ V .
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FO Model Checking on Monotone Graph Classes

planar

bounded genus

excluded minor bounded local tree-width

bounded tree-width

excluded topological subgraphlocally excluded minor

bounded degree

bounded expansion

locally bounded expansion

nowhere dense
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Model Checking for R-invariant Logics

basically all known algorithms add the relation in question in a
clever way

clever means: retain desirable structural properties

this does not seem to be possible for <-invariance
(stability theory!)

Engelmann, Kreutzer, Siebertz; LICS 2012,
also Chen, Flum; LICS 2012

Given a graph G = (V ,E ) of tree-width k , it is possible to
compute in fpt a supergraph G ′ which has a hamiltonian path and
has tree-width at most k + 5.

note: succ ↔ directed hamiltonian path

this shows: <-inv-MSO model checking on bounded tree-width
is �xed-parameter tractable

works also for bounded clique-width
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Model Checking for succ-inv-FO

van den Heuvel, Kreutzer, Pilipczuk, Quiroz, Rabinovich, Siebertz,
LICS 2017

Model checking for succ-inv-FO is �xed-parameter tractable on
classes of graphs of bounded expansion

builds on earlier work:

planar graphs (Engelmann, Kreutzer, Siebertz; LICS 2012)

excluded minors (E, Kawarabayashi, Kreutzer; LICS 2013)

excluded topological minors (E, Kawarabayashi; CSL 2016)
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First Step: Reduce to k-walks

E, Kawarabayashi, Kreutzer; LICS 2013

If G contains a k-walk, there is an edge-colouring G ′ of G such
that ϕk(x , y) de�nes a successor-relation on G ′, for an FO-formula
ϕk depending only on k . Moreover G ′ can be computed from G
and the k-walk.

k-walk: visit each vertex at least once, at most k times

idea: jump over vertices if they have already been visited

problem: cannot jump more than a constant number of times
in a row

somewhat technical, but can de�ne ϕk by induction on k

k-walk ↔ spanning tree of degree k ′
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k-walks: Excluded (Topological) Minors

Gao/Richter: cyclic 2-walks exist in 3-connected planar graphs

(recall: 4-connected planar graphs are hamiltonian)

lift this to higher genus graphs by induction

then lift to excluded (topological) minors using The Big
Theorem (Robertson/Seymour, Grohe/Marx)
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Graphs of Bounded Expansion
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Conclusion

natural extensions for FO and other logics

wide gap between classes for which <-inv-FO ≡ FO is known
and those for which ≺ is known

succinctness?

model checking for succ-inv-FO on nowhere dense graphs?

model checking for <-inv-FO???
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