

Power of reasoning over richer domains

Antonina Kolokolova (MUN)

NII Shonan meeting "Logic and computational complexity", Sep 21, 2017

Problem representations

Given a problem with its instance(s), how to state it to make it easier to solve?

Example: SAT vs. Integer LP

- FCC spectrum auction:
 - Essentially a colouring problem
 - ILP: poor
 - SAT: good
- TravelingSalesman:
 - ILP: good
 - SAT: poor

Problem representations

How to choose between propositional encoding, numerical encoding, their combination, something else?

Combinatorial vs. algebraic proofs

- Algebraic
 - Uses algebraic concepts
 - determinants, eigenvalues...

- Relies on their properties for analysis
- Combinatorial
 - Uses "simple to define" properties
 - Avoids algebra even in proofs
 - Algorithms of lower complexity!

Some results

- Proof complexity of SMT:
 - Combining resolution with theories over underlying domain
 - Linear arithmetic, equality, uninterpreted functions with equality (EUF)...
 - Models satisfiability modulo theories solvers like resolution models SAT solvers
 - With EUF, can polynomially simulate Frege.
- Complexity of expander-based reasoning:
 - Can prove existence of expander graphs using purely combinatorial reasoning.
 - Corollary: monotone Frege is as powerful as nonmonotone.

Proof complexity of Satisfiability Modulo Theories

with Robert Robere and Vijay Ganesh

PigeonHolePrinciple

- PigeonHole Principle: there is no injective function from [n] to [n-1]
- PHP:

 $\bigwedge_{i \leq n} (\vee_{j < n} \ p_{i,j}) \wedge \bigwedge_{i \neq k,j} (\neg p_{i,j} \vee \neg p_{k,j})$

• =-PHP:

$$\bigwedge_{i \leq \mathbf{n}} (\mathsf{V}_{j < n} \left(p_i = h_j \right) \wedge \bigwedge_{i < k \leq \mathbf{n}} (p_i \neq p_k)$$

$$\bigwedge_{x \in [n]} (f(x) \neq 0) \land \bigwedge_{x, y \in [n]} (x \neq y \to f(x) \neq f(y))$$

• LA-PHP:

PigeonHolePrinciple

- PigeonHole Principle: there is no injective function from [n] to [n-1]
- PHP:

$$\bigwedge_{i \leq n} (\vee_{j < n} \ p_{i,j}) \wedge \bigwedge_{i \neq k,j} (\neg p_{i,j} \vee \neg p_{k,j})$$

• =-PHP:

$$\bigwedge_{i \le n} (\mathsf{V}_{j < n} \left(p_i = h_j \right) \land \bigwedge_{i < k \le n} (p_i \neq p_k)$$

• EUF-PHP:

$$\bigwedge_{x \in [n]} (f(x) \neq 0) \land \bigwedge_{x, y \in [n]} (x \neq y \to f(x) \neq f(y))$$

• LA-PHP:

$$\bigwedge_{i \le n} (\Sigma_{j < n} x_{i,j} \ge 1) \wedge \bigwedge_{\substack{i,k \le n, \\ j < n}} (x_{i,j} + x_{k,j} \le 1)$$

- Propositional
- Theory of equality:

 $- (a = b \land b = c \rightarrow a = c)$

- Equality with uninterpreted functions (EUF)
 - equality axioms
 - Ackermann axioms: $(a = b \rightarrow f(a) = f(b))$
- Linear arithmetic

SAT vs. SMT

For which theory T can a SAT solver with a T solver simulate Extended Frege?

Res(T)

New literals

• Theory solver has to be able to return a clause using literals not in the original formula:

- if F contained a=b and b=c, T returns a clause ($a \neq b \lor b \neq c \lor$

Res(T) vs. SMT solvers

- CDCL (conflict-driven clause learning with restarts)
 - Repeat:
 - Assign some variables
 - Do unit clause propagation (set literals in unit clauses)
 - If there is an unsatisfied clause, backtrack and learn the conflict as a clause
 - Maybe restart, removing variable assignment, but keeping learned clauses
- CDCL(T):
 - Also check whether assignment makes sense for T
 - If not, learn a conflict clause.
- Resolution captures CDCL
 - Pipatsrisawat/Darwiche'11.
- Res(T) captures CDCL(T)
 - Generalizing Pipatsrisawat/Darwiche'11.

Power of Res(T)

- Res(Theory of Equality) is no more powerful than Resolution
 - Add all n^3 equality axioms to F, then solve.
- Res(LA) polynomially simulates R(lin)
- Resolution over Equality with Uninterpreted Functions theory, Res(EUF), can effectively p-simulate Frege.
 - Conjunctions of EUF atoms are decidable in $O(n \log n)$ time!
 - Using a variant of Union-Find algorithm.

Equality with uninterpreted functions theory (EUF)

- Signature:
 - uninterpreted function symbols of bounded arity
 - constants a, b, c...
- Terms: constants, and inductively $f(\bar{t})$ for functions.
- Atoms: equalities/disequalities over terms: $t_1 = t_2$, $t_1 \neq t_2$
- Formulas: conjunctions of atoms

$$(f(a) = b) \land (b = c) \land (g(f(a)) \neq c)$$

- Axioms:
 - Equality: $(a = b \land b = c \rightarrow a = c)$
 - Ackermann: $\bar{a} = \bar{b} \rightarrow f(\bar{a}) = f(\bar{b})$
- Can decide in near-linear time if a given EUF formula is satisfiable:
 - Downey-Sethi-Tarjan congruence closure (based on Union-Find)

Sequent calculus (LK)

- Equivalent to Frege.
 - Natural deduction
- Sequents: $A_1, \dots, A_n \longrightarrow B_1, \dots, B_m$ - $A_1 \wedge \dots \wedge A_n \rightarrow B_1 \vee \dots \vee B_m$

- Axioms
$$A \rightarrow A, 0 \rightarrow S, S \rightarrow 1$$
.

$$F \to G, A \qquad A, F \to G$$
$$F \to G$$

- Rules for V, Λ, \neg and cut

$$F \to G, A$$
$$\neg A, F \to G$$

$$F \to G, A \qquad F \to G, B$$
$$F \to G, A \land B$$

$$\begin{array}{c} A, B, F \to G \\ \hline A \land B, F \to G \end{array}$$

• Proof size: total number of symbols.

Res(EUF) simulates LK

- Suppose there is an LK proof of $F \rightarrow 0$ — An LK-refutation of F
- Add to *F* :
 - Two constants: $e_0 \neq e_1$
 - Definitions of N, O, A (and, or, not):
 - $N(e_0) = e_1, N(e_1) = e_0, O(e_1, e_0) = e_1, \dots$
 - Bounded variable range: $\Lambda(x_i = e_0 \lor x_i = e_1)$
- Now simulate an LK proof by constructing terms for all formulas in the proof inductively
 - Prove that at each step of LK proof: $A_1 \dots A_k \rightarrow B_1 \dots B_\ell$
 - Either one of the A terms is e_0 or one of the B terms is e_1
 - Also for each subformula in proof so far, its term = e_0 or = e_1

Open problems

- Is it better to use SMT than propositionalize completely? If so, when?
 - Flatten:
 - replace nested terms by new variables
 - Bit blast:
 - represent each variable by log *n* bits.
 - add all relevant axioms explicitly.
- How to choose T given a problem and class of instances?
 - And how to choose T-representation?

For which theory T would Res(T) effectively p-simulate Extended Frege?

Complexity of Expander-Based Reasoning and the Power of Monotone Proofs

with Sam Buss, Valentine Kabanets and Michal Koucky

Expander graphs

- Graphs which are both
 - sparse (usually constant degree)
 - and well connected (log length path between any two points.
- Expander graphs are pseudorandom objects. A random graph is an expander with high probability.
- Random walk on an expander converges fast.

Uses of expanders

- As pseudorandom objects
 - One-way functions of Goldreich'2000
 - Cryptographic hash functions: Charles/Goren/Lauter...
 - Error-correcting codes, derandomization...
- In complexity theory
 - Reingold and Rozenman/Vadhan: USTCON in LogSpace
 - Dinur: combinatorial proof of the PCP theorem
 - Ajtai/Komlos/Szemeredi: AKS sorting networks

Combinatorial definition of expanders

• d-regular undirected (multi)graphs

- Edge expansion:
 - min fraction of edges crossing a cut (normalized by smaller side size).

$$-h(G) = \min_{\left\{ \emptyset \neq U, |U| \le \frac{n}{2} \right\}} \quad \frac{|E(U, U^{c})|}{|U|}$$

• Expander: h(G) is constant.

Algebraic definition of expanders

- Spectral gap: $d-\lambda_2$,
 - d is the degree of G

1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0
0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0
0	1	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	0	0
0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0
0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0
0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0
1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1

- $-\lambda_2$ is the second largest eigenvalue of adjacency matrix M_G of G.
- Expander (λ -expander):

- A graph that has a constant spectral gap.

Combinatorial vs. algebraic

• Cheeger inequality:

- So constant spectral gap ~ constant expansion
- Most proofs use algebraic definition
 - Some loss in parameters in combinatorial setting
- Combinatorial definition allows lower complexity algorithms

Formalizing "combinatorial"

- Take a system of reasoning which cannot define algebraic objects
 - No eigenvalues, determinants, etc
 - E.g., a system based on polynomial-size formulas (NC¹-reasoning)
- Proofs in this system are combinatorial (unless algebra ∈ NC¹)
 - Combinatorial proofs of correctness of algorithms or existence of combinatorial objects.
 - Not known to prove AB=I => BA=I

Our results

- We give an NC¹ proof of existence of expander graphs of arbitrary size.
 - Includes a combinatorial analysis of a fully explicit expander construction.
 - And its formalization in an NC^1 theory
- Corollary: monotone proofs are as powerful as non-monotone.
 - Monotone LK polynomially simulates LK.
 - By adding the last piece to [Atserias-Galesi-Gavalda'01, Atserias-Galesi-Pudlak'02, Jerabek'11]

Expander constructions

Example 1: Margulis, Gabber/Galil bipartite expanders. (x,y) -> (x,y), (x,x+y), (x,x+y+1), (x+y,y), (x+y+1,y)

Example 2: (from Hoory/Linial/Wigderson)

 Z_p : for every v ≠ 0, connect v to v-1, v+1 and v⁻¹. For v=0, connect v to 0,1 and p-1.

Iterative constructions

- Start with constant-size expanders. Obtain a large size graph by repeatedly applying:
 - Powering (to increase expansion)
 - Zig-zag or replacement product (to reduce degree)
 - Tensoring (to grow quickly).
- Originally by [Reingold-Vadhan-Wigderson'02]
 - Zig-zag product. Proof uses spectral gap.
 - [Alon, Schwartz, Shapira'08] Replacement product with its combinatorial analysis.
- Explicit: given vertex v and $i \in [1 \dots d]$, produce (w, j) such that w is the i^{th} neighbour of v, and v is the j^{th} neighbour of w in resulting graph.
 - In time $O(\log |G|)$.

Our variant of the construction

- Start with 2d-regular G_0 with $h(G_0) = \epsilon = 1/1296$ and d-regular H, h(H) = 1/3.
- Apply the following $\sim \log n$ times:
 - 1. Add self-loops to double the degree; tensor with itself
 - 2. Add self-loops again and power to a constant c
 - 3. Replace each vertex with H.
 - Each G_i has $h(G_i) = \epsilon$ and size > squared.
 - Fully explicit: NC¹ algorithm to compute kth neighbour w of v in the final G, and its edge index j from (v,k)

• **Powering:** $M_{G'} = M_{G}^k$ • Easy with eigenvalues: $\lambda_2 \rightarrow \lambda_2^k$

• Combinatorially, let $h(G) = \epsilon$.

- First, add d self-loops to G.
- Using [Mihail'89] mixing lemma
 and mixing -> expansion

• Get
$$h(G') = \frac{1}{2} \left(1 - \left(1 - \frac{\epsilon^2}{4}\right)\right)^{k/2}$$

Proof : Cauchy-Schwartz and sums.

Mihail'89 mixing lemma

- A random walk on an expander converges to uniform distribution exponentially fast.
- More precisely, let
 - G be a d-regular graph with edge expansion ϵ .
 - Add d self-loops to each vertex of G to obtain G'
 - A be a normalized adjacency matrix of G'
 - $-\pi$ be any distribution on vertices of G'
 - *u the uniform distribution on vertices of G'*

• Then
$$\left|\left|A^k\pi - u\right|\right|^2 \le \left(1 - \left(\frac{\epsilon^2}{4}\right)\right)^k \left|\left|\pi - u\right|\right|^2$$

Constructiveness

- For formalization, need an NC¹ algorithm:
 - Given a non-expanding set U' in G'
 - Produce a non-expanding set U in G.
- From [Mihail'89] proof:
 - Sort vertices in decreasing πu order
 - If some U' in G' is non-expanding, then so is a set of first k vertices in G for some k. Test which one.
 - Both sorting and testing are in NC¹

Formalizing "combinatorial"

- Bounded arithmetic:
 - Theories ~ complexity classes.
 - For a class C, a theory V-C can reason about C-definable concepts (numbers and strings)
- Eigenvalues, determinants, etc are not known to be computable in NC¹
- So proofs in V-NC¹ are "combinatorial" in a strict sense.
 - If V-NC¹ cannot prove existence of eigenvalues
 - Then it cannot formalize proofs relying on eigenvalues, even in disguise.

Bounded arithmetic theories

- V⁰ : first-order reasoning
- VTC⁰: V⁰ + "exists numones(y,X)=z"
- VNC¹: V⁰ + "exists an evaluation of a Boolean formula"
 - Not known to prove $AB=I \rightarrow BA = I$
 - Uniform version of Frege/Sequent Calculus LK
- $V^1 \approx S_2^1 \dots$

Formalizations

- Approximate counting, randomized computation, PRGs (Jerabek), PCPs (Pich), Toda's theorem in higher complexity theories.
- Assuming existence of expanders, correctness of AKS sorting networks is provable in a (slightly non-uniform version of) VNC¹ (Jerabek)
- Our result: Theory VNC¹ proves existence of expanders of arbitrary size.
 - Thus, NC¹ reasoning is enough to prove correctness of AKS sorting networks.

Complexity in monotone

- Monotone functions:
 - $-\forall x, y, x \subseteq y \Rightarrow f(x) \leq f(y)$
 - Majority, Threshold, Clique...
- Monotone circuits:
 - AND, OR gates.
 - Clique_{k,n} requires monotone circuits of size $\geq 2^{\epsilon \sqrt{k}}$ for some ϵ .

Monotone proof complexity?

Monotone sequent calculus (MLK)

- Monotone version of LK [Buss-Pudlak'95]
- Sequents: $A_1, \dots, A_n \longrightarrow B_1, \dots, B_m$
 - all A_i , B_j are formulas over Λ , V.
 - Axioms $A \rightarrow A, 0 \rightarrow S, S \rightarrow 1$.
 - Rules for V, Λ and cut
 - No rule for ¬

$F \to G, A \qquad F \to G, B$	$A, B, F \rightarrow G$	$F \to G, A \qquad A, F \to G$
$F \to G$, $A \wedge B$	$A \wedge B, F \rightarrow G$	$F \rightarrow G$

- Non-uniform version of *VNC*¹
- Polynomial-size proofs of PHP

MLK polynomially simulates LK

- [Atserias-Galesi-Gavalda'01, Atserias-Galesi-Pudlak'02]:
 - Simulate $\neg x$ using threshold formulas:
 - if k 1s in the input, and still k 1s with x_i replaced by 0, then x_i = 0
 - Slice functions idea.
 - Recursive definition of thresholds gives quasipolysize proofs.
 - Monotone NC^1 threshold functions?
 - AKS sorting networks

AKS sorting networks

- Sorting network:
 - n inputs, n outputs (Boolean)
 - Outputs input bits in sorted order

- [Ajtai-Komlos-Szemeredi'83]
 - Monotone log-depth sorting networks
 - Based on expanders

AKS sorting networks

- [Jerabek'11] Properties of AKS sorting networks are in (slightly non-uniform) VNC¹.
 So
 - if VNC^1 proves that expanders exist,
 - get polysize proofs for properties of thresholds
 - and polynomial simulation of LK by MLK.
- Here: *VNC*¹ proves that expanders exist.

Open problems

- Can existence of expanders be proven in VTC⁰?
- Complexity of USTCONN \in L ?
 - Our analysis needs both initial graphs to be expanders.
- Proof complexity of other results that now rely on algebra?

1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0
0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0
0	1	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	0	0
0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0
0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0
0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0
1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1

 $\begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{pmatrix}$

Thank you!

VNC¹

