
Introduction to

Bidirectional Transformations

Jeremy Gibbons

BX @ Shonan, September 2016



BX intro 2



BX intro 2

����



BX intro 3

1. Scenarios

Bidirectional transformations (‘BX’) maintain

different representations of shared data.

They restore consistency when either copy changes.

For engineering reasons, we prefer one bidirectional specification to
two unidirectional ones.

(I’m only going to address binary case—one might consider ternary etc.)



BX intro 4

Data conversions

BEGIN:VCARD
VERSION:3.0
N:Gibbons;Jeremy;;;
FN:Jeremy Gibbons
ORG:University of Oxford;
EMAIL;type=INTERNET;type...
TEL;type=WORK;type=pref:...
TEL;type=CELL:07779 7972...
item1.ADR;type=WORK;type...
item1.X-ABADR:gb
PHOTO;BASE64:

/9j/4AAQSkZJRgABAQAAAQ...
X-ABUID:6EEE2835-745D-4F...
END:VCARD

a

A bijective relationship is a special (and degenerate) case.



BX intro 5

View–update in databases

Staff

Name Room Salary

Sam 314 £30k

Pat 159 £25k

Max 265 £25k

Projects

Code Person Role

Plum Sam Lead

Plum Pat Test

Pear Pat Lead

SELECT
Name, Room, Role

FROM
Staff, Projects

WHERE
Name=Person

AND
Code="Plum"

�)

View

Name Room Role

Sam 314 Lead

Pat 159 Test



BX intro 6

MDD

Object-relational mapping:

• classes, single inheritance,
ordered attributes

• tables, ordered columns
• one table per hierarchy

Class

Attr

0..1 super
0..�
sub

0..1

next

0..1prev

Table

Column
0..1

next

0..1prev

A
a

B
b

C

c1, c2

D
d

a
A

a

b

c1

c2

D d



BX intro 7

Composers

State spaces

M � fName�Dates �Nationalityg -- set
N � �Name�Nationality � -- list

where m : M is consistent with n : N if they have
the same set of Name�Nationality pairs:

m � f (“Jean Sibelius”, 1865–1957, Finnish),

(“Aaron Copland”, 1910–1990, American),

(“Benjamin Britten”, 1913–1976, English) }

n � [ (“Benjamin Britten”, English),

(“Aaron Copland”, American),

(“Jean Sibelius”, Finnish) ]

Various ways of restoring consistency: ordering, dates. . .

(BX repository, http://bx-community.wikidot.com/examples:composers).



BX intro 8

2. Approaches

A bestiary for the week’s fauna:

relational: see eg Stevens’
• “Equivalences Induced on Model Sets by BX” (BX 2012)
• “Bidirectional Model Transformations in QVT” (SoSyM 2010)

lenses: see eg
• Foster et al.’s “Combinators for BX” (POPL 2005)
• Hofmann et al.’s “Symmetric Lenses” (POPL 2011)

ordered, delta-based, categorical: see eg
• Hegner’s “An Order-Based Theory of Updates” (AMAI 2003)
• Diskin et al.’s “From State- to Delta-Based BX” (JOT 2011)
• Johnson et al.’s “Lens Put-Put Laws” (BX 2012)

triple-graph grammars: see eg
• Schürr’s “Specification of Graph Translators with TGGs” (WG 1994)
• Anjorin et al.’s “20 Years of TGGs” (GCM 2015)



BX intro 9

Relational

A BX �R;�!R ; �R� : M ���� N between model spaces (sets) M ;N consists of

• a consistency relation R � M �N
• a forwards consistency restorer

�!
R : M �N ! N

• a backwards consistency restorer
 �
R : M �N ! M

The idea is that given inconsistent models m0;n, forwards consistency
restoration yields n0 � �!R �m0;n� such that R�m0;n0� holds. And vice versa.

The BX is correct if consistency is indeed restored:

8m0;n: R �m0;�!R �m0;n�� 8m;n0: R � �R�m;n0�;n0�

and hippocratic if restoration does nothing for consistent models:

8m;n: R�m;n�) �!R �m;n� � n 8m;n: R�m;n�) �R�m;n� �m

and history-ignorant (rather strong) if

8m;m0;n: �!R �m0;�!R �m;n�� � �!R �m0;n� -- and vice versa



BX intro 10

Lenses

A lens �get;put� : S ���� V from source S to view V consists of two functions

get : S ! V
put : S � V ! S

The idea is that get s projects a view from source s,
and put s v0 restores a modified view v0 into existing source s.

The lens is well-behaved if it satisfies

8s;v: put �s;get s� � s �GetPut�
8s;v: get �put �s;v�� � v �PutGet�

It is very well-behaved (rather strong) if in addition it satisfies

8s;v;v0: put �put �s;v�;v0� � put s v0 �PutPut�

Then S ’ V � C for some complement type C—“constant complement”.

Note asymmetry: source S is primary, and completely determines view V .



BX intro 11

History-ignorance, very well-behavedness

A parable about me and my shoes.



BX intro 12

Symmetric lenses

A symmetric lens �putr;putl� : A ����C B consists of a pair of functions

putr : A� C ! B � C
putl : B � C ! A� C

satisfying two round-tripping laws:

8a;b; c; c0: putr �a; c� � �b; c0� ) putl �b; c0� � �a; c0� �PutRL�
8a;b; c; c0: putl �b; c� � �a; c0� ) putr �a; c0� � �b; c0� �PutLR�

Induces consistent states �a; c;b� such that putr �a; c� � �b; c� and
putl �b; c� � �a; c�.
Again, ‘put–put’ laws

8a;a0;b; c; c0: putr �a; c� � �b; c0� ) putr �a0; c0� � putr �a0; c�
8a;b;b0; c; c0: putl �b; c� � �a; c0� ) putl �b0; c0� � putl �b0; c�

are rather strong.



BX intro 13

Ordered

Strong ‘put–put’ laws are about fusion of updates.
Unreasonable to expect to fuse arbitrary updates.

Relax constraint: fusion only for ‘compatible’ updates. Eg

• states are sets of elements

• simple updates are insertions or deletions—but not both

• state space is ordered by inclusion

• simple updates are monotonic wrt that ordering

• two similar simple updates (both inserts, or both deletions) may be
fused

• for simple updates, ‘put–put’ is not overly strong.

See MJ, “Can we put Put-Put to bed now?”



BX intro 14

Delta-based

Alternative perspective: put–put problem arises from taking a state-based
approach to BX—input to put is new state. Then put has two tasks:

alignment: find out what has changed

propagation: translate that change

A delta-based approach separates those two tasks. In particular, the input
to consistency restoration is not just a new state a0, the result of an
update, but the update � : a , a0 itself (so alignment is no longer needed).

a_

�A

��

oo c // b_

�B

��
a0 oo

c0
// b0

Forwards propagation takes
correspondence c : a $ b and update �A : a ! a0

to update �B : b ! b0 and corr c0 : a0 $ b0.
Backwards propagation takes c; �B to �A; c0.

This approach has rather nicer properties.



BX intro 15

Another parable



BX intro 16

Categorical

The ordered and delta-based approaches can be unified and generalized
categorically.

Represent a state space A and its transitions � : a ! a0 as a category A
(think “directed graph”). A lens �G;P� : A ���� B is a pair where

• G : A! B is a functor

• P : jG=Bj ! jA2j is a function, taking a pair �a; �B : G�a�, b0� to a
transition �A : a , a0

satisfying certain properties analogous to �PutGet�, �GetPut�, �PutPut�.

Recover the set-based approach via the codiscrete category, which has
precisely one arrow between any pair of objects.

Recover the ordered approach by considering the poset as a category.



BX intro 17

Triple graph grammars

Arising from work in graph rewriting, 1980s–:

• grammar specifies allowable graphs

• correspondence structure relating two graphs

Class

Attr

0..1 super
0..�
sub

0..1

next

0..1prev

Table

Column
0..1

next

0..1prev

CT

AC

(from Andy Schürr’s “15 Years of TGGs”)

• forward/backward transformations,
from graph to partner-plus-correspondence

For example. . .



BX intro 18


