
© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

Logic-based, Executable Megamodels
of Coupled Transformations

Ralf Lämmel
Software Languages Team

University of Koblenz-Landau, Germany
http://www.softlang.org/

1

http://www.softlang.org/

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

Tool demo on YAS

(Yet Another SLR
(Software Language Repository))

with applications to logic-based, executable megamodeling of CX

Ralf Lämmel
Software Languages Team

University of Koblenz-Landau, Germany
http://www.softlang.org/

2

http://www.softlang.org/

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

a : L1 b : L2

c : L1 d : L2

What’s a coupled transformation (CX)?

x : L Artifacts ‘typed’ by languages
Transformation, often in the sense of evolution
Consistency, e.g., conformance

Changes imply

co-changes to
reestablish

consistency.

3

(See SLE 2016 paper.)

http://softlang.uni-koblenz.de/cxrevisited/

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

• What are we doing?
• Model ‘patterns’ of CX.
• Capture properties of transformations.
• Instantiate ‘patterns’ as test cases.

• Why are we doing it?
• Provide a CX chrestomathy (‘useful for learning …’).
• Provide a logic-based form of testable megamodels.

• How are we doing it?
• Set up a suitable predicate logic.
• Set up a declarative test framework.
• Implement all CX examples in Prolog (so it happens).

4

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

parse # parserOfBgl

bgl(term)

project # bglToBsl

bsl(term)

parse # eglParser(bglAbstract: (=>))

parse # eglParser(biplAbstract: (=>))

bipl(term)

bigstep # biplBigstep

bipl(store(term))

smallstep # biplSmallstep

scan # bnlScanner

bnl(tokens(term))

parse # bglParser

bnl(term)

parse # bglParser(bnlScanner)

explode # bglExploder

bnl(tree(term))

unparse # bglTreeToTokens unparse # bglTreeToText

bnl(text)

evaluate # bnlTextEvaluator

bnl(value(term))

convert # bnlTextConverter

bnl(formula(term)) evaluate # bnlTermEvaluator

convert # bnlTermConverter

solve # bnlSolver

conformsTo # bglConformance parse # parserOfBsl parse # eglParser(bslAbstract: (=>))

conformsTo # bslConformance interpret # bstlSiginterpret # bstlTerm

term

parse # eglParser(ddlAbstract: (=>))

ddl(term)

pp # dglPp

ppl(term)

parse # eglParser(eiplAbstract: (=>))

eipl(term)

executeDynamic # eiplDynamic executeMixed # eiplMixed executeStatic # eiplStatic

parse # eglParser(elAbstract: (=>))

el(term)

evaluate # elEvaluate

atomToRef # atomToRefsimulateFsm # simulateFsm

fsmToDgl # fsmToDgl

dgl(term)

translate # lalUeber

ueber(term)

diff # mmdlDiff

mmdl(term)

applyDiff # mmdlApply

mml(term)

invDiff # mmdlInv applyDiff # mmdlToDdl parse # eglParser(mmlAbstract: (=>))

resolve # termToGraph

mml(graph(term))

relax # relaxMm recardinalize # recardinalize

graph(term)

mmlToDdl # mmlToDdl

count # mmlCount mmTransform # mmTransform

pp # pplRender

text

rlToPro # rlToPro

prolog

rlDerive # rlDerive diff # tdlDiff

tdl(term)

applyDiff # tdlApply invDiff # tdlInv

loc # textLoc

parse # eglParser(figureAbstract: (=>))

figure(term)

pp # figurePp

dump # ueberDump

languages # ueberGraphLanguagesfunctions # ueberGraphFunctions

bgl(text)

bipl(text)

bsl(text)

bstl(term)

ddl(text)

eipl(text)el(text)

lal(config(term))

mml(text)ddl(mml(term))

mmtl(term)

tokens(term)

figure(text)

5

Run YAS
(Yet Another SLR

(Software Language Repository))

git clone https://github.com/softlang/yas.git
cd yas
make // if you have SWI-Prolog installed
make view // if you have GraphViz/dot installed
find . -name “*.lal” // This lists megamodels.
…

https://github.com/softlang/yas.git

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

How do the megamodels look like?

6

In Fig. 2, we sketch two patterns for BX with lenses,
state-based versus delta-based lenses [16], which di�er
in whether change discovery and change propagation
are separated through the intermediate entity of a delta.

CX occur in yet other contexts of software engineer-
ing and development: evolution of spreadsheets [13, 41];
co-evolution in web applications [10, 54]; moderniza-
tion of component-based systems [24]; co-evolution in
requirements managements [20] and viewpoint model-
ing [55]; the refinement of feature models [53].

3. LAL—in a nutshell

In the following, we introduce the emerging LAL lan-
guage, which we use for megamodeling in this paper—
specifically for modeling CX patterns. LAL is a logic-
based modeling or specification language as follows:
• LAL leverages first-order predicate logic. For in-

stance, conformance is a relation (i.e., a predicate).
• LAL leverages many-sorted logic—sorts model lan-

guages, ‘œ’ models membership tests for languages.
• LAL leverages order-sorted logic—‘™’ models subset

relationships on languages.
• LAL supports flexible reuse of megamodels (‘mod-

ules’) by inlining modulo substitution.
We introduce LAL’s constructs by means of examples.

3.1 Languages
Let us express that a language L is a subset of a suitable
universe Any (such as ‘all’ strings, trees, or graphs):

LAL megamodel language
sort Any // The universe to draw elements from

sort L ™ Any // A language as a subset of the universe

The names of megamodel elements may be substi-
tuted along reuse of a megamodel. This is illustrated
here for the case of the concrete XML-based language
MathML.

LAL megamodel language.mathml
reuse language [L ‘æ MathML, Any ‘æ XML]
link MathML to �https://www.w3.org/TR/MathML3�
link XML to �https://www.w3.org/XML�

Thus, we reuse the megamodel language by substi-
tuting L and Any by MathML and XML, respectively.
At the bottom, we also added ‘identity links’ to the
names (see link XML to ...) so that it is clear that XML
and MathML are specific languages as opposed to mere
placeholders.

In LAL, the semantics of ‘reuse’ is inlining mod-
ulo substitution of names by names; see the ‘... ‘æ ...’
construct. The LAL language processor exposes the re-
sult of inlining modulo substitution. For instance, the
megamodel language.mathml, as shown above, looks as
follows—after inlining modulo substitution:

sort XML
sort MathML ™ XML
link MathML to �https://www.w3.org/TR/MathML3�
link XML to �https://www.w3.org/XML�

The following megamodel captures the basic pattern
of ‘demonstrating’ a given language in terms of both a
positive and negative case for membership:

LAL megamodel membership
reuse language
constant pos, neg : Any // Candidate elements

axiom member { pos œ L } // A member

axiom notMember { ¬ (neg œ L) } // A non≠member

That is, we use (trivial) formulae (‘axioms’) to ex-
press that given constants (nullary functions) are ele-
ments or not of a given language. Axioms are optionally
labeled for convenience; see member and notMember.

The following megamodel captures the basic pattern
of ‘conformance’: there is a definition language and an
actual definition defining a language such that con-
formance of a instance to the definition holds if and
only if the instance is an element of the defined lan-
guage [22, 23]:

LAL megamodel conformance
reuse language // The defined language

reuse language [L ‘æ DefL, Any ‘æ DefAny]
constant defL : DefL // The language definition

relation conformsTo : Any ◊ DefL
axiom { ’ x œ Any. x œ L … conformsTo(x, defL) }

Thus, we reuse the megamodel language both for the
language under definition and the definition language
with possibly di�erent universes. For instance, we may
set up ‘conformsTo’ as XML Schema-based validation
and apply it to MathML as follows:

LAL megamodel conformance.mathml
reuse conformance [

Any ‘æ XML, DefAny ‘æ XML,
L ‘æ MathML, DefL ‘æ XSD, defL ‘æ MathMLSchema]

link XML to �https://www.w3.org/XML�
link XSD to �https://www.w3.org/XML/Schema�
link MathML to �https://www.w3.org/TR/MathML3�
link MathMLSchema to �https://www.w3.org/Math/XMLSchema�

That is, we use XSD (XML Schema) for language def-
inition with the MathMLSchema as the actual definition
of MathML.

3.2 Transformations
Semantically speaking, transformations are simply func-
tions, possibly partial functions because of precondi-
tions. Here is the basic scheme of a transformation from
one language L1 to another language L2; we use ‘ ‘æ’ to
hint at partiality.

LAL megamodel transformation
reuse language [L ‘æ L1, Any ‘æ Any1]
reuse language [L ‘æ L2, Any ‘æ Any2]
function transform : L1 ‘æ L2

In Fig. 2, we sketch two patterns for BX with lenses,
state-based versus delta-based lenses [16], which di�er
in whether change discovery and change propagation
are separated through the intermediate entity of a delta.

CX occur in yet other contexts of software engineer-
ing and development: evolution of spreadsheets [13, 41];
co-evolution in web applications [10, 54]; moderniza-
tion of component-based systems [24]; co-evolution in
requirements managements [20] and viewpoint model-
ing [55]; the refinement of feature models [53].

3. LAL—in a nutshell

In the following, we introduce the emerging LAL lan-
guage, which we use for megamodeling in this paper—
specifically for modeling CX patterns. LAL is a logic-
based modeling or specification language as follows:
• LAL leverages first-order predicate logic. For in-

stance, conformance is a relation (i.e., a predicate).
• LAL leverages many-sorted logic—sorts model lan-

guages, ‘œ’ models membership tests for languages.
• LAL leverages order-sorted logic—‘™’ models subset

relationships on languages.
• LAL supports flexible reuse of megamodels (‘mod-

ules’) by inlining modulo substitution.
We introduce LAL’s constructs by means of examples.

3.1 Languages
Let us express that a language L is a subset of a suitable
universe Any (such as ‘all’ strings, trees, or graphs):

LAL megamodel language
sort Any // The universe to draw elements from

sort L ™ Any // A language as a subset of the universe

The names of megamodel elements may be substi-
tuted along reuse of a megamodel. This is illustrated
here for the case of the concrete XML-based language
MathML.

LAL megamodel language.mathml
reuse language [L ‘æ MathML, Any ‘æ XML]
link MathML to �https://www.w3.org/TR/MathML3�
link XML to �https://www.w3.org/XML�

Thus, we reuse the megamodel language by substi-
tuting L and Any by MathML and XML, respectively.
At the bottom, we also added ‘identity links’ to the
names (see link XML to ...) so that it is clear that XML
and MathML are specific languages as opposed to mere
placeholders.

In LAL, the semantics of ‘reuse’ is inlining mod-
ulo substitution of names by names; see the ‘... ‘æ ...’
construct. The LAL language processor exposes the re-
sult of inlining modulo substitution. For instance, the
megamodel language.mathml, as shown above, looks as
follows—after inlining modulo substitution:

sort XML
sort MathML ™ XML
link MathML to �https://www.w3.org/TR/MathML3�
link XML to �https://www.w3.org/XML�

The following megamodel captures the basic pattern
of ‘demonstrating’ a given language in terms of both a
positive and negative case for membership:

LAL megamodel membership
reuse language
constant pos, neg : Any // Candidate elements

axiom member { pos œ L } // A member

axiom notMember { ¬ (neg œ L) } // A non≠member

That is, we use (trivial) formulae (‘axioms’) to ex-
press that given constants (nullary functions) are ele-
ments or not of a given language. Axioms are optionally
labeled for convenience; see member and notMember.

The following megamodel captures the basic pattern
of ‘conformance’: there is a definition language and an
actual definition defining a language such that con-
formance of a instance to the definition holds if and
only if the instance is an element of the defined lan-
guage [22, 23]:

LAL megamodel conformance
reuse language // The defined language

reuse language [L ‘æ DefL, Any ‘æ DefAny]
constant defL : DefL // The language definition

relation conformsTo : Any ◊ DefL
axiom { ’ x œ Any. x œ L … conformsTo(x, defL) }

Thus, we reuse the megamodel language both for the
language under definition and the definition language
with possibly di�erent universes. For instance, we may
set up ‘conformsTo’ as XML Schema-based validation
and apply it to MathML as follows:

LAL megamodel conformance.mathml
reuse conformance [

Any ‘æ XML, DefAny ‘æ XML,
L ‘æ MathML, DefL ‘æ XSD, defL ‘æ MathMLSchema]

link XML to �https://www.w3.org/XML�
link XSD to �https://www.w3.org/XML/Schema�
link MathML to �https://www.w3.org/TR/MathML3�
link MathMLSchema to �https://www.w3.org/Math/XMLSchema�

That is, we use XSD (XML Schema) for language def-
inition with the MathMLSchema as the actual definition
of MathML.

3.2 Transformations
Semantically speaking, transformations are simply func-
tions, possibly partial functions because of precondi-
tions. Here is the basic scheme of a transformation from
one language L1 to another language L2; we use ‘ ‘æ’ to
hint at partiality.

LAL megamodel transformation
reuse language [L ‘æ L1, Any ‘æ Any1]
reuse language [L ‘æ L2, Any ‘æ Any2]
function transform : L1 ‘æ L2

In Fig. 2, we sketch two patterns for BX with lenses,
state-based versus delta-based lenses [16], which di�er
in whether change discovery and change propagation
are separated through the intermediate entity of a delta.

CX occur in yet other contexts of software engineer-
ing and development: evolution of spreadsheets [13, 41];
co-evolution in web applications [10, 54]; moderniza-
tion of component-based systems [24]; co-evolution in
requirements managements [20] and viewpoint model-
ing [55]; the refinement of feature models [53].

3. LAL—in a nutshell

In the following, we introduce the emerging LAL lan-
guage, which we use for megamodeling in this paper—
specifically for modeling CX patterns. LAL is a logic-
based modeling or specification language as follows:
• LAL leverages first-order predicate logic. For in-

stance, conformance is a relation (i.e., a predicate).
• LAL leverages many-sorted logic—sorts model lan-

guages, ‘œ’ models membership tests for languages.
• LAL leverages order-sorted logic—‘™’ models subset

relationships on languages.
• LAL supports flexible reuse of megamodels (‘mod-

ules’) by inlining modulo substitution.
We introduce LAL’s constructs by means of examples.

3.1 Languages
Let us express that a language L is a subset of a suitable
universe Any (such as ‘all’ strings, trees, or graphs):

LAL megamodel language
sort Any // The universe to draw elements from

sort L ™ Any // A language as a subset of the universe

The names of megamodel elements may be substi-
tuted along reuse of a megamodel. This is illustrated
here for the case of the concrete XML-based language
MathML.

LAL megamodel language.mathml
reuse language [L ‘æ MathML, Any ‘æ XML]
link MathML to �https://www.w3.org/TR/MathML3�
link XML to �https://www.w3.org/XML�

Thus, we reuse the megamodel language by substi-
tuting L and Any by MathML and XML, respectively.
At the bottom, we also added ‘identity links’ to the
names (see link XML to ...) so that it is clear that XML
and MathML are specific languages as opposed to mere
placeholders.

In LAL, the semantics of ‘reuse’ is inlining mod-
ulo substitution of names by names; see the ‘... ‘æ ...’
construct. The LAL language processor exposes the re-
sult of inlining modulo substitution. For instance, the
megamodel language.mathml, as shown above, looks as
follows—after inlining modulo substitution:

sort XML
sort MathML ™ XML
link MathML to �https://www.w3.org/TR/MathML3�
link XML to �https://www.w3.org/XML�

The following megamodel captures the basic pattern
of ‘demonstrating’ a given language in terms of both a
positive and negative case for membership:

LAL megamodel membership
reuse language
constant pos, neg : Any // Candidate elements

axiom member { pos œ L } // A member

axiom notMember { ¬ (neg œ L) } // A non≠member

That is, we use (trivial) formulae (‘axioms’) to ex-
press that given constants (nullary functions) are ele-
ments or not of a given language. Axioms are optionally
labeled for convenience; see member and notMember.

The following megamodel captures the basic pattern
of ‘conformance’: there is a definition language and an
actual definition defining a language such that con-
formance of a instance to the definition holds if and
only if the instance is an element of the defined lan-
guage [22, 23]:

LAL megamodel conformance
reuse language // The defined language

reuse language [L ‘æ DefL, Any ‘æ DefAny]
constant defL : DefL // The language definition

relation conformsTo : Any ◊ DefL
axiom { ’ x œ Any. x œ L … conformsTo(x, defL) }

Thus, we reuse the megamodel language both for the
language under definition and the definition language
with possibly di�erent universes. For instance, we may
set up ‘conformsTo’ as XML Schema-based validation
and apply it to MathML as follows:

LAL megamodel conformance.mathml
reuse conformance [

Any ‘æ XML, DefAny ‘æ XML,
L ‘æ MathML, DefL ‘æ XSD, defL ‘æ MathMLSchema]

link XML to �https://www.w3.org/XML�
link XSD to �https://www.w3.org/XML/Schema�
link MathML to �https://www.w3.org/TR/MathML3�
link MathMLSchema to �https://www.w3.org/Math/XMLSchema�

That is, we use XSD (XML Schema) for language def-
inition with the MathMLSchema as the actual definition
of MathML.

3.2 Transformations
Semantically speaking, transformations are simply func-
tions, possibly partial functions because of precondi-
tions. Here is the basic scheme of a transformation from
one language L1 to another language L2; we use ‘ ‘æ’ to
hint at partiality.

LAL megamodel transformation
reuse language [L ‘æ L1, Any ‘æ Any1]
reuse language [L ‘æ L2, Any ‘æ Any2]
function transform : L1 ‘æ L2

In Fig. 2, we sketch two patterns for BX with lenses,
state-based versus delta-based lenses [16], which di�er
in whether change discovery and change propagation
are separated through the intermediate entity of a delta.

CX occur in yet other contexts of software engineer-
ing and development: evolution of spreadsheets [13, 41];
co-evolution in web applications [10, 54]; moderniza-
tion of component-based systems [24]; co-evolution in
requirements managements [20] and viewpoint model-
ing [55]; the refinement of feature models [53].

3. LAL—in a nutshell

In the following, we introduce the emerging LAL lan-
guage, which we use for megamodeling in this paper—
specifically for modeling CX patterns. LAL is a logic-
based modeling or specification language as follows:
• LAL leverages first-order predicate logic. For in-

stance, conformance is a relation (i.e., a predicate).
• LAL leverages many-sorted logic—sorts model lan-

guages, ‘œ’ models membership tests for languages.
• LAL leverages order-sorted logic—‘™’ models subset

relationships on languages.
• LAL supports flexible reuse of megamodels (‘mod-

ules’) by inlining modulo substitution.
We introduce LAL’s constructs by means of examples.

3.1 Languages
Let us express that a language L is a subset of a suitable
universe Any (such as ‘all’ strings, trees, or graphs):

LAL megamodel language
sort Any // The universe to draw elements from

sort L ™ Any // A language as a subset of the universe

The names of megamodel elements may be substi-
tuted along reuse of a megamodel. This is illustrated
here for the case of the concrete XML-based language
MathML.

LAL megamodel language.mathml
reuse language [L ‘æ MathML, Any ‘æ XML]
link MathML to �https://www.w3.org/TR/MathML3�
link XML to �https://www.w3.org/XML�

Thus, we reuse the megamodel language by substi-
tuting L and Any by MathML and XML, respectively.
At the bottom, we also added ‘identity links’ to the
names (see link XML to ...) so that it is clear that XML
and MathML are specific languages as opposed to mere
placeholders.

In LAL, the semantics of ‘reuse’ is inlining mod-
ulo substitution of names by names; see the ‘... ‘æ ...’
construct. The LAL language processor exposes the re-
sult of inlining modulo substitution. For instance, the
megamodel language.mathml, as shown above, looks as
follows—after inlining modulo substitution:

sort XML
sort MathML ™ XML
link MathML to �https://www.w3.org/TR/MathML3�
link XML to �https://www.w3.org/XML�

The following megamodel captures the basic pattern
of ‘demonstrating’ a given language in terms of both a
positive and negative case for membership:

LAL megamodel membership
reuse language
constant pos, neg : Any // Candidate elements

axiom member { pos œ L } // A member

axiom notMember { ¬ (neg œ L) } // A non≠member

That is, we use (trivial) formulae (‘axioms’) to ex-
press that given constants (nullary functions) are ele-
ments or not of a given language. Axioms are optionally
labeled for convenience; see member and notMember.

The following megamodel captures the basic pattern
of ‘conformance’: there is a definition language and an
actual definition defining a language such that con-
formance of a instance to the definition holds if and
only if the instance is an element of the defined lan-
guage [22, 23]:

LAL megamodel conformance
reuse language // The defined language

reuse language [L ‘æ DefL, Any ‘æ DefAny]
constant defL : DefL // The language definition

relation conformsTo : Any ◊ DefL
axiom { ’ x œ Any. x œ L … conformsTo(x, defL) }

Thus, we reuse the megamodel language both for the
language under definition and the definition language
with possibly di�erent universes. For instance, we may
set up ‘conformsTo’ as XML Schema-based validation
and apply it to MathML as follows:

LAL megamodel conformance.mathml
reuse conformance [

Any ‘æ XML, DefAny ‘æ XML,
L ‘æ MathML, DefL ‘æ XSD, defL ‘æ MathMLSchema]

link XML to �https://www.w3.org/XML�
link XSD to �https://www.w3.org/XML/Schema�
link MathML to �https://www.w3.org/TR/MathML3�
link MathMLSchema to �https://www.w3.org/Math/XMLSchema�

That is, we use XSD (XML Schema) for language def-
inition with the MathMLSchema as the actual definition
of MathML.

3.2 Transformations
Semantically speaking, transformations are simply func-
tions, possibly partial functions because of precondi-
tions. Here is the basic scheme of a transformation from
one language L1 to another language L2; we use ‘ ‘æ’ to
hint at partiality.

LAL megamodel transformation
reuse language [L ‘æ L1, Any ‘æ Any1]
reuse language [L ‘æ L2, Any ‘æ Any2]
function transform : L1 ‘æ L2

LAL megamodel
language

LAL megamodel
language.mathml

LAL megamodel
conformance

LAL megamodel
conformance.mathml

https://github.com/softlang/yas/blob/master/languages/LAL/lib/language.lal2
https://github.com/softlang/yas/blob/master/languages/LAL/lib/language/mathml.lal2
https://github.com/softlang/yas/blob/master/languages/LAL/lib/conformance.lal2
https://github.com/softlang/yas/blob/master/languages/LAL/lib/conformance/mathml.lal2

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

a : L1

c : L1

b : L2

f

d : L2

f

𝝙

The ‘pattern’ of CX by mapping

7

1/4 Let’s
instantiate the

pattern!

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

FRL/mm.mml
: MML

FRL2/mm.mml
: MML

FRL/dd.ddl
: DDL

FRL2/dd.ddl
: DDL

𝝙 : TDL

classes-to-tables

Everything
is linked to
artifacts!

classes-to-tables

8

1/4 An ‘instance’ of CX by mapping
 FRL — Family ... Language
 MML — Metamodeling Language
 DDL — Data Definition Language
 TDL — Term Difference Language

https://github.com/softlang/yas/blob/master/languages/FRL/mm.mml
https://github.com/softlang/yas/tree/master/languages/MML
https://github.com/softlang/yas/blob/master/languages/FRL/FRL2/mm.mml
https://github.com/softlang/yas/tree/master/languages/MML
https://github.com/softlang/yas/blob/master/languages/FRL/dd.ddl
https://github.com/softlang/yas/tree/master/languages/DDL
https://github.com/softlang/yas/blob/master/languages/FRL/FRL2/dd.ddl
https://github.com/softlang/yas/tree/master/languages/DDL
https://github.com/softlang/yas/blob/master/languages/FRL/termdiff.term
https://github.com/softlang/yas/tree/master/languages/TDL
https://github.com/softlang/yas/tree/master/languages/MML/mmlToDdl.pro
https://github.com/softlang/yas/tree/master/languages/MML/mmlToDdl.pro
https://github.com/softlang/yas/tree/master/languages/FRL
https://github.com/softlang/yas/tree/master/languages/MML
https://github.com/softlang/yas/tree/master/languages/DDL
https://github.com/softlang/yas/tree/master/languages/TDL

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

a : L1

c : L1

b : L2

d : L2

𝝙

The ‘pattern’ of CX by incremental mapping

I(𝝙)

9

2/4

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

FRL/mm.mml
: MML

FRL2/mm.mml
: MML

FRL/dd.ddl
: DDL

FRL2/dd.ddl
: DDL

An ‘instance’ of CX by incremental mapping
 FRL — Family ... Language
 MML — Metamodeling Language
 DDL — Data Definition Language
 MMDL — Metamodel Difference Language

mmdlToDdl(
𝝙)𝝙 : MMDL

correspondence

correspondence

10

2/4

https://github.com/softlang/yas/tree/master/languages/FRL
https://github.com/softlang/yas/tree/master/languages/MML
https://github.com/softlang/yas/tree/master/languages/DDL
https://github.com/softlang/yas/tree/master/languages/MMDL
https://github.com/softlang/yas/blob/master/languages/MMDL/mmdlToDdl.pro
https://github.com/softlang/yas/blob/master/languages/FRL/mmdiff.term
https://github.com/softlang/yas/blob/master/languages/FRL/mmdiff.term
https://github.com/softlang/yas/tree/master/languages/MMDL

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

a : L1

c : L1

b : L2

I1(t)

The ‘pattern’ of CX by invariant consistency

11

3/4

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

BGL/cs.egl
: EGL

EGL/cs.egl
: EGL

BNL/cs.bgl
: BGL

egtlInterpret(
bgl2egl.egtl)

An ‘instance’ of CX by invariant consistency
 BNL — Binary Number Language
 BGL — Basic Grammar Language
 EGL — Extended Grammar Language
 EGTL — Extended Grammar Transformation Language

elementOf

elementOf

We only permit the subset of EGTL which
serves language extension. See here.

12

3/4

5comma25
.bnl

: BNL

elementOf

https://github.com/softlang/yas/tree/master/languages/BNL
https://github.com/softlang/yas/tree/master/languages/BGL
https://github.com/softlang/yas/tree/master/languages/EGL
https://github.com/softlang/yas/tree/master/languages/EGTL
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGTL/egtlExtension.pro
https://github.com/softlang/yas/blob/master/languages/BNL/samples/5comma25.bnl
https://github.com/softlang/yas/tree/master/languages/BNL
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

I1(t) I2(t)

a : L1 b : L2

c : L1 d : L2

The ‘pattern’ of CX by co-transformation

13

4/4

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

bstlSig(
trafo1.term)

sig1.bsl
: BSL

term1.term
: Term

sig2.bsl
: BSL

term2.term
: Term

An ‘instance’ of CX by co-transformation
 BSL — Basic Signature Language
 Term — Terms conforming to signature
 BSTL — Basic Signature Transformation Language

conformance

bstlTerm(
trafo1.term)

conformance

14

4/4

https://github.com/softlang/yas/blob/master/languages/BSTL/bstlSig.pro
https://github.com/softlang/yas/blob/master/languages/BSTL/tests/trafo1.term
https://github.com/softlang/yas/blob/master/languages/BSTL/tests/sig1.bsl
https://github.com/softlang/yas/tree/master/languages/BSL
https://github.com/softlang/yas/blob/master/languages/BSTL/tests/term1.term
https://github.com/softlang/yas/tree/master/languages/Term
https://github.com/softlang/yas/blob/master/languages/BSTL/tests/sig2.bsl
https://github.com/softlang/yas/tree/master/languages/BSL
https://github.com/softlang/yas/blob/master/languages/BSTL/tests/term2.term
https://github.com/softlang/yas/tree/master/languages/Term
https://github.com/softlang/yas/tree/master/languages/BSL
https://github.com/softlang/yas/tree/master/languages/Term
https://github.com/softlang/yas/tree/master/languages/BSTL
https://github.com/softlang/yas/blob/master/languages/BSL/conformance.pro
https://github.com/softlang/yas/blob/master/languages/BSTL/bstlTerm.pro
https://github.com/softlang/yas/blob/master/languages/BSTL/tests/trafo1.term
https://github.com/softlang/yas/blob/master/languages/BSL/conformance.pro

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

More CX

a : L1 b : L2

c : L1 d : L2

a : L1 b : L2

c : L1 d : L2

a : L1 b : L2

c : L1 d : L2

a : L1 b : L2

c : L1 d : L2

a : L1 b : L2

c : L1 d : L2

a : L1 b : L2

c : L1 d : L2

a : L1 b : L2

c : L1 d : L2

a : L1 b : L2

c : L1 d : L2

a : L1 b : L2

c : L1 d : L2

Lenses
Complements

Symmetry
…

15

…

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

I1(t) I2(t)

a : L1 b : L2

c : L1 d : L2

Higher level megamodel for CX by co-transformation

16

could be based on matching names, for example. In
practice, either side of the correspondence may involve
parts or levels of composition that cannot be associated
with the other side in a 1:1 manner.

3.8 Di�erencing
Changes due to manual or automated transformation
may be represented as a di� (a delta) inferred from two
‘versions’ of an artifact; see the function di�. Di�s may
be represented in appropriate di� languages [8, 9]; see
the language Di�L. A di� can be applied very much
like a transformation description is interpreted; see the
function applyDi�.

LAL megamodel di�erencing
reuse language // The language of artifacts to be di�ed

reuse language [L ‘æ Di�L, Any ‘æ Di�Any] // Di�erences

function di� : L ◊ L æ Di�L // The di�erencing algorithm

function applyDi� : Di�L ◊ L æ L // Application of di�erences

function invDi� : Di�L æ Di�L // Inversion of di�erences

constant emptyDi� : Di�L // The unit for di�erences

axiom apply { ’ x, y œ L. ’ d œ Di�L.
di�(x, y) = d ∆ applyDi�(d, x) = y }

axiom inv { ’ x, y œ L. invDi�(di�(x,y)) = di�(y,x) }
axiom di�Empty { ’ x œ L. di�(x, x) = emptyDi� }
axiom empty { ’ x œ L. applyDi�(emptyDi�, x) = x }
axiom invEmpty { invDi�(emptyDi�) = emptyDi� }
axiom invTwice { ’ d œ Di�L. invDi�(invDi�(d)) = d }

4. Selected CX patterns

We capture the patterns of Fig. 1–Fig. 2 in LAL.
We set up the basic scheme of coupling by assuming
two languages and a consistency relationship between
artifacts of the two languages. Thus:

LAL megamodel coupling
reuse language [L ‘æ L1, Any ‘æ Any1]
reuse language [L ‘æ L2, Any ‘æ Any2]
relation consistent : L1 ◊ L2 // The consistency relationship

The assumption is that consistency could defined in
di�erent ways depending on application scenarios. For
instance, consistency may correspond to conformance
(Sec. 3.1) or correspondence (Sec. 3.7). Also, consistency
may correspond to some form of interface compatibility
such as two code units providing the same interface.

4.1 The ‘Mapping’ pattern
The ‘Mapping’ pattern, as expressed by the following
axiom, assumes that consistency is re-established by
mapping a possibly changed source to a new target:

LAL megamodel cx.mapping
reuse coupling
function mapping : L1 æ L2 // Mapping between languages

axiom { ’ a œ L1. ’ b œ L2. mapping(a) = b ∆ consistent(a, b) }

An example of ‘Mapping’ is XML-schema-to-object-
model mapping, where a suitable object model (e.g.,
Java classes) is derived from a given XML schema.

The pattern could be advanced to enable incremental
mapping, i.e., propagating changes of the source rather
than producing a completely new target.

4.2 The ‘Consistency as invariant’ pattern
The following axiom requires that any interpretation
of a transformation description of the appropriately
constrained transformation language XL is consistency-
preserving:

LAL megamodel cx.invariant
reuse coupling
reuse interpretation [L2 ‘æ L1, Any2 ‘æ Any1]
axiom { ’ t œ XL. ’ a, c œ L1. ’ b œ L2.

consistent(a, b) · interpret(t, a) = c
∆ consistent(c, b) }

An example of ‘Consistency as invariant’ is grammar
refactoring or grammar extension without a�ecting or
extending the generated language so that available ele-
ments of the language remain consistent with the gram-
mar. Ultimately, consistency preservation may also rely
on constraints on a and b.

4.3 The ‘Co-transformation’ pattern
The following axiom requires that any transformation t,
when interpreted on L1 and L2, and when starting from
consistent sources a œ L1 and b œ L2, then consistent
targets c œ L1 and d œ L2 are obtained:

LAL megamodel cx.cotransformation
reuse coupling
reuse interpretation [L2 ‘æ L1, Any2 ‘æ Any1]
reuse interpretation [L1 ‘æ L2, Any1 ‘æ Any2]
axiom consistency { ’ t œ XL. ’ a, c œ L1. ’ b, d œ L2.

consistent(a, b)
· interpret(t, a) = c
· interpret(t, b) = d ∆ consistent(c, d) }

An example of ‘Co-transformation’ is model/meta-
model co-evolution.

4.4 The ‘Co-transformation with delta’
In the basic ‘Co-transformation’ pattern, a transforma-
tion description t is interpreted at both ends of coupling.
If we assume that one end deals with deltas (di�s) rather
than ordinary artifacts, then the interpretation of the
transformation serves change propagation on that end.

LAL megamodel cx.delta
reuse di�erencing
reuse cx.cotransformation [

L1 ‘æ L, Any1 ‘æ Any,
L2 ‘æ Di�L, Any2 ‘æ Di�Any]

relation compatible : L ◊ L
axiom { ’ x, y œ L. ’ delta œ Di�L.

compatible(x, y) · di�(x, y) = delta ∆ consistent(x, delta) }
axiom { ’ a, b œ L. ’ delta1 œ Di�L.

applyDi�(delta1, a) = b · compatible(a, b) ∆
(’ t œ XL. ’ c œ L. ’ delta2 œ Di�L.

interpret(t, a) = c · interpret(t, delta1) = delta2 ∆
(÷ d œ L. applyDi�(delta2, c) = d · compatible(c, d))) }

5 2016/6/19

LAL megamodel cx.cotransformation

https://github.com/softlang/yas/blob/master/languages/LAL/lib/cx/cotransformation.lal2

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

Lower level megamodel CX by co-transformation

17

Ueber megamodel BSTL/tests/trafo1.ueber

5.3 Testing the CX
YAS uses a lower-level megamodeling language, Ue-
ber, for build management and regression testing. As
far as the translation of LAL is concerned, the following
declaration forms of Ueber are relevant:
elementOf Associate a file with a language.
membership Associate a language with a logic pro-

gramming predicate for a membership test.
relation/function Declare a relation or a function on

files of specific languages as implemented by a logic
programming predicate.

relatesTo/mapsTo Apply some relation or function
on actual files.
The BSTL language is set up by the following decla-

rations:

Ueber megamodel languages/BSTL/framework.ueber

[language(bstl(term)),
membership(bstl(term), eslLanguage, [�as.term�]),
function(interpret,

[bstl(term), bsl(term)], [bsl(term)], bstlSig:interpret, []),
function(interpret,

[bstl(term), term], [term], bstlTerm:interpret, [])].

The shown declarations register i) the BSTL lan-
guage assuming the term-based representation bstl(term),
ii) a membership test for BSTL based on the term-
based representation (‘as.term’) of the signature for
BSTL (shown in textual syntax earlier), and iii) two
function overloads for interpret which are declared to
operate on di�erent argument and result types. The
function overloads are linked to the Prolog predicates
bstlSig:interpret and bstlTerm:interpret for signature and
term transformation.

The actual application of the CX can be expressed by
the following Ueber declarations; this is what should
be considered a test case:

Ueber megamodel languages/BSTL/tests/trafo1.ueber

[elementOf(�trafo1.term�,bstl(term)),
elementOf(�term1.term�,term),
elementOf(�term2.term�,term),
elementOf(�sig1.term�,bsl(term)),
elementOf(�sig2.term�,bsl(term)),
relatesTo(conformsTo,[�term1.term�,�sig1.term�]),
mapsTo(interpret,[�trafo1.term�,�term1.term�],[�term2.term�]),
mapsTo(interpret,[�trafo1.term�,�sig1.term�],[�sig2.term�]),
relatesTo(conformsTo,[�term2.term�,�sig2.term�])].

That is, the signatures and terms are associated
with the relevant languages. Further, the functions for
interpreting transformation descriptions are applied to
the relevant files.

5.4 Megamodel-to-test translation
The test case, as shown just above, is generated directly
from the megamodel for the ‘Co-transformation’ pat-

tern, from the consistency axiom, specifically, which we
show here again for convenience:
axiom consistency { ’ t œ XL. ’ a, c œ L1. ’ b, d œ L2.

consistent(a, b)
· interpret(t, a) = c
· interpret(t, b) = d ∆ consistent(c, d) }

All the symbols of the megamodel including the vari-
ables from the axiom are to be bound to actual in-
terpretations: files, languages, relations, and functions.
Universal quantifications are exercised in a ‘pointwise’
manner by picking representatives. Interpretations are
assigned by a configuration file:

LAL configuration

languages/LAL/lib/cx/cotransformation.lalconfig

[language(�L1�, term),
language(�Any1�, term),
language(�L2�, bsl(term)),
language(�Any2�, term),
language(�XL�, bstl(term)),
language(�XAny�, term),
relation(consistent, conformsTo),
axiom(consistency, [

(t, �trafo1.term�),
(a, �term1.term�),
(b, �sig1.term�),
(c, �term2.term�),
(d, �sig2.term�)])].

The first few lines map the languages of the LAL
megamodel to implemented languages of YAS. The in-
terpretation functions of the LAL megamodel are not
mapped because the name ‘interpret’ is used on both
sides; see again the Ueber declarations for BSTL. Con-
sistency of coupling is mapped to conformance checking
with signatures. The variables of the consistency axiom
are mapped to the files of our example.

6. LAL—language definition

The LAL language is defined in terms of its syntax,
well-formedness constraints (comparable to a type sys-
tem), inlining reused megamodels modulo substitution
(comparable to preprocessing), and a translation to test
cases (comparable, in a limited manner, to a compila-
tion semantics). The syntax is specified by a grammar
(for the concrete syntax) and a signature (for the ab-
stract syntax). The remaining language definition com-
ponents are specified as logic programs representing a
deductive system (in the case of well-formedness) or
a rewrite system (in the cases of transformation and
translation).

6.1 Syntax
The concrete syntax is defined in YAS’ ‘Extended
Grammar Language’ (EGL; reminiscent of EBNF). The
abstract syntax is defined in YAS’ ESL, which we en-
countered earlier already; we omit the mapping from
concrete to abstract synax for brevity.

8 2016/6/19

bstlSig(
trafo1.term)

sig1.bsl
: BSL

term1.term
: Term

sig2.bsl
: BSL

term2.term
: Term

conformance

bstlTerm(
trafo1.term)

conformance

https://github.com/softlang/yas/blob/master/languages/BSTL/tests/trafo1.ueber

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel 18

relatesTo/mapsTo Apply some relation or function
on actual files.
The BSTL language is set up by the following decla-

rations:

Ueber megamodel languages/BSTL/framework.ueber

[language(bstl(term)),
membership(bstl(term), eslLanguage, [�as.term�]),
function(interpret,

[bstl(term), bsl(term)], [bsl(term)], bstlSig:interpret, []),
function(interpret,

[bstl(term), term], [term], bstlTerm:interpret, [])].

The shown declarations register i) the BSTL lan-
guage assuming the term-based representation bstl(term),
ii) a membership test for BSTL based on the term-
based representation (‘as.term’) of the signature for
BSTL (shown in textual syntax earlier), and iii) two
function overloads for interpret which are declared to
operate on di�erent argument and result types. The
function overloads are linked to the Prolog predicates
bstlSig:interpret and bstlTerm:interpret for signature and
term transformation.

The actual application of the CX can be expressed by
the following Ueber declarations; this is what should
be considered a test case:

Ueber megamodel languages/BSTL/tests/trafo1.ueber

[elementOf(�trafo1.term�,bstl(term)),
elementOf(�term1.term�,term),
elementOf(�term2.term�,term),
elementOf(�sig1.term�,bsl(term)),
elementOf(�sig2.term�,bsl(term)),
relatesTo(conformsTo,[�term1.term�,�sig1.term�]),
mapsTo(interpret,[�trafo1.term�,�term1.term�],[�term2.term�]),
mapsTo(interpret,[�trafo1.term�,�sig1.term�],[�sig2.term�]),
relatesTo(conformsTo,[�term2.term�,�sig2.term�])].

That is, the signatures and terms are associated
with the relevant languages. Further, the functions for
interpreting transformation descriptions are applied to
the relevant files.

5.4 Megamodel-to-test translation
The test case, as shown just above, is generated directly
from the megamodel for the ‘Co-transformation’ pat-
tern, from the consistency axiom, specifically. For con-
venience’s sake, we repeat here the megamodel for the
pattern—after inlining modulo substitution:
sort Any1
sort L1 ™ Any1
sort Any2
sort L2 ™ Any2
relation consistent : L1 ◊ L2
sort XAny
sort XL ™ XAny
function interpret : XL ◊ L1 ‘æ L1
function interpret : XL ◊ L2 ‘æ L2
axiom consistency {
’ t œ XL. ’ a œ L1. ’ c œ L1. ’ b œ L2. ’ d œ L2.

consistent(a, b)

· interpret(t, a) = c
· interpret(t, b) = d ∆ consistent(c, d)

}

All the symbols of the megamodel including the vari-
ables from the axiom are to be bound to actual in-
terpretations: files, languages, relations, and functions.
Universal quantifications are exercised in a ‘pointwise’
manner by picking representatives. Interpretations are
assigned by a configuration file:

LAL configuration

languages/LAL/lib/cx/cotransformation.lalconfig

[sort(�L1�, term),
sort(�Any1�, term),
sort(�L2�, bsl(term)),
sort(�Any2�, term),
sort(�XL�, bstl(term)),
sort(�XAny�, term),
relation(consistent, conformsTo),
axiom(consistency, [

(t, �trafo1.term�),
(a, �term1.term�),
(b, �sig1.term�),
(c, �term2.term�),
(d, �sig2.term�)])].

The first few lines map the sorts of the LAL meg-
amodel to implemented languages of YAS. The inter-
pretation functions of the LAL megamodel do not need
to be mapped explicitly because the name ‘interpret’ is
used on both sides; see again the Ueber declarations
for BSTL. Consistency of coupling is mapped to con-
formance checking with signatures. The variables of the
consistency axiom are mapped to the files with the terms
and signatures of our illustrative example.

6. LAL—language definition

We define LAL’s syntax, well-formedness constraints
(comparable to a type system), inlining reused meg-
amodels modulo substitution (comparable to prepro-
cessing), and a translation to test cases (comparable,
in a limited manner, to a compilation semantics). The
syntax is specified by a grammar for the concrete syn-
tax and a signature for the abstract syntax. The re-
maining language definition components are specified
as logic programs representing a deductive system for
well-formedness and a rewrite system for inlining mod-
ulo substitution and translation.

6.1 Syntax
The concrete syntax is defined in YAS’ ‘Extended
Grammar Language’ (EGL; reminiscent of EBNF). The
abstract syntax is defined in YAS’ ESL, which we en-
countered earlier already; we omit the mapping from
concrete to abstract synax for brevity.

Grammar languages/LAL/cs.egl

// Megamodels

model : { decl }� ;

Configuration of compilation from
higher to lower level megamodel

LAL configuration cx.cotransformation

https://github.com/softlang/yas/blob/master/languages/LAL/lib/cx/cotransformation.lalconfig

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

Megamodel compilation
• A limited subset of predicate logic is considered.

• Forall becomes exists

• Implication becomes conjunction

• …

• Instantiate languages, artifacts, functions, relations.

• Rely on interpretations at low level.

19

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

ParsingMega-
model
(LAL)

Unparsing

Inlining modulo
substitution

Well-fo
rmedness

checking

ProblemsAST
(LAL)

AST
(LAL)

Config-
uration

Mega-
model
(LAL)

Test
cases

(Ueber)
Translation

Software
Language
Repository

(YAS)

Test execution

20

LAL

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

YAS
• .ueber
‣ languages
‣ bnl
• .ueber
• cs.bgl
• cs.term
‣ samples
• .ueber
• cs.term
-…

- …
‣ bgl
• .ueber
• …
- …

ueber
megamodel

Problems

Collection
Checking

Verification

Problems

21

Ueber

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel 22

End of Talk — Thanks!
Work on megamodeling is joint work at softlang with:
• Andrei Varanovich
• Marcel Heinz
• Lukas Härtel
• Johannes Härtel
Thanks also to the SLE 2016 course, specifically:
• Lukas Debald
• Christopher Held
• Philipp Seifer

