Extracting the Essence
of Software Systems’ Architectures
through Unstructured-Data Mining

Nenad Medvidovic
University of Southern California
Los Angeles, CA, USA
neno@usc.edu

http.//csse.usc.edu/~neno/

USC

School of Engineering University of Southern California

@ Safari File Edit View History Bookmarks Window Help QG =C O M - 4 (=P (100%) Wed Sep 19

1:10PM Q

®e0o software architecture diagram - Google Search

[« I »] + @ http://www.google.com/search?client=safari&rls=en&q=software+architecture&oe=UTF-8&um=1&ie=UTF-8&hl=en&tbm=isch&source=og&sa=N&tab=wi&ei=lyval [l C] (Q' software architecture

)

3 [NSF ESD Speedtest Google Grants NSF SaTC SoftArch Reading Group Army BAA TMD Book Project IP->Loc MS SEIF Gmaps Pedometer Yugo CrossFit GeoFl NSF Core ICSE'll Chairs TSE Math Worksheets Kailash

+Nenad Search Images Maps Play YouTube

R (/e Are Living a Lie .

»

Search At 2 - 4 SafeSearch moderate v

Web

I Images

200

eoso
ecoe
ee

Maps
Videos
News
Shopping

More

Any time

Past 24 hours
Past week
Custom range...

All results
By subject

Any size
Large
Medium

Icon

Larger than...
Exactly...

Any color

Full color . Behaviceal View | Structural View
Black and white [=

Any type
Face
Photo

Cip ar = [=

Line drawing

Standard view
Show sizes "’"J I».E || e
s ‘lf..ik ,“ &)

i
i
it
B

Grerateg symen
randwwre

Yo

Real Architecture Is... Unstructured

Again Shell

Chet Ramey

The Bourne-

3.1. Introduction

A Unix shell provides an interface that lets the user interact
language: there are constructs for flow control, alternation, I
two-way communication between the shell and the commary

Shells can be used interactively, from a terminal or terminal
shells, including bash, provide command-line editing, in whi
entered, and various forms of a saved history of commands.|

Bash processing is much like a shell pipeline: after being rea
step, until the shell finally executes a command and collects|

This chapter will explore bash's major components: input pr
execution, from the pipeline perspective. These componentg
command.

Input

Lexical
Analysis

and
Parsing

Bracy
Expansion

Fig

The Architectuca of

Open Source /

and hash tables. Nearly all of the shell constructs are implemented using these primitives.

As you read further, keep in mind that the shell implements its features using only a few data structures: arrays, trees, singly-linked and doubly-linked lists,

3.7. Lessons Learned
3.7.1. What | Have Found Is Important

| have spent over twenty years working on bash, and I'd like to think | have discovered a few things. The most important—one that | can't stress enough—is
that it's vital to have detailed change logs. It's good when you can go back to your change logs and remind yourself about why a particular change was
made. It's even better when you can tie that change to a particular bug report, complete with a reproducible test case, or a suggestion.

If it's appropriate, extensive regression testing is something | would recommend building into a project from the beginning. Bash has thousands of test
cases covering virtually all of its non-interactive features. | have considered building tests for interactive features—Posix has them in its conformance test
suite—but did not want to have to distribute the framework | judged it would need.

Standards are important. Bash has benefited from being an implementation of a standard. It's important to participate in the standardization of the software
you're implementing. In addition to discussions about features and their behavior, having a standard to refer to as the arbiter can work well. Of course, it
can also work poorly—it depends on the standard.

External standards are important, but it's good to have internal standards as well. | was lucky enough to fall into the GNU Project's set of standards, which
provide plenty of good, practical advice about design and implementation.

Good documentation is another essential. If you expect a program to be used by others, it's worth having comprehensive, clear documentation. If software
is successful, there will end up being lots of documentation for it, and it's important that the developer writes the authoritative version.

There's a lot of good software out there. Use what you can: for instance, gnulib has a lot of convenient library functions (once you can unravel them from
the gnulib framework). So do the BSDs and Mac OS X. Picasso said "Great artists steal" for a reason.

Engage the user community, but be prepared for occasional criticism, some that will be head-scratching. An active user community can be a tremendous
benefit, but one consequence is that people will become very passionate. Don't take it personally.

3.7.2. What | Would Have Done Differently

Bash has millions of users. I've been educated about the importance of backwards compatibility. In some sense, backwards compatibility means never
having to say you're sorry. The world, however, isn't quite that simple. I've had to make incompatible changes from time to time, nearly all of which
generated some number of user complaints, though | always had what | considered to be a valid reason, whether that was to correct a bad decision, to fix
a design misfeature, or to correct incompatibilities between parts of the shell. | would have introduced something like formal bash compatibility levels
earlier.

Bash's development has never been particularly open. | have become comfortable with the idea of milestone releases (e.g., bash-4.2) and individually-
released patches. There are reasons for doing this: | accommodate vendors with longer release timelines than the free software and open source worlds,
and I've had trouble in the past with beta software becoming more widespread than I'd like. If | had to start over again, though, | would have considered
more frequent releases, using some kind of public repository.

No such list would be complete without an implementation consideration. One thing I've considered multiple times, but never done, is rewriting the bash
parser using straight recursive-descent rather than using bison . | once thought I'd have to do this in order to make command substitution conform to
Posix, but | was able to resolve that issue without changes that extensive. Were | starting bash from scratch, | probably would have written a parser by
hand. It certainly would have made some things easier.

3.8. Conclusions

Bash is a good example of a large, complex piece of free software. It has had the benefit of more than twenty years of development, and is mature and
powerful. It runs nearly everywhere, and is used by millions of people every day, many of whom don't realize it.

Bash has been influenced by many sources, dating back to the original 7th Edition Unix shell, written by Stephen Bourne. The most significant influence is
the Posix standard, which dictates a significant portion of its behavior. This combination of backwards compatibility and standards compliance has brought
its own challenges.

Bash has profited by being part of the GNU Project, which has provided a movement and a framework in which bash exists. Without GNU, there would be
no bash. Bash has also benefited from its active, vibrant user community. Their feedback has helped to make bash what it is today—a testament to the
benefits of free software.

ta units within each processing stage, is the

is a word list, and the built-in commands each

file, breaking them into lines, and passing the
acters terminated by newlines.

wise. When interactive, bash allows the user to
Unix emacs and vi editors.

users to edit command lines, functions to save
n. Bash is readline's primary client, and they are
ne to provide a terminal-based line editing

bmmands. Readline has commands to move the
Dn top of this, users may define macros, which
x as key bindings. Macros afford readline users

rd using read or equivalent, or obtains input

USC

School of Engineering

University of Southern California

How Many Systems Start off

iIRODS — Prescriptive Architecture

Client Interface

t Resource-based
Services
vAg
4';9:—
Metadata-based

School of Engineering

ooInossey BAI108(|0D) uoneolddy

AlAnosuuon

ouged

..and End up

o

%

/iRODS FUSE [« Unix iCommands

» Windows iCommands

A

/

N

//7/”

~

. ICAT metadata
ervendR | 1> \Serxer Rule£ngffe
A catalog
\
Z L 1 e
// [A"
Electronic lf(eco ds Argh ﬁ% » Nace Microservices
] Dﬂi‘\ A\ A VN A7
Properties flist i(%ose I)(Web (& mickosgrdicés' XM Microservices
L 1 L — LI Z yl Z N 2
L AV 7\ \ /N A"
7 e | Librar /D& N\
File System Drivers / de
Server Gore

iIRODS — Descriptive Architecture

University of Southern California

What Happened?

e Software decay

— Drift — introduction of design decisions into a
system that are not encompassed or implied by its
architectural design

— Erosion — introduction of design decisions into a
system that violate its architectural design

University of Southern California

At What Point Does Change Become Decay?

Apache Chukwa 0.3.0 Apache Chukwa 0.4.0

University of Southern California

School of Engineering

Can We “Smell” Decay?

* Yes, both in the design and code

e Software smell
e Commonly made design or implementation decision
* Negatively impacts your system’s lifecycle properties
e |tis notabug—itdoesn’t break your system

* Our goal is to discover architectural design smells

automatically

* |nspired by
* Refactoring: Improving the Design of Existing Code
by Martin Fowler

University of Southern California

A Catalogue of Architectural Smells

 Brick Concern Overload
 Brick Use Overload

 Brick Dependency Cycle
 Unused Interface

e Ambiguous Interface
 Duplicate Component Functionality
 Scattered Functionality

* Component Envy

* Connector Envy

* Connector Chain

e Extraneous Adjacent Connector

University of Southern California

Example: Hadoop’s Recovered

- ety) ro—i——i ' et s LT i - o ‘M

N

Ve

University of Southern California

School of Engineering

Hadoop — Dependency Cycle

USC

School of Engineering University of Southern California

Hadoop — Component Use Overload

Y [V

University of Southern California

USC

Hadoop — Concern Overload

Value Aggregator

Basic Map/Reduce Key-Value Handling

Map/Reduce Field Manipulation

Job Queue and Status Handling

Job and Task ID Handling

School of Engineering

University of Southern California

Hadoop — %k Envy

InterDataNode Protocol

Sorting

Access Control

Streaming

Map-Reduce Key-Value Handling

Job Queue and Status Handling

USC

School of Engineering University of Southern California

How Many Systems Start off

iIRODS — Prescriptive Architecture

Client Interface Admin Interface

USC

School of Engineering University of Southern California

What Can Be Done?

* Architecture recovery

— The process of determining a system’s architecture from its
implementation-level artifacts and many other information sources

— Source code, executable files, Java .class files, ...
e Difficult in practice

— Size of code bases

— Irrelevant details

— Misleading details

— Missing information

— Lots and lots of unstructured data

University of Southern California

Automated Solutions Are Available

 ACDC - Algorithm for Comprehension-Driven Clustering

— Structural pattern-based clustering

e ARC - Architecture Recovery Using Concerns

— Concern-based hierarchical clustering based on similarity measure

e Bunch-NAHC & Bunch-SAHC

— Hill-climbing algorithm for maximizing Modularization Quality

e LIMBO - scalLable InforMation BOttleneck

— Probabilistic hierarchical clustering

e WCA-UE & WCA-UENM — Weigted Combined Algorithm

— Dependency-based hierarchical clustering

e /BR - Zone-Based Recovery

— Hierarchical clustering based on textual information

University of Southern California

Different Architectural Views of Bash

1/0 HandiingERi Initjalization w

lllllll nd!n%ﬁﬁlon VHVarndIIng

Manual ACDC

g
4 ‘
/
™~
Na
Y

j
A
\

]
4

University of Southern California

How Many Systems Start off

iIRODS — Prescriptive Architecture

Client Interface

Admin Interface

Resource-based
Services

Metadata-based

USC

School of Engineering

— = - e
Bug Report Form =03 —— =
~ E

In order to report a bug, we ask that you create a
Bugzilla account. This is so that you can follow the

progress of fixing the problem by email and enables us | Visit the Bugzilla account creation page ,
10 ask follow-up questions f that's necessary. N
Bugzilla username (your email address): the

Bugzilla password:
Remember password (nsecure): []

Core

Summary of the bug: [Your summary of the problem or bug.]

| Afull description of the bug:
// [[Enter details of the problem or bug and how to reproduce it hi

Information about your version of Java - this information is usef
h => am
Linux
2.6.31-19-generic

16.0.17

Sun Microsystems Inc
java runtime.name => Java(Th) SE Ru
Javaruntime.version => 1.6.0_17-b0
java.vm.name => Java HotSpot(TH) 6+
javavm.version => 14.3-b01
java.vm.vend Sun Microsystems
javavm.info => mixed mode
java awt graphicsenv = > sun.awt.X11

[

i

..and End up

SQLDOM

MS sQL

PostgreeSQL

QL provider

Model
builders —<_ Model

Common
services

Provider
implementation

’ Base providers S

OR/M

title re.compile(r
title re.sub(r’[?
(r [\ Your code
return title.title()
#Import shared parameter mwum.lm_ﬂ.lm"'..l
#Cleanup I””
for ext in extensions.va I—lﬂl_l [—lﬂﬂﬂﬂﬂﬂ"
for f in glob.glob(t Ml_ﬂ_ﬂ
os.remove (f) M MTTLLTT
def fllename_generator(f ‘ | |
if not os.path.exist
P
1.
>
= [
=3
o
& -0
= =
ER
2 02 04 06] T2
Time/mSecs 200uSecs/div

University o

suthern California

Software Architecture
as a “Big Data” problem

University of Southern California

ARCADE 1.0 — Architecture Recovery, Change, and Decay Evaluator

What We Can Do

Source
Code

!

Recovery
Techniques

Architectures

Architectural
Smell Detector

\ 4

Issue

Repository

A\ 4

Issue Extractor

|
v

\4

v

Change Metrics
Calculator

Decay Metrics
Calculator

Change
Metrics

v

Decay
Metrics

Architectural-
Smell Instances

[
I
_H Issues

Relation
Analyzer

'

Correlation

Data

School of Engineering

University of Southern California

Empirical Study of Change and Decay

CHANGE causes DECAY

1. In what ways do architectures change?
2. When and how do architectures decay?

3. What is the relationship between architectural
smells and implementation issues?

University of Southern California

System
ActiveMQ

Cassandra
Chukwa
Hadoop
vy
JackRabbit
Jena
JSPWiki
Log4;j
Lucene
Mina
PDFBox
Struts
Xerces

Subject Systems

Application Domain
Message Broker

Distributed DBMS
Data Monitoring

Data Processing
Dependency Manager
Content Repository
Semantic Web Framework
Wiki Engine

Logging

Search Engine
Network Framework
PDF Library

Web Apps

XML Library

...and many more

USC

Versions
20

127
7
63
20
97
7
54
41
21
40
17
36
22

Time
8/04-12/05
9/09-9/13
5/09-2/14
4/06-8/13
12/07-2/14
8/04-2/14
6/12-9/13
10/07-3/14
01/01-06/14
12/10-1/14
11/06-11/12
2/08-3/14
3/00-2/14
3/03-11/09

MSLOC
3.4

22.0
2.2
30.0
0.4
34.0
2.7
1.2
2.4
5.1
2.3
2.7
6.7
2.3

School of Engineering

University of Southern California

A Few Background Bits

* Versioning Scheme

— major.minor.patch release e
 Change metrics

— MojoFM @

— a2a

— C2cC
* Decay metrics @

— # structural dependencies

— Change proneness
— Coupling and cohesion Q
— Smell density and coverage

University of Southern California

Recovery Techniques Used

« PKG - package structure recovery

« ACDC’ - algorithm for comprehension-driven clustering

« ARC™ -architecture recovery using concerns

* V. Tzerpos et al., ACDC: an algorithm for comprehension-driven clustering, In Working Conference on Reverse Engineering (WCRE), 2000

** J. Garcia et al., Enhancing architectural recovery using concerns, In International Conference on Automated Software Engineering (ASE), 2011

University of Southern California

“Reversed”
architecture
changes

Architecture
Similarity

Changes differ
between
different views

How Architectures Change

On average,
architecture
changes range
from 15-25%

Average a2a values between versions

80
70
60
50 :
40

30

20

’
10

Fuunn s

-)

= .

= =

= =

= =

= =

= =

= .

= =

= =

= .

= =

= =

= [l

) =

= =

= .

= =

= =

] .

= =

= =

= .

= =

= =

= .

= =

= =

=]

= =

= =

= .

= =

Ll LR LS - .
= . = .
. - = =
= = = =
= . = -
. - = =
= = = =
.II H H H
[- = .
= u [u

0

/Wv/l.u'ceneJSPWiki vy Lucene JSPWiki Ivy Lucene JSPWiki Ivy Lucene JSPWiki

Major MinMajor Minor Patch

B ACDC WARC ®PKG

Value unit is percentage

Major < MinMajor < Minor < Patch

Lower numbers mean more change

USC

School of Engineering University of Southern California

System vs. Component Level

e Changes occur within components even when system’s
architectural structure remains relatively stable

Architectural similarity between minor versions of “lvy”

—0—PKG =M ACDC <+eks-- ARC —40—PKG =@ ACDC <.k ARC
100 A 100
80 . 80
A >
a -
< 60 L“:. 60
N
< g 40
40 o
20 20
0 0
©o o o o o o o o o o o o o o > © © o © o o o o o o o o o
n © ~ ® @& O =€ &N ®m ¥« O = N o W 6 N ® @& O o & ® ¥ 6 o o
O O O O © o =H = = = &N &N N o ©O O O O O =« = = = = N N o «
VERSION VERSION

ARC view: architecture
changes more than 80%
within components

USC

School of Engineering

University of Southern California

RQ3 — When Significant Change Occurs

* Dramatic architecture change can occur across minor versions

Minimum a2a values between minor versions

100

90 Architecture
8 changes > 50%
7
........
Architecture ° BEN:m S HER -0 RO ERR BOR o
Similarity 5
4
3
2
1
0
@ o& «&'

o

o

o

o

o

o

o

o

<3>°+

\‘3 N N

B ACDC W ARC ®PKG

University of Southern California

Architectural Decay

120 : :
Cassandra’s architectures recovered using ARC

100

80
—co

—lo
60
spf

Congenital,

Defects,

204 /%

ANt NN AN ANA e AAe AN
0N\S

vl) vi23
Versions

University of Southern California

What We Don’t Know How To Do

ARCADE n.0 - Architecture Recovery, Change, and Decay Evaluator

(DG

Issue

Repository

A\ 4

Issue Extractor
l

iy . —
: ,| Architectural »| Architectural-
Arehiteetures Smell Detector Smell Instances Issues
| v
Change Metrics Decay Metrics Relation
Calculator Calculator Analyzer
']

Change Correlation

Metrics

Decay
Data

Metrics

University of Southern California

School of Engineering

