
Towards Trace-Any: Interactive
and Transitive Recovery of

Traceability Links

Hiro - Hironori Washizaki
Waseda University / National Institute of Informatics

Twitter: @Hiro_Washi washizaki@waseda.jp
http://www.washi.cs.waseda.ac.jp/

Shonan Meeting, Mar 7, 2016

mailto:washizaki@waseda.jp
http://www.washi.cs.waseda.ac.jp/

Reverse engineering for maintenance

2

Requirements

Design

Program
source code

Tracing
artifacts

Tracing artifacts
[CAiSE’15]
[ICSME’15]

Reversing
model

[ASE’13]

Detecting
problems

Detecting
problems
[ASE’14]

•Often the only reliable information is embedded in code
•Analysis process to identify elements and create target’s
representations in another or at a higher level of abstraction

[ASE’13] Automated Verification of Pattern-based Interaction Invariants in Ajax Applications
[ASE’14] Validating Ajax Applications Using a Delay-Based Mutation Technique
[CAiSE’15] Interactive Recovery of Requirements Traceability Links Using User Feedback and Configuration Management Logs
[ICSME’15] Recovering Transitive Traceability Links among Software Artifacts

Facts of traceability links
• Relationships among software artifacts
• Key to ensure consistency among artifacts [Antoniol‘00]
• Rarely established explicitly [Lucia’12]
• Most of existing recovery techniques employing IR

approaches such as TF/IDF and Vector Space Model (VSM)

3

[Antoniol’00] G. Antoniol, B. Caprile, A. Potrich and P. Tonella, "Design-Code Traceability for Object-Oriented
Systems," Annals of Software Engineering, vol. 9, no. 1-4, pp. 35-58, 2000
[Lucia’12] A. De Lucia, et al., "Information Retrieval Methods for Automated Traceability Recovery," in Software and
Systems Traceability, 1st ed., J. Cleland-Huang, O. Gotel and A. Zisman, Ed. New York: Springer, p. 71-98, 2012.

Automated test

Automated.c
MyMem.c

Initialization
Requirement

基本テスト
Basic.c

NG OK
=> 1. Interactive and 2. Transitive Recovery

1. Interactive recovery [CAiSE’15]
Rank Requirement Code file Score Recommended Correct

1 Recover link
2 Recover link
3 Recover link
・・・ ・・・

4

Recover link

・・・

LinkPresenter.java
・・・

LinkRecover.java

ScoreCalc.java

・・・

Call

Rank Requirement Code file Score Recommended Correct
1 Recover link LinkRecover.java 0.98 not yet
2 Recover link LinkPresenter.java 0.65 not yet
3 Recover link ScoreCalc.java 0.30 not yet
・・・ ・・・ ・・・ ・・・

5

Recover link

・・・

LinkPresenter.java
・・・

LinkRecover.java

ScoreCalc.java

・・・

☑

Call

☑

1. Interactive recovery [CAiSE’15]

Rank Requirement Code file Score Recommended Correct
1 Recover link LinkRecover.java 0.98 not yet
2 Recover link ScoreCalc.java 0.30 Recommended
3 Recover link LinkPresenter.java 0.65 not yet
・・・ ・・・ ・・・ ・・・

6

Recover link

・・・

LinkPresenter.java
・・・

LinkRecover.java

ScoreCalc.java

・・・

☑

Call

☑

1. Interactive recovery [CAiSE’15]

Automated test

2. Configuration management log-
based recovery

7

Automated test
automate・・
・・XML・・・
・test・・・・・・

Requirement
automate

XML

test

automate

XML

Keywords

High
TF-IDF value
Proper noun

Filtered
by experts

automate

XML

Revision: 137
Author: anilsaharan
Date: 2011/8/20 9:35:13
Message:
Changes for fixing XML tag issue

Modified : /trunk/CUnit/Sources/Tool/Process.c

Process.c

・・・

2. Transitive recovery [ICSME’15]

8

Code Design Test score
C1 Da Tx 0.16
C1 Da Ty 0.14
C1 Db Tx 0.03

• Vector Space Model (VSM) for basic recovery

Code
explanation (C1)

Design (Da) Test case (Tx)

Code Design similarity
C1 Da 0.4
C2 Db 0.3

Design Test similarity
Da Tx 0.40
Da Ty 0.35
Db Tx 0.10

2. Experiment: EasyClinic

• Target link: 47 Java code ⇔ 63 test docs
• Supportive artifacts: 20 design docs or 30 use cases
• Effectiveness varies with supportive artifacts

9

Open questions
• 0. More sophisticated NLP/IR approaches for basic

recovery and unstructured artifacts (such as LSA,
LDA, island parsing, …)?

• 1. Can developers always evaluate correctness of
links? What if incorrect?

• 2. What kind of supportive artifacts are useful for
recovery/maintenance of other (missing) links?

10

Related work and open questions
• Related work and possible extension

– Relevance feedback [Lucia’06], multi-faceted Interactive
exploration [Wanget’13]

– Recovery based on structural relationships in program
[Kagdi’07][CSIE’09][Ghabiand’12]

• Open questions
– 0. Sophisticated NLP/IR approaches for basic recovery and

unstructured artifacts (such as LSA, LDA, island parsing, …)?
– 1. Can developers always evaluate correctness of links?
– 2. What kind of supportive artifacts are useful for

recovery/maintenance of other (missing) links?

11

[Lucia’06] Andrea De Lucia, Rocco Oliveto, and Paola Sgueglia, Incremental Approach and User Feedbacks: a Silver Bullet for
Traceability Recovery? , ICSM2006
[Wanget’13] J Wanget al., Improving Feature Location Practice with Multi-faceted Interactive Exploration, ICSE2013
[Kagdi’07] H. Kagdi, J. Maletic, and B. Sharif, “Mining Software Repositories for Traceability Links,” Proc. 15th IEEE Int’l Conf.
Program Comprehension, pp. 145-154, June, 2007.
[Kassab’09] M. Kassab, O. Ormandjieva, and M. Daneva, “A metamodel for tracing non-functional requirements,” WRI World
Congress on Computer Science and Information Engineering (CSIE’09), vol.7, pp.687-694, March, 2009.
[Ghabiand’12] A. Ghabiand A. Egyed., Code Patterns for Automatically Validating Requirements-to-Code Traces, ASE2012

