Minimizing submodular functions on diamonds via generalized fractional matroid matchings

Tamás Király joint work with Satoru Fujishige, Kazuhisa Makino, Kenjiro Takazawa, and Shin-ichi Tanigawa

RIMS, Kyoto University MTA-ELTE Egerváry Research Group, Budapest

Shonan Meeting on Combinatorial Optimization, April 2016

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

First part

Submodular minimization and generalizations Submodular functions on diamonds Polyhedra Fractional matroid matching

2 Second part (optional)

Pseudopolynomial algorithm for optimization on $P^{=}(f)$ Polynomial algorithm via scaling

3 Open questions

Outline

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

First part

Submodular minimization and generalizations Submodular functions on diamonds Polyhedra Fractional matroid matching

Second part (optional)

Pseudopolynomial algorithm for optimization on $P^{=}(f)$ Polynomial algorithm via scaling

3 Open questions

Submodular set functions

Definition

A set function $f : 2^V \to \mathbb{Z}$ with $f(\emptyset) = 0$ is submodular if $f(X) + f(Y) \ge f(X \cap Y) + f(X \cup Y)$ for every $X, Y \subseteq V$.

- Evaluation oracle: given $X \subseteq V$, returns f(X)
- n = |V|
- *M* is a known upper bound on |f(X)|

Submodular function minimization problem Find $\min_{X \subseteq V} f(X)$ in time polynomial in $\max\{n, \log M\}$.

History

(ロ) (同) (三) (三) (三) (○) (○)

Algorithm using the ellipsoid method: Grötschel, Lovász, Schrijver, 1981

- $P(f) = \{x \in \mathbb{R}^V : x(Z) \le f(Z) \ \forall Z \subseteq V\}$
- Optimization on P(f) by greedy algorithm
- · Equivalence of separation and optimization

History

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Algorithm using the ellipsoid method: Grötschel, Lovász, Schrijver, 1981

- $P(f) = \{x \in \mathbb{R}^V : x(Z) \le f(Z) \ \forall Z \subseteq V\}$
- Optimization on P(f) by greedy algorithm
- Equivalence of separation and optimization

More efficient algorithm based on the Lovász extension Huge recent improvement on running time: $O(n^3 \log^{O(1)} nM)$ [Lee, Sidford, Wong 2015]

History

(日) (日) (日) (日) (日) (日) (日)

Algorithm using the ellipsoid method: Grötschel, Lovász, Schrijver, 1981

- $P(f) = \{x \in \mathbb{R}^V : x(Z) \le f(Z) \ \forall Z \subseteq V\}$
- Optimization on P(f) by greedy algorithm
- Equivalence of separation and optimization

More efficient algorithm based on the Lovász extension Huge recent improvement on running time: $O(n^3 \log^{O(1)} nM)$ [Lee, Sidford, Wong 2015]

Combinatorial algorithms, 1999

- Schrijver and independently Iwata, Fleischer, Fujishige
- Both based on the characterization min_{Z⊆V} f(Z) = max{x⁻(V) : x ∈ P(f)}

Submodular function on the product of lattices

(日) (日) (日) (日) (日) (日) (日)

Let $\ensuremath{\mathcal{L}}$ be a finite lattice.

Definition

A function $f : \mathcal{L} \to \mathbb{Z}$ with $f(0_{\mathcal{L}}) = 0$ is submodular if $f(a) + f(b) \ge f(a \land b) + f(a \lor b)$ for every $a, b \in \mathcal{L}$.

The submodular minimization problem for an explicitly given lattice is trivial: we can evaluate on all elements

Let $\ensuremath{\mathcal{L}}$ be a finite lattice.

Definition

A function $f : \mathcal{L} \to \mathbb{Z}$ with $f(0_{\mathcal{L}}) = 0$ is submodular if $f(a) + f(b) \ge f(a \land b) + f(a \lor b)$ for every $a, b \in \mathcal{L}$.

The submodular minimization problem for an explicitly given lattice is trivial: we can evaluate on all elements

Submodular minimization over product of lattices

- Lattices $\mathcal{L}_1, \ldots, \mathcal{L}_n$ with ground sets U_1, \ldots, U_n
- $\mathcal{L} = \mathcal{L}_1 \times \cdots \times \mathcal{L}_n$
- f: submodular function on \mathcal{L} given by an evaluation oracle
- Find $\min_{a \in \mathcal{L}} f(a)$ in time polynomial in $\max\{\sum |U_i|, \log M\}$

Let $\ensuremath{\mathcal{L}}$ be a finite lattice.

Definition

A function $f : \mathcal{L} \to \mathbb{Z}$ with $f(0_{\mathcal{L}}) = 0$ is submodular if $f(a) + f(b) \ge f(a \land b) + f(a \lor b)$ for every $a, b \in \mathcal{L}$.

The submodular minimization problem for an explicitly given lattice is trivial: we can evaluate on all elements

Submodular minimization over product of lattices

- Lattices $\mathcal{L}_1, \ldots, \mathcal{L}_n$ with ground sets U_1, \ldots, U_n
- $\mathcal{L} = \mathcal{L}_1 \times \cdots \times \mathcal{L}_n$
- f: submodular function on \mathcal{L} given by an evaluation oracle
- Find $\min_{a \in \mathcal{L}} f(a)$ in time polynomial in $\max\{\sum |U_i|, \log M\}$

Standard submodular minimization: $\mathcal{L}_i = \{\mathbf{0}_i, \mathbf{1}_i\} \ (i \in [n])$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Solvable if

- every \mathcal{L}_i is distributive
- every \mathcal{L}_i is distributive or the pentagon [Krokhin, Larose 2008]
- *f* is the sum of submodular functions with constant arity (constant number of components affect the function value) [Thapper, Živný 2012]

Latter is also true for modular semi-lattices [Hirai 2012], which includes k-submodular functions

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Solvable if

- every \mathcal{L}_i is distributive
- every \mathcal{L}_i is distributive or the pentagon [Krokhin, Larose 2008]
- *f* is the sum of submodular functions with constant arity (constant number of components affect the function value) [Thapper, Živný 2012]

Latter is also true for modular semi-lattices [Hirai 2012], which includes *k*-submodular functions

• Bisubmodular minimization is polynomial-time solvable [Qi 1988, Fujishige, Iwata 2006]

Diamonds

Diamond: finite complemented modular lattice of rank 2

middle elements

Diamonds

Diamond: finite complemented modular lattice of rank 2

middle elements

Previous results for diamonds

- If there are two middle elements: distributive lattice
- Polynomial-time minimization for sum of constant arity functions [Krokhin, Larose 2008]
- Kuivinen 2011: pseudo-polynomial algorithm (polynomial in max{∑ |U_i|, M}) using the ellipsoid method
- Kuivinen 2011: good characterization based on a polyhedral characterization of the optimum

Transversals

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The elements of the product lattice are transversals of the family $\{U_i\}_{i=1}^n$. Transversals corresponding to $0_{\mathcal{L}}$ and $1_{\mathcal{L}}$:

Transversals

The elements of the product lattice are transversals of the family $\{U_i\}_{i=1}^n$. Transversals corresponding to $0_{\mathcal{L}}$ and $1_{\mathcal{L}}$:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Rank vector of transversals:

$$a(T)_i = \begin{cases} 0 \text{ if } T \cap U_i = 0_i \\ 2 \text{ if } T \cap U_i = 1_i \\ 1 \text{ otherwise} \end{cases}$$

$$P(f) = \{x \in \mathbb{R}^n : a(T)x \le f(T) \ \forall T \in \mathcal{T}\}$$
$$P^{=}(f) = \{x \in \mathbb{R}^n : a(T)x \le f(T) \ \forall T \in \mathcal{T}, \ 2\sum x_i = f(T_{top})\}$$

Lemma

The linear systems of P(f) and $P^{=}(f)$ are half-TDI.

Our goal: optimization on $P^{=}(f)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Why is optimization over $P^{-}(f)$ useful?

 Optimization over P⁼(f) → optimization over P(f) by binary search

(*f* remains submodular if we decrease $f(T_{top})$)

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Why is optimization over $P^{=}(f)$ useful?

 Optimization over P⁼(f) → optimization over P(f) by binary search

(*f* remains submodular if we decrease $f(T_{top})$)

 Optimization over P(f) → separation over P(f) (ellipsoid method)

A D F A 同 F A E F A E F A Q A

Why is optimization over $P^{=}(f)$ useful?

- Optimization over P⁼(f) → optimization over P(f) by binary search (f remains submodular if we decrease f(T_{top}))
- Optimization over P(f) → separation over P(f) (ellipsoid method)
- Separation over P(f) → minimization of f by binary search (f remains submodular if increased by a constant everywhere except for T_{bottom})

Fractional matroid matching problem (Vande Vate)

 $\mathcal{M} = (S, r)$: matroid L_1, \dots, L_n : disjoint subsets of rank 2 $a(Z)_i$: rank of $Z \cap L_i$

Definition $x \in \mathbb{R}^n_+$ is a fractional matroid matching if

 $a(Z)x \leq r(Z)$ for every $Z \subseteq S$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Fractional matroid matching problem (Vande Vate)

 $\mathcal{M} = (S, r)$: matroid L_1, \dots, L_n : disjoint subsets of rank 2 $a(Z)_i$: rank of $Z \cap L_i$

Definition $x \in \mathbb{R}^n_+$ is a fractional matroid matching if

$$a(Z)x \leq r(Z)$$
 for every $Z \subseteq S$.

- an integer solution corresponds to a matroid matching
- Chang, LLewellyn, Vande Vate 2001: maximum size fractional matroid matching in polynomial time
- Gijswijt, Pap, 2008: maximum weight fractional matroid matching in polynomial time

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $(\mathcal{M}; L_1, \ldots, L_n)$: an instance of fractional matroid matching

• \mathcal{L}_i : diamond with middle elements L_i

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $(\mathcal{M}; L_1, \ldots, L_n)$: an instance of fractional matroid matching

- \mathcal{L}_i : diamond with middle elements L_i
- For a transversal T, let

$$Z_T^i = \begin{cases} L_i & \text{if } \mathbf{1}_i \in T \\ T \cap L_i & \text{otherwise} \end{cases}$$
$$Z_T = \cup_{i=1}^n Z_T^i.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $(\mathcal{M}; L_1, \ldots, L_n)$: an instance of fractional matroid matching

- \mathcal{L}_i : diamond with middle elements L_i
- For a transversal T, let

$$Z_T^i = egin{cases} L_i & ext{if } \mathbf{1}_i \in T \ T \cap L_i & ext{otherwise} \ Z_T = \cup_{i=1}^n Z_T^i. \end{cases}$$

• Let *f* be defined as $f(T) = r(Z_T)$

 $(\mathcal{M}; L_1, \ldots, L_n)$: an instance of fractional matroid matching

- \mathcal{L}_i : diamond with middle elements L_i
- For a transversal T, let

$$Z_T^i = egin{cases} L_i & ext{if } \mathbf{1}_i \in T \ T \cap L_i & ext{otherwise} \ Z_T = \cup_{i=1}^n Z_T^i. \end{cases}$$

• Let *f* be defined as $f(T) = r(Z_T)$

Proposition

f is submodular on $\mathcal{L}_1 \times \cdots \times \mathcal{L}_n$, and the nonnegative vectors in P(f) are the fractional matroid matchings.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

First part

Submodular minimization and generalizations Submodular functions on diamonds Polyhedra Fractional matroid matching

2 Second part (optional)

Pseudopolynomial algorithm for optimization on $P^{=}(f)$ Polynomial algorithm via scaling

3 Open questions

The dual problem

(ロ) (同) (三) (三) (三) (○) (○)

Our aim is to solve the LP

 $\max\{cx: x \in P^{=}(f)\}.$

Dual problem:

$$\begin{array}{ll} \min & \sum_{T \in \mathcal{T}} f(T) y_T \\ s.t. & y_T \ge 0 & \forall T \in \mathcal{T} \setminus \{T_{top}\} \\ & \sum_{T \in \mathcal{T}} a(T)_i y_T = c_i & \forall i \in [n] \end{array}$$

Lemma

The dual problem has a half-integral optimal solution with chain support. If c has distinct values, then the chain is "dense"

Polyhedron associated to a chain

y: dual solution with chain support $C = \{T_1, \ldots, T_k = T_{top}\}$

- System for P(f, C) is half-TDI
- If C is dense, then we can separate over P(f, C) in polynomial time
- $P(f,C) \subseteq P(f)$ because of submodularity
- If $x \in P(f, C) \cap P^{=}(f)$, then $a(T_j)x = f(T_j)$ for every $j \in [k]$, thus x and y are optimal.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Pseudo-polynomial algorithm (?)

- Start with a dual solution y with dense chain support \mathcal{C}
- Maximize $\sum x_i$ over P(f, C)
- If the maximum is $f(T_{top})/2$, then we are done
- Otherwise the optimal x gives an improving direction for y

Problem: It seems hard to prove a polynomial bound on the number of dual improvements.

Pseudo-polynomial algorithm (?)

- Start with a dual solution y with dense chain support C
- Maximize $\sum x_i$ over P(f, C)
- If the maximum is $f(T_{top})/2$, then we are done
- Otherwise the optimal x gives an improving direction for y

Problem: It seems hard to prove a polynomial bound on the number of dual improvements.

Solution (based on the ideas of Gijswijt and Pap) Instead of bounding the number of dual improvements, we show that $\max\{\sum x_i : x \in P(f, C)\}$ increases after $O(n^3)$ iterations.

Combinatorial algorithm for max{ $\sum x_i : x \in P(f, C)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A dense chain C defines an almost 2-regular hypergraph on ground set V = [n]

Augmenting walk: x(V) can be increased by alternately increasing and decreasing along the walk

Combinatorial algorithm for $\max\{\sum x_i : x \in P(f, C)\}$

A dense chain C defines an almost 2-regular hypergraph on ground set V = [n]

Augmenting walk: x(V) can be increased by alternately increasing and decreasing along the walk

- This is a generalization of matroid intersection
- Although there is a half-integral solution, we cannot guarantee half-integral improvement
- · Lexicographic shortest walk: polynomial running time

(ロ) (同) (三) (三) (三) (○) (○)

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

We use the scaled functions

$$f^k(T) = \left\lceil \frac{f(T)}{2^k} \right\rceil - (a(T)\mathbf{1})^2 \quad \text{for } k = 0, 1 \dots, \lceil \log M \rceil$$

- *f^k* is submodular on the diamonds
- if $P^{=}(f^{k}) = \emptyset$, then $P^{=}(f) = \emptyset$
- if $x \in P(f^k, C)$, then $2x \in P(f^{k-1}, C)$
- if $x \in P(f^0, \mathcal{C})$, then $x \in P(f, \mathcal{C})$

We can sucessively compute $\max\{cx : x \in P^{=}(f^{k})\}$ for $\lceil \log M \rceil, \lceil \log M \rceil - 1, ..., 0$, and then for *f*.

Outline

First part

Submodular minimization and generalizations Submodular functions on diamonds Polyhedra Fractional matroid matching

2 Second part (optional)

Pseudopolynomial algorithm for optimization on $P^{=}(f)$ Polynomial algorithm via scaling

Open questions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Open questions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Strongly polynomial algorithm for $max{cx : x \in P(f)}$
- Combinatorial algorithm for the minimization of f
- Generalization to other modular lattices
- Polynomial algorithm for k-submodular functions

Thank you

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●