Minimizing submodular functions on diamonds via generalized fractional matroid matchings

Tamás Király
joint work with Satoru Fujishige, Kazuhisa Makino, Kenjiro Takazawa, and Shin-ichi Tanigawa

RIMS, Kyoto University
MTA-ELTE Egerváry Research Group, Budapest

Shonan Meeting on Combinatorial Optimization, April 2016

Outline

(1) First part

Submodular minimization and generalizations
Submodular functions on diamonds
Polyhedra
Fractional matroid matching

2 Second part (optional)
Pseudopolynomial algorithm for optimization on $P^{=}(f)$ Polynomial algorithm via scaling
(3) Open questions

Outline

(1) First part

Submodular minimization and generalizations
Submodular functions on diamonds
Polyhedra
Fractional matroid matching
(2) Second part (optional)

Pseudopolynomial algorithm for optimization on $P=(f)$ Polynomial algorithm via scaling
(3) Open questions

Submodular set functions

Definition
A set function $f: 2^{V} \rightarrow \mathbb{Z}$ with $f(\emptyset)=0$ is submodular if $f(X)+f(Y) \geq f(X \cap Y)+f(X \cup Y)$ for every $X, Y \subseteq V$.

- Evaluation oracle: given $X \subseteq V$, returns $f(X)$
- $n=|V|$
- M is a known upper bound on $|f(X)|$

Submodular function minimization problem
Find $\min _{x \subseteq V} f(X)$ in time polynomial in $\max \{n, \log M\}$.

History

Algorithm using the ellipsoid method: Grötschel, Lovász, Schrijver, 1981

- $P(f)=\left\{x \in \mathbb{R}^{V}: x(Z) \leq f(Z) \forall Z \subseteq V\right\}$
- Optimization on $P(f)$ by greedy algorithm
- Equivalence of separation and optimization

History

Algorithm using the ellipsoid method: Grötschel, Lovász, Schrijver, 1981

- $P(f)=\left\{x \in \mathbb{R}^{V}: x(Z) \leq f(Z) \forall Z \subseteq V\right\}$
- Optimization on $P(f)$ by greedy algorithm
- Equivalence of separation and optimization

More efficient algorithm based on the Lovász extension Huge recent improvement on running time: $O\left(n^{3} \log ^{O(1)} n M\right)$ [Lee, Sidford, Wong 2015]

Algorithm using the ellipsoid method: Grötschel, Lovász, Schrijver, 1981

- $P(f)=\left\{x \in \mathbb{R}^{V}: x(Z) \leq f(Z) \forall Z \subseteq V\right\}$
- Optimization on $P(f)$ by greedy algorithm
- Equivalence of separation and optimization

More efficient algorithm based on the Lovász extension Huge recent improvement on running time: $O\left(n^{3} \log ^{O(1)} n M\right)$ [Lee, Sidford, Wong 2015]

Combinatorial algorithms, 1999

- Schrijver and independently Iwata, Fleischer, Fujishige
- Both based on the characterization $\min _{Z \subseteq V} f(Z)=\max \left\{x^{-}(V): x \in P(f)\right\}$

Submodular function on the product of lattices

Let \mathcal{L} be a finite lattice.
Definition
A function $f: \mathcal{L} \rightarrow \mathbb{Z}$ with $f\left(0_{\mathcal{L}}\right)=0$ is submodular if $f(a)+f(b) \geq f(a \wedge b)+f(a \vee b)$ for every $a, b \in \mathcal{L}$.

The submodular minimization problem for an explicitly given lattice is trivial: we can evaluate on all elements

Submodular function on the product of lattices

Let \mathcal{L} be a finite lattice.
Definition
A function $f: \mathcal{L} \rightarrow \mathbb{Z}$ with $f\left(0_{\mathcal{L}}\right)=0$ is submodular if $f(a)+f(b) \geq f(a \wedge b)+f(a \vee b)$ for every $a, b \in \mathcal{L}$.

The submodular minimization problem for an explicitly given lattice is trivial: we can evaluate on all elements

Submodular minimization over product of lattices

- Lattices $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$ with ground sets U_{1}, \ldots, U_{n}
- $\mathcal{L}=\mathcal{L}_{1} \times \cdots \times \mathcal{L}_{n}$
- f : submodular function on \mathcal{L} given by an evaluation oracle
- Find $\min _{a \in \mathcal{L}} f(a)$ in time polynomial in $\max \left\{\sum\left|U_{i}\right|, \log M\right\}$

Submodular function on the product of lattices

Let \mathcal{L} be a finite lattice.
Definition
A function $f: \mathcal{L} \rightarrow \mathbb{Z}$ with $f\left(0_{\mathcal{L}}\right)=0$ is submodular if $f(a)+f(b) \geq f(a \wedge b)+f(a \vee b)$ for every $a, b \in \mathcal{L}$.

The submodular minimization problem for an explicitly given lattice is trivial: we can evaluate on all elements

Submodular minimization over product of lattices

- Lattices $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$ with ground sets U_{1}, \ldots, U_{n}
- $\mathcal{L}=\mathcal{L}_{1} \times \cdots \times \mathcal{L}_{n}$
- f: submodular function on \mathcal{L} given by an evaluation oracle
- Find $\min _{a \in \mathcal{L}} f(a)$ in time polynomial in $\max \left\{\sum\left|U_{i}\right|, \log M\right\}$

Standard submodular minimization: $\mathcal{L}_{i}=\left\{0_{i}, 1_{i}\right\}(i \in[n])$

Previous results

Solvable if

- every \mathcal{L}_{i} is distributive
- every \mathcal{L}_{i} is distributive or the pentagon [Krokhin, Larose 2008]
- f is the sum of submodular functions with constant arity (constant number of components affect the function value) [Thapper, Živný 2012]

Latter is also true for modular semi-lattices [Hirai 2012], which includes k-submodular functions

Previous results

Solvable if

- every \mathcal{L}_{i} is distributive
- every \mathcal{L}_{i} is distributive or the pentagon [Krokhin, Larose 2008]
- f is the sum of submodular functions with constant arity (constant number of components affect the function value) [Thapper, Živný 2012]

Latter is also true for modular semi-lattices [Hirai 2012], which includes k-submodular functions

- Bisubmodular minimization is polynomial-time solvable [Qi 1988, Fujishige, Iwata 2006]

Diamonds

Diamond: finite complemented modular lattice of rank 2

middle elements

Diamonds

Diamond: finite complemented modular lattice of rank 2

middle elements

Previous results for diamonds

- If there are two middle elements: distributive lattice
- Polynomial-time minimization for sum of constant arity functions [Krokhin, Larose 2008]
- Kuivinen 2011: pseudo-polynomial algorithm (polynomial in $\left.\max \left\{\sum\left|U_{i}\right|, M\right\}\right)$ using the ellipsoid method
- Kuivinen 2011: good characterization based on a polyhedral characterization of the optimum

Transversals

The elements of the product lattice are transversals of the family $\left\{U_{i}\right\}_{i=1}^{n}$. Transversals corresponding to $0_{\mathcal{L}}$ and $1_{\mathcal{L}}$:

Transversals

The elements of the product lattice are transversals of the family $\left\{U_{i}\right\}_{i=1}^{n}$. Transversals corresponding to $0_{\mathcal{L}}$ and $1_{\mathcal{L}}$:

Meet, join:

Associated n-dimensional polyhedron

Rank vector of transversals:

$$
a(T)_{i}=\left\{\begin{array}{l}
0 \text { if } T \cap U_{i}=0_{i} \\
2 \text { if } T \cap U_{i}=1_{i} \\
1 \text { otherwise }
\end{array}\right.
$$

$$
\begin{aligned}
P(f) & =\left\{x \in \mathbb{R}^{n}: a(T) x \leq f(T) \forall T \in \mathcal{T}\right\} \\
P^{=}(f) & =\left\{x \in \mathbb{R}^{n}: a(T) x \leq f(T) \forall T \in \mathcal{T}, 2 \sum x_{i}=f\left(T_{\text {top }}\right)\right\}
\end{aligned}
$$

Lemma
The linear systems of $P(f)$ and $P^{=}(f)$ are half-TDI.
Our goal: optimization on $P^{=}(f)$

Optimization and separation

Why is optimization over $P^{=}(f)$ useful?

- Optimization over $P^{=}(f) \rightsquigarrow$ optimization over $P(f)$ by binary search
(f remains submodular if we decrease $f\left(T_{\text {top }}\right)$)

Optimization and separation

Why is optimization over $P^{=}(f)$ useful?

- Optimization over $P^{=}(f) \rightsquigarrow$ optimization over $P(f)$ by binary search
(f remains submodular if we decrease $f\left(T_{\text {top }}\right)$)
- Optimization over $P(f) \rightsquigarrow$ separation over $P(f)$ (ellipsoid method)

Optimization and separation

Why is optimization over $P^{=}(f)$ useful?

- Optimization over $P^{=}(f) \rightsquigarrow$ optimization over $P(f)$ by binary search (f remains submodular if we decrease $f\left(T_{\text {top }}\right)$)
- Optimization over $P(f) \rightsquigarrow$ separation over $P(f)$ (ellipsoid method)
- Separation over $P(f) \rightsquigarrow$ minimization of f by binary search (f remains submodular if increased by a constant everywhere except for $T_{\text {bottom }}$)

Fractional matroid matching problem (Vande Vate)
$\mathcal{M}=(S, r)$: matroid
L_{1}, \ldots, L_{n} : disjoint subsets of rank 2
$a(Z)_{i}:$ rank of $Z \cap L_{i}$

Definition

$x \in \mathbb{R}_{+}^{n}$ is a fractional matroid matching if

$$
a(Z) x \leq r(Z) \text { for every } Z \subseteq S .
$$

Fractional matroid matching problem (Vande Vate)

$\mathcal{M}=(S, r)$: matroid
L_{1}, \ldots, L_{n} : disjoint subsets of rank 2 $a(Z)_{i}:$ rank of $Z \cap L_{i}$

Definition

$x \in \mathbb{R}_{+}^{n}$ is a fractional matroid matching if

$$
a(Z) x \leq r(Z) \text { for every } Z \subseteq S .
$$

- an integer solution corresponds to a matroid matching
- Chang, LLewellyn, Vande Vate 2001: maximum size fractional matroid matching in polynomial time
- Gijswijt, Pap, 2008: maximum weight fractional matroid matching in polynomial time
$\left(\mathcal{M} ; L_{1}, \ldots, L_{n}\right):$ an instance of fractional matroid matching
- \mathcal{L}_{i} : diamond with middle elements L_{i}
$\left(\mathcal{M} ; L_{1}, \ldots, L_{n}\right):$ an instance of fractional matroid matching
- \mathcal{L}_{i} : diamond with middle elements L_{i}
- For a transversal T, let

$$
\begin{aligned}
& Z_{T}^{i}= \begin{cases}L_{i} & \text { if } 1_{i} \in T \\
T \cap L_{i} & \text { otherwise }\end{cases} \\
& Z_{T}=\cup_{i=1}^{n} Z_{T}^{i} .
\end{aligned}
$$

$\left(\mathcal{M} ; L_{1}, \ldots, L_{n}\right):$ an instance of fractional matroid matching

- \mathcal{L}_{i} : diamond with middle elements L_{i}
- For a transversal T, let

$$
\begin{aligned}
& Z_{T}^{i}= \begin{cases}L_{i} & \text { if } 1_{i} \in T \\
T \cap L_{i} & \text { otherwise }\end{cases} \\
& Z_{T}=\cup_{i=1}^{n} Z_{T}^{i} .
\end{aligned}
$$

- Let f be defined as $f(T)=r\left(Z_{T}\right)$

Fractional matroid matching and diamonds

$\left(\mathcal{M} ; L_{1}, \ldots, L_{n}\right)$: an instance of fractional matroid matching

- \mathcal{L}_{i} : diamond with middle elements L_{i}
- For a transversal T, let

$$
\begin{aligned}
& Z_{T}^{i}= \begin{cases}L_{i} & \text { if } 1_{i} \in T \\
T \cap L_{i} & \text { otherwise }\end{cases} \\
& Z_{T}=\cup_{i=1}^{n} Z_{T}^{i} .
\end{aligned}
$$

- Let f be defined as $f(T)=r\left(Z_{T}\right)$

Proposition

f is submodular on $\mathcal{L}_{1} \times \cdots \times \mathcal{L}_{n}$, and the nonnegative vectors in $P(f)$ are the fractional matroid matchings.

Outline

(1) First part

Submodular minimization and generalizations Submodular functions on diamonds
Polyhedra
Fractional matroid matching

2 Second part (optional)
Pseudopolynomial algorithm for optimization on $P^{=}(f)$ Polynomial algorithm via scaling
(3) Open questions

The dual problem

Our aim is to solve the LP

$$
\max \left\{c x: x \in P^{=}(f)\right\}
$$

Dual problem:

$$
\begin{array}{lll}
\min & \sum_{T \in \mathcal{T}} f(T) y_{T} & \\
\text { s.t. } & y_{T} \geq 0 & \forall T \in \mathcal{T} \backslash\left\{T_{\text {top }}\right\} \\
& \sum_{T \in \mathcal{T}} a(T)_{i} y_{T}=c_{i} & \forall i \in[n]
\end{array}
$$

Lemma
The dual problem has a half-integral optimal solution with chain support. If c has distinct values, then the chain is "dense"

Polyhedron associated to a chain

$y:$ dual solution with chain support $\mathcal{C}=\left\{T_{1}, \ldots, T_{k}=T_{\text {top }}\right\}$

$$
\begin{aligned}
& P(f, \mathcal{C})=\left\{x \in \mathbb{R}^{n}:\left(a(T)-a\left(T_{j-1}\right)\right) x \leq f(T)-f\left(T_{j-1}\right)\right. \\
&\left.\forall T \in\left[T_{j-1}, T_{j}\right] \forall j \in[k]\right\} .
\end{aligned}
$$

- System for $P(f, \mathcal{C})$ is half-TDI
- If \mathcal{C} is dense, then we can separate over $P(f, \mathcal{C})$ in polynomial time
- $P(f, \mathcal{C}) \subseteq P(f)$ because of submodularity
- If $x \in P(f, \mathcal{C}) \cap P=(f)$, then $a\left(T_{j}\right) x=f\left(T_{j}\right)$ for every $j \in[k]$, thus x and y are optimal.

Primal-dual algorithm

Pseudo-polynomial algorithm (?)

- Start with a dual solution y with dense chain support \mathcal{C}
- Maximize $\sum x_{i}$ over $P(f, \mathcal{C})$
- If the maximum is $f\left(T_{\text {top }}\right) / 2$, then we are done
- Otherwise the optimal x gives an improving direction for y

Problem: It seems hard to prove a polynomial bound on the number of dual improvements.

Primal-dual algorithm

Pseudo-polynomial algorithm (?)

- Start with a dual solution y with dense chain support \mathcal{C}
- Maximize $\sum x_{i}$ over $P(f, \mathcal{C})$
- If the maximum is $f\left(T_{\text {top }}\right) / 2$, then we are done
- Otherwise the optimal x gives an improving direction for y

Problem: It seems hard to prove a polynomial bound on the number of dual improvements.

Solution (based on the ideas of Gijswijt and Pap) Instead of bounding the number of dual improvements, we show that $\max \left\{\sum x_{i}: x \in P(f, \mathcal{C})\right\}$ increases after $O\left(n^{3}\right)$ iterations.

Combinatorial algorithm for $\max \left\{\sum x_{i}: x \in P(f, \mathcal{C})\right.$

A dense chain \mathcal{C} defines an almost 2-regular hypergraph on ground set $V=[n]$
Augmenting walk: $x(V)$ can be increased by alternately increasing and decreasing along the walk

Combinatorial algorithm for $\max \left\{\sum x_{i}: x \in P(f, \mathcal{C})\right.$

A dense chain \mathcal{C} defines an almost 2-regular hypergraph on ground set $V=[n]$

Augmenting walk: $x(V)$ can be increased by alternately increasing and decreasing along the walk

- This is a generalization of matroid intersection
- Although there is a half-integral solution, we cannot guarantee half-integral improvement
- Lexicographic shortest walk: polynomial running time

Polynomial algorithm via scaling

We use the scaled functions

$$
f^{k}(T)=\left\lceil\frac{f(T)}{2^{k}}\right\rceil-(a(T) \mathbf{1})^{2} \quad \text { for } k=0,1 \ldots,\lceil\log M\rceil
$$

- f^{k} is submodular on the diamonds
- if $P^{=}\left(f^{k}\right)=\emptyset$, then $P^{=}(f)=\emptyset$
- if $x \in P\left(f^{k}, \mathcal{C}\right)$, then $2 x \in P\left(f^{k-1}, \mathcal{C}\right)$
- if $x \in P\left(f^{0}, \mathcal{C}\right)$, then $x \in P(f, \mathcal{C})$

We can sucessively compute $\max \left\{c x: x \in P^{=}\left(f^{k}\right)\right\}$ for $\lceil\log M\rceil$, $\lceil\log M\rceil-1, \ldots, 0$, and then for f.

Outline

(1) First part

Submodular minimization and generalizations Submodular functions on diamonds
Polyhedra
Fractional matroid matching

2 Second part (optional)
Pseudopolynomial algorithm for optimization on $P=(f)$ Polynomial algorithm via scaling
(3) Open questions

Open questions

- Strongly polynomial algorithm for $\max \{c x: x \in P(f)\}$
- Combinatorial algorithm for the minimization of f
- Generalization to other modular lattices
- Polynomial algorithm for k-submodular functions

Thank you

