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Submodular set functions

Definition
A set function f : 2V → Z with f (∅) = 0 is submodular if
f (X ) + f (Y ) ≥ f (X ∩ Y ) + f (X ∪ Y ) for every X ,Y ⊆ V .

• Evaluation oracle: given X ⊆ V , returns f (X )

• n = |V |
• M is a known upper bound on |f (X )|

Submodular function minimization problem
Find minX⊆V f (X ) in time polynomial in max{n, log M}.



History

Algorithm using the ellipsoid method: Grötschel, Lovász,
Schrijver, 1981

• P(f ) = {x ∈ RV : x(Z ) ≤ f (Z ) ∀Z ⊆ V}
• Optimization on P(f ) by greedy algorithm
• Equivalence of separation and optimization

More efficient algorithm based on the Lovász extension
Huge recent improvement on running time: O(n3 logO(1) nM)
[Lee, Sidford, Wong 2015]

Combinatorial algorithms, 1999

• Schrijver and independently Iwata, Fleischer, Fujishige
• Both based on the characterization

minZ⊆V f (Z ) = max{x−(V ) : x ∈ P(f )}
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Submodular function on the product of lattices

Let L be a finite lattice.

Definition
A function f : L → Z with f (0L) = 0 is submodular if
f (a) + f (b) ≥ f (a ∧ b) + f (a ∨ b) for every a,b ∈ L.

The submodular minimization problem for an explicitly given
lattice is trivial: we can evaluate on all elements

Submodular minimization over product of lattices

• Lattices L1, . . . ,Ln with ground sets U1, . . . ,Un

• L = L1 × · · · × Ln

• f : submodular function on L given by an evaluation oracle
• Find mina∈L f (a) in time polynomial in max{

∑
|Ui |, log M}

Standard submodular minimization: Li = {0i ,1i} (i ∈ [n])
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Previous results

Solvable if
• every Li is distributive
• every Li is distributive or the pentagon [Krokhin, Larose

2008]
• f is the sum of submodular functions with constant arity

(constant number of components affect the function value)
[Thapper, Z̆ivný 2012]

Latter is also true for modular semi-lattices [Hirai 2012], which
includes k -submodular functions

• Bisubmodular minimization is polynomial-time solvable [Qi
1988, Fujishige, Iwata 2006]
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Diamonds

Diamond: finite complemented modular lattice of rank 2

middle elements

Previous results for diamonds

• If there are two middle elements: distributive lattice
• Polynomial-time minimization for sum of constant arity

functions [Krokhin, Larose 2008]
• Kuivinen 2011: pseudo-polynomial algorithm (polynomial

in max{
∑
|Ui |,M}) using the ellipsoid method

• Kuivinen 2011: good characterization based on a
polyhedral characterization of the optimum
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Transversals

The elements of the product lattice are transversals of the
family {Ui}ni=1. Transversals corresponding to 0L and 1L:

Meet, join:
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Associated n-dimensional polyhedron

Rank vector of transversals:

a(T )i =


0 if T ∩ Ui = 0i

2 if T ∩ Ui = 1i

1 otherwise

P(f ) = {x ∈ Rn : a(T )x ≤ f (T ) ∀T ∈ T }

P=(f ) = {x ∈ Rn : a(T )x ≤ f (T ) ∀T ∈ T , 2
∑

xi = f (Ttop)}

Lemma
The linear systems of P(f ) and P=(f ) are half-TDI.

Our goal: optimization on P=(f )



Optimization and separation

Why is optimization over P=(f ) useful?

• Optimization over P=(f ) optimization over P(f ) by
binary search
(f remains submodular if we decrease f (Ttop))

• Optimization over P(f ) separation over P(f )
(ellipsoid method)

• Separation over P(f ) minimization of f by binary search
(f remains submodular if increased by a constant everywhere
except for Tbottom)
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Fractional matroid matching problem (Vande Vate)

M = (S, r): matroid
L1, . . . ,Ln: disjoint subsets of rank 2

a(Z )i : rank of Z ∩ Li

Definition
x ∈ Rn

+ is a fractional matroid matching if

a(Z )x ≤ r(Z ) for every Z ⊆ S.

• an integer solution corresponds to a matroid matching
• Chang, LLewellyn, Vande Vate 2001: maximum size

fractional matroid matching in polynomial time
• Gijswijt, Pap, 2008: maximum weight fractional matroid

matching in polynomial time
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Fractional matroid matching and diamonds

(M;L1, . . . ,Ln): an instance of fractional matroid matching

• Li : diamond with middle elements Li

• For a transversal T , let

Z i
T =

{
Li if 1i ∈ T
T ∩ Li otherwise

ZT = ∪n
i=1Z i

T .

• Let f be defined as f (T ) = r(ZT )

Proposition
f is submodular on L1 × · · · × Ln, and the nonnegative vectors
in P(f ) are the fractional matroid matchings.
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The dual problem

Our aim is to solve the LP

max{cx : x ∈ P=(f )}.

Dual problem:

min
∑
T∈T

f (T )yT

s.t . yT ≥ 0 ∀T ∈ T \ {Ttop}∑
T∈T

a(T )iyT = ci ∀i ∈ [n]

Lemma
The dual problem has a half-integral optimal solution with chain
support. If c has distinct values, then the chain is “dense”



Polyhedron associated to a chain

y : dual solution with chain support C = {T1, . . . ,Tk = Ttop}

P(f , C) = {x ∈ Rn : (a(T )− a(Tj−1))x ≤ f (T )− f (Tj−1)

∀T ∈ [Tj−1,Tj ] ∀j ∈ [k ]}.

• System for P(f , C) is half-TDI
• If C is dense, then we can separate over P(f , C) in

polynomial time
• P(f , C) ⊆ P(f ) because of submodularity
• If x ∈ P(f , C) ∩ P=(f ), then a(Tj)x = f (Tj) for every j ∈ [k ],

thus x and y are optimal.



Primal-dual algorithm

Pseudo-polynomial algorithm (?)

• Start with a dual solution y with dense chain support C
• Maximize

∑
xi over P(f , C)

• If the maximum is f (Ttop)/2, then we are done
• Otherwise the optimal x gives an improving direction for y

Problem: It seems hard to prove a polynomial bound on the
number of dual improvements.

Solution (based on the ideas of Gijswijt and Pap)
Instead of bounding the number of dual improvements, we
show that max{

∑
xi : x ∈ P(f , C)} increases after O(n3)

iterations.



Primal-dual algorithm

Pseudo-polynomial algorithm (?)

• Start with a dual solution y with dense chain support C
• Maximize

∑
xi over P(f , C)

• If the maximum is f (Ttop)/2, then we are done
• Otherwise the optimal x gives an improving direction for y

Problem: It seems hard to prove a polynomial bound on the
number of dual improvements.

Solution (based on the ideas of Gijswijt and Pap)
Instead of bounding the number of dual improvements, we
show that max{

∑
xi : x ∈ P(f , C)} increases after O(n3)

iterations.



Combinatorial algorithm for max{
∑

xi : x ∈ P(f , C)

A dense chain C defines an almost 2-regular hypergraph on
ground set V = [n]

Augmenting walk: x(V ) can be increased by alternately
increasing and decreasing along the walk

+ _

_+

+

• This is a generalization of matroid intersection
• Although there is a half-integral solution, we cannot

guarantee half-integral improvement
• Lexicographic shortest walk: polynomial running time
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Polynomial algorithm via scaling

We use the scaled functions

f k (T ) =

⌈
f (T )

2k

⌉
− (a(T )1)2 for k = 0,1 . . . , dlog Me

• f k is submodular on the diamonds
• if P=(f k ) = ∅, then P=(f ) = ∅
• if x ∈ P(f k , C), then 2x ∈ P(f k−1, C)
• if x ∈ P(f 0, C), then x ∈ P(f , C)

We can sucessively compute max{cx : x ∈ P=(f k )} for
dlog Me, dlog Me − 1, . . . ,0, and then for f .
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Open questions

• Strongly polynomial algorithm for max{cx : x ∈ P(f )}
• Combinatorial algorithm for the minimization of f
• Generalization to other modular lattices
• Polynomial algorithm for k -submodular functions



Thank you
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