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Submodular set functions

Definition
A set function f : 2¥ — Z with f(§)) = 0 is submodular if
f(X)+f(Y)>f(XNY)+f(XUY)forevery X, Y C V.

o Evaluation oracle: given X C V, returns f(X)
e M is a known upper bound on |f(X)|

Submodular function minimization problem
Find minycy 7(X) in time polynomial in max{n, log M}.



History

Algorithm using the ellipsoid method: Grétschel, Lovasz,
Schrijver, 1981

e P(f)={xeRY:x(2)<f(Z)VZ C V}

o Optimization on P(f) by greedy algorithm

e Equivalence of separation and optimization



History

Algorithm using the ellipsoid method: Grétschel, Lovasz,
Schrijver, 1981

e P(f)={xeRY:x(2)<f(Z)VZ C V}

o Optimization on P(f) by greedy algorithm

e Equivalence of separation and optimization

More efficient algorithm based on the Lovasz extension

Huge recent improvement on running time: O(n®log®!") n\V)
[Lee, Sidford, Wong 2015]



History

Algorithm using the ellipsoid method: Grétschel, Lovasz,
Schrijver, 1981

e P(f)={xeRY:x(2)<f(Z)VZ C V}

o Optimization on P(f) by greedy algorithm

e Equivalence of separation and optimization

More efficient algorithm based on the Lovasz extension

Huge recent improvement on running time: O(n®log®!") n\V)
[Lee, Sidford, Wong 2015]

Combinatorial algorithms, 1999

e Schrijver and independently lwata, Fleischer, Fujishige

e Both based on the characterization
minzcy f(Z) = max{x— (V) : x € P(f)}



Submodular function on the product of lattices

Let £ be a finite lattice.

Definition
A function f : £ — Z with f(02) = 0 is submodular if
f(a)+ f(b) > f(an b) +f(aVv b) forevery a,b € L.

The submodular minimization problem for an explicitly given
lattice is trivial: we can evaluate on all elements
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Submodular function on the product of lattices

Let £ be a finite lattice.

Definition
A function f : £ — Z with f(02) = 0 is submodular if
f(a)+ f(b) > f(an b) +f(aVv b) forevery a,b € L.

The submodular minimization problem for an explicitly given
lattice is trivial: we can evaluate on all elements
Submodular minimization over product of lattices
e Lattices L4,..., L, with ground sets Uy, ..., U,
o L=Ly X ---XLp
e f: submodular function on L given by an evaluation oracle
e Find minge, f(a) in time polynomial in max{>_ |U;|,log M}

Standard submodular minimization: £; = {0;,1;} (i € [n])



Previous results

Solvable if
e every L; is distributive

e every L; is distributive or the pentagon [Krokhin, Larose
2008]

e fis the sum of submodular functions with constant arity
(constant number of components affect the function value)
[Thapper, Zivny 2012]

Latter is also true for modular semi-lattices [Hirai 2012], which
includes k-submodular functions



Previous results

Solvable if
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e every L; is distributive or the pentagon [Krokhin, Larose
2008]

e fis the sum of submodular functions with constant arity
(constant Qumber of components affect the function value)
[Thapper, Zivny 2012]

Latter is also true for modular semi-lattices [Hirai 2012], which
includes k-submodular functions

e Bisubmodular minimization is polynomial-time solvable [Qi
1988, Fujishige, lwata 2006]
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1

middle elements
Oc

Previous results for diamonds

o |f there are two middle elements: distributive lattice

e Polynomial-time minimization for sum of constant arity
functions [Krokhin, Larose 2008]

e Kuivinen 2011: pseudo-polynomial algorithm (polynomial
in max{)_ |U;|, M}) using the ellipsoid method

e Kuivinen 2011: good characterization based on a
polyhedral characterization of the optimum
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Associated n-dimensional polyhedron

Rank vector of transversals:

0ifTNnU =0;
amni=<2ifTNU =1;
1 otherwise

P(f) = {x €R": a(T)x < f(T)¥VT € T}
P=(f)={xeR": aT)x < (T)VT €T, 23 xi = f(Tup)}

Lemma
The linear systems of P(f) and P=(f) are half-TDI.

Our goal: optimization on P=(f)
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Optimization and separation

Why is optimization over P=(f) useful?

¢ Optimization over P=(f) ~» optimization over P(f) by
binary search
(f remains submodular if we decrease f( Tiyp))

o Optimization over P(f) ~~ separation over P(f)
(ellipsoid method)

e Separation over P(f) ~~ minimization of f by binary search
(f remains submodular if increased by a constant everywhere
except for Tyorom)



Fractional matroid matching problem (Vande Vate)

M = (S, r): matroid
Ly,...,Ly: disjoint subsets of rank 2
a(Z);: rankof ZNL;

Definition
x € RY is a fractional matroid matching if

a(Z)x <r(Z) forevery Z C S.



Fractional matroid matching problem (Vande Vate)

M = (S, r): matroid
Ly,...,Ly: disjoint subsets of rank 2
a(Z);: rankof ZNL;

Definition
x € RY is a fractional matroid matching if

a(Z)x <r(Z) forevery Z C S.

e an integer solution corresponds to a matroid matching

e Chang, LLewellyn, Vande Vate 2001: maximum size
fractional matroid matching in polynomial time

e Gijswijt, Pap, 2008: maximum weight fractional matroid
matching in polynomial time
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Fractional matroid matching and diamonds

(M; Lq,...,Ly): aninstance of fractional matroid matching

e L;: diamond with middle elements L;
e For atransversal T, let

i L; if1,€T
ZT = .
TNL otherwise
Zr = U4 Z}.

e Let f be defined as f(T) = r(Z7)

Proposition
f is submodular on L4 x --- x Ly, and the nonnegative vectors
in P(f) are the fractional matroid matchings.
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The dual problem

Our aim is to solve the LP

max{cx : x € P=(f)}.

Dual problem:
min > f(T)yr
TeT
st. yr>0 VT € T\ {Twop}
> aMyr =g Vi € [n]
TeT
Lemma

The dual problem has a half-integral optimal solution with chain
support. If ¢ has distinct values, then the chain is “dense”



Polyhedron associated to a chain

y: dual solution with chain support C = {Ty,..., Ty = Tiop}

P(f.C) = {x € R": (a(T) — a(Tj—))x < f(T) ~ (Tj1)
VT € [Tji—4, Tj] V) € [K]}.

System for P(f,C) is half-TDI

If C is dense, then we can separate over P(f,C) in
polynomial time

P(f,C) C P(f) because of submodularity

If x € P(f,C) " P=(f), then a(T;)x = f(T;) for every j c [k],
thus x and y are optimal.



Primal-dual algorithm

Pseudo-polynomial algorithm (?)

e Start with a dual solution y with dense chain support C

e Maximize )" x; over P(f,C)

e If the maximum is f(Ti,p)/2, then we are done

e Otherwise the optimal x gives an improving direction for y

Problem: It seems hard to prove a polynomial bound on the
number of dual improvements.



Primal-dual algorithm

Pseudo-polynomial algorithm (?)

e Start with a dual solution y with dense chain support C

e Maximize )" x; over P(f,C)

e If the maximum is f(Ti,p)/2, then we are done

e Otherwise the optimal x gives an improving direction for y

Problem: It seems hard to prove a polynomial bound on the
number of dual improvements.

Solution (based on the ideas of Gijswijt and Pap)
Instead of bounding the number of dual improvements, we
show that max{>" x; : x € P(f,C)} increases after O(n®)
iterations.



Combinatorial algorithm for max{>_ x; : x € P(f,C)

A dense chain C defines an almost 2-regular hypergraph on
ground set V = [n]

Augmenting walk: x(V) can be increased by alternately
increasing and decreasing along the walk




Combinatorial algorithm for max{>_ x; : x € P(f,C)

A dense chain C defines an almost 2-regular hypergraph on
ground set V = [n]

Augmenting walk: x(V) can be increased by alternately
increasing and decreasing along the walk

e This is a generalization of matroid intersection

e Although there is a half-integral solution, we cannot
guarantee half-integral improvement

¢ Lexicographic shortest walk: polynomial running time



Polynomial algorithm via scaling

We use the scaled functions

(T = F(Zm —(a(T)1)®  fork=0,1...,[logM)]

« fXis submodular on the diamonds
o if P=(f) =0, then P=(f) = 0)

o if x € P(fX,C), then 2x € P(f*1,C)
e if x € P(f°,C), then x € P(f,C)

We can sucessively compute max{cx : x € P=(fK)} for
[log M], [logM] —1,...,0, and then for f.
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Open questions

Strongly polynomial algorithm for max{cx : x € P(f)}
Combinatorial algorithm for the minimization of f
Generalization to other modular lattices

Polynomial algorithm for k-submodular functions

N N N
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