Inventory Problems with Submodular or Routing Costs

Viswanath Nagarajan U Michigan

Joint work with Cong Shi

Inventory Optimization

 Demands over time horizon T uniform in each period non-uniform

Joint Replenishment Problem

- n items with demands over horizon T
- Ordering cost "additive joint"

Minimize ordering + holding

JRP Example

JRP Known Results

NP-hard [Arkin Joneja Roundy '89]

1.02-approx for uniform demand [Roundy '85]

 1.79 approximation algorithm for non-uniform [Bienkowski Byrka Chrobak Jez Sgall '13]
 [Levi Roundy Shmoys Sviridenko '08]

Submodular JRP

• Order $S \Rightarrow cost f(S)$ for submodular $f: 2^{[n]} \rightarrow R$

• 1.02-approx for uniform demand [Federgruen Zheng '92]

- O(log nT) approximation for non-uniform [Cheung Elmachtoub Levi Shmoys '15]
- O(1) approximation for special f cardinality, tree, laminar

Inventory Routing Problem

- n demand locations in metric, depot r
- Demands over horizon T
- Routing cost: visit locations by TSP

Holding cost

Minimize routing + holding costs

IRP Known Results

Lots of computational work
 Eg. [Coelho Cordeau Laporte '14]

- O(1) approximation when restricted to "nested periodic" policies [Fukunaga Nikzad Ravi '14]
- O(log n) approximation by tree embedding
 JRP itself 2-level tree

Our Result

$$O\left(\frac{\log T}{\log \log T}\right)$$
 approximation algorithm

For both submodular JRP and IRP

Also for "polynomial" holding costs

Unified Inventory Problem

- N elements
- T time periods
- Demand d_{er} units for e at r Min

Min ordering + holding costs

- Ordering cost $f: 2^N \to R$
- Holding cost h_e / unit / time

Uniform Ordering Cost

If ordering cost time-varying then set-cover hard

Need uniform f for sub-logarithmic ratio

LP relaxation

y_{St} = order exactly S at time t

 x_{etr} = satisfy demand (e,r) by time t order

Similar to [Cheung et al. '15]

LP relaxation

$$\begin{split} & \text{min} \quad \sum_{S,t} f(S) \ y_{St} \quad + \quad \sum_{(e,r)} h_e \ \sum_{t \leq r} (r\text{-}t) \cdot \mathbf{x}_{\text{etr}} \\ & \mathbf{x}_{\text{etr}} \leq \sum_{S \ni e} y_{St} \quad \forall \ (e,r) \ \text{demand,} \ t \leq r \\ & \sum_{t \leq r} \mathbf{x}_{\text{etr}} \geq \mathbf{1} \quad \forall \ (e,r) \ \text{demand} \end{split}$$

all non-negative

Assumptions

1. Ordering cost f: fractionally subadditive Given weighted subsets $(a_i, S_i \subseteq [N])$ with $\sum_{i:e \in Si} a_i \ge 1$ for all $e \in R$; then $\sum_i a_i \cdot f(S_i) \ge f(R) / \alpha$

2. LP relaxation solvable β approx.

Approximate versions suffice

Result Again

Inventory problem with

 α fractional subadditive ordering cost f

 β approximate LP algorithm

polynomial holding cost (degree d)

O(
$$\alpha \beta d \frac{\log T}{\log \log T}$$
) approximation algorithm

Submodular JRP

f = submodular

- Submodular ⇒ 1-fractionally subadditive [Feige '04]
- Solve LP via dual + ellipsoid

$$\alpha$$
 = 1 β = 1

Separation = submodular minimization

f(S) -
$$\sum_{e \in S} z_{et} \ge 0$$

$$\forall S \subseteq [N], t$$

Inventory Routing

- f = 3/2-fractionally subadditive [Wolsey '80]
- Solve LP via dual + ellipsoid

Separation = min ratio TSP

2-approximation [Garg '02]

$$\alpha$$
 = 1.5 β = 2

TSP(S) -
$$\sum_{e \in S} z_{et} \ge 0$$

$$\forall S \subseteq [N], t$$

Algorithm Outline

- Solve LP
- Find ½ completion time for each demand (e,r)
- Extend interval to power of R width $R = (log T)^{\frac{1}{2}}$ for linear holding cost
- For each i = 0, 1, 2 ...L order at integer multiples of Ri.

Analysis: holding cost

 $\frac{1}{2}$ completion cost $\leq 2 \cdot LP$ holding cost

Lose factor $R = (\log T)^{\frac{1}{2}}$ since *linear*

Analysis: ordering cost

For each power of R, ordering cost $\leq 2\alpha$ LP

overall
$$\leq$$
 O($lpha$) $\cdot \frac{\log T}{\log \log T}$

Summary

Inventory problems with "complex" ordering costs

• O($\frac{\log T}{\log \log T}$) approximation ratio under

approximate fractional subadditivity approximate LP linear holding costs

Is there constant approximation?

Thank You!