How to Make a Bipartite Graph DM-irreducible by Adding Edges

Satoru Iwata¹, Jun Kato², <u>Yutaro Yamaguchi³</u>

1. University of Tokyo, Japan.

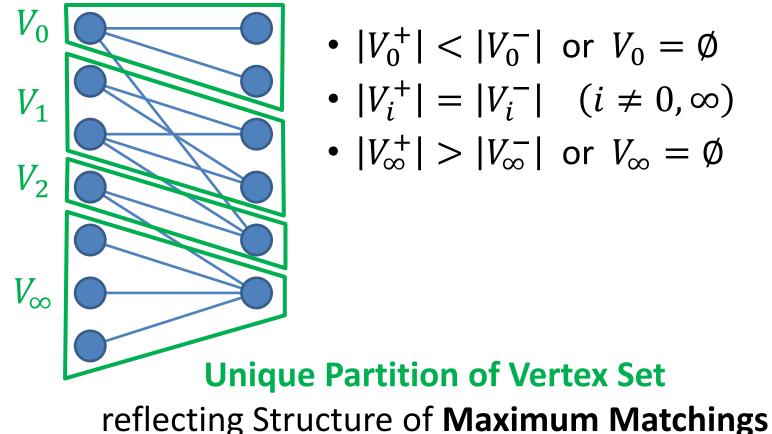
2. TOYOTA Motor Corporation, Japan.

3. Osaka University, Japan.

Shonan Meeting 071 @Shonan April 12, 2016

Dulmage–**M**endelsohn Decomposition [Dulmage–Mendelsohn 1958,59]

 $G = (V^+, V^-; E)$: Bipartite Graph Given



•
$$|V_0^+| < |V_0^-|$$
 or $V_0 = \emptyset$

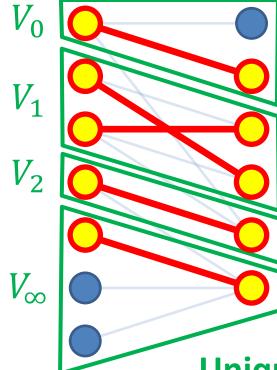
•
$$|V_i^+| = |V_i^-|$$
 $(i \neq 0, \infty)$

•
$$|V_{\infty}^+| > |V_{\infty}^-|$$
 or $V_{\infty} = \emptyset$

2

Dulmage–Mendelsohn Decomposition

<u>Given</u> $G = (V^+, V^-; E)$: Bipartite Graph

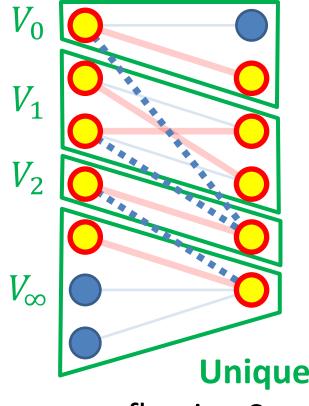


- $|V_0^+| < |V_0^-|$ or $V_0 = \emptyset$
- $|V_i^+| = |V_i^-| \quad (i \neq 0, \infty)$
- $|V_{\infty}^+| > |V_{\infty}^-|$ or $V_{\infty} = \emptyset$
- ∀Max. Matching in G is a union of
 Perfect Matchings in G[V_i]

Unique Partition of Vertex Set reflecting Structure of Maximum Matchings

Dulmage–Mendelsohn Decomposition [Dulmage–Mendelsohn 1958,59]

<u>Given</u> $G = (V^+, V^-; E)$: Bipartite Graph

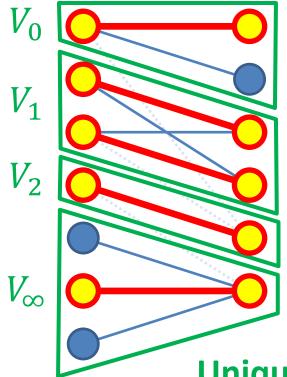


- ∀Max. Matching in G is a union of
 Perfect Matchings in G[V_i]
 - → Edges between V_i and V_j $(i \neq j)$ can**NOT** be used.

Unique Partition of Vertex Set reflecting Structure of Maximum Matchings

Dulmage–Mendelsohn Decomposition [Dulmage–Mendelsohn 1958,59]

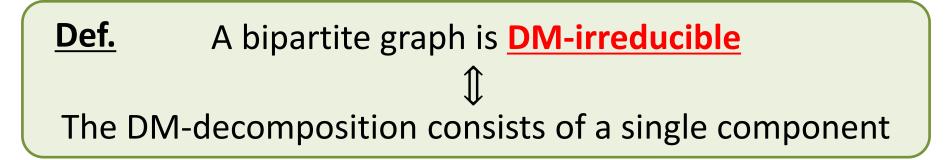
<u>Given</u> $G = (V^+, V^-; E)$: Bipartite Graph

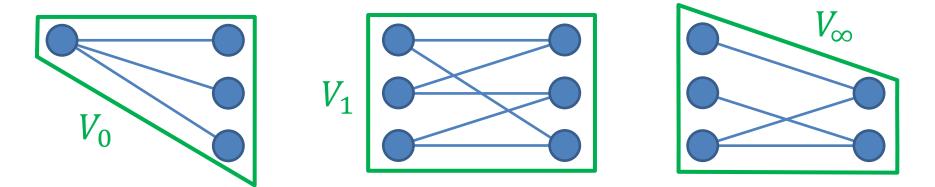


- ∀Max. Matching in G is a union of
 Perfect Matchings in G[V_i]
 - → Edges between V_i and V_j $(i \neq j)$ can**NOT** be used.
- $\forall e$: Edge in $G[V_i]$, $\exists \text{Perfect Matching} \text{ in } G[V_i] \text{ using } e$

Unique Partition of Vertex Set reflecting Structure of Maximum Matchings

DM-irreducibility



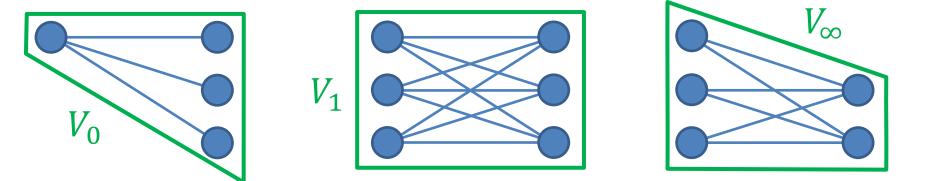


<u>Obs.</u> A bipartite graph *G* is <u>**DM-irreducible**</u> $\downarrow \downarrow$ $\forall e$: Edge in *G*, ∃Perfect Matching in *G* using *e*

DM-irreducibility

<u>Obs.</u> Complete bipartite graphs are <u>DM-irreducible</u>.

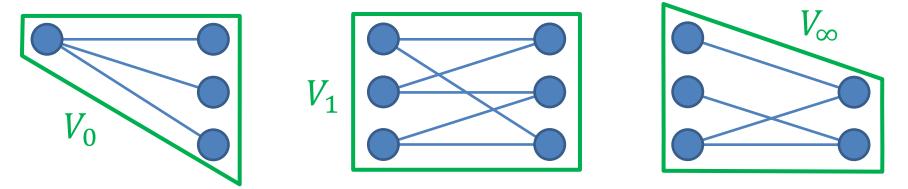
- Connected
- Every Edge is in some Perfect Matching



DM-irreducibility

<u>Obs.</u> <u>**Complete**</u> bipartite graphs are <u>**DM-irreducible**</u>.

- Connected
- Every Edge is in some Perfect Matching

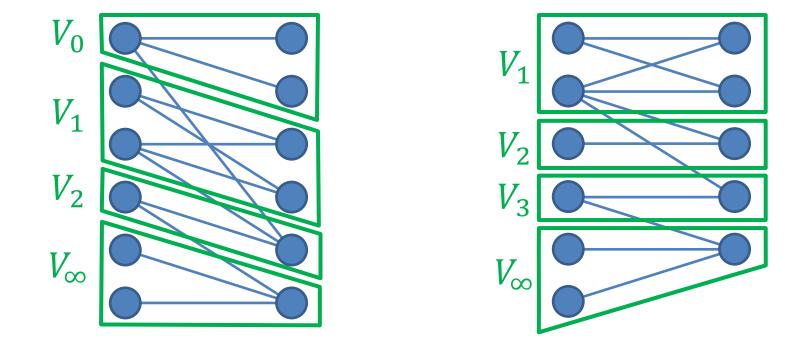


Complete $\stackrel{\Longrightarrow}{\Leftarrow}$ DM-irreducible

How many additional edges are necessary to make a bipartite graph DM-irreducible?

Our Problem

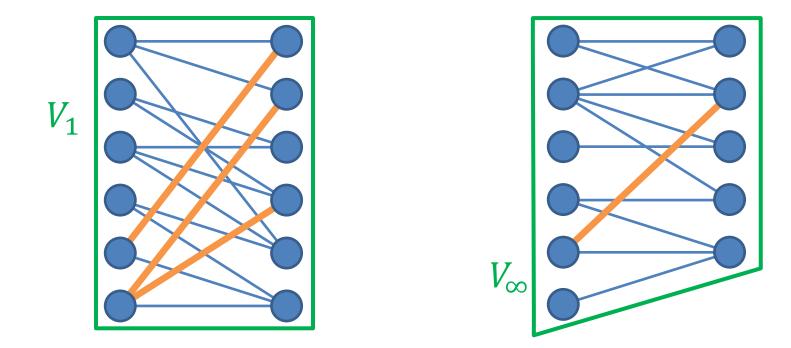
<u>Given</u> $G = (V^+, V^-; E)$: Bipartite Graph



Find Minimum Number of Additional Edges to Make G <u>DM-irreducible</u>

Our Problem

<u>Given</u> $G = (V^+, V^-; E)$: Bipartite Graph



<u>Find</u> Minimum Number of Additional Edges to Make G <u>DM-irreducible</u>

Our Result

<u>Given</u> $G = (V^+, V^-; E)$: Bipartite Graph

FindMinimum Number of Additional Edgesto Make GDM-irreducible

<u>Thm.</u> This problem can be solved in polynomial time.

<u>Tools</u>

- Finding a Maximum Matching in a Bipartite Graph
- Decomposition into Strongly Connected Components
- Making a Digraph Strongly Connected by Adding Edges
- Finding **Edge-Disjoint** *s*–*t* **Paths** in a Digraph

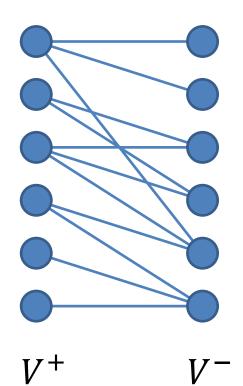
[I.-K.-Y. 2016]

Outline

- **Preliminaries:** How to Compute DM-decomposition
 - Find a Maximum Matching in a Bipartite Graph
 - Decompose a Digraph into Strongly Connected Components
- **Result:** How to Make a Bipartite Graph DM-irreducible
 - Make a Digraph Strongly Connected
 - Find Edge-Disjoint s-t Paths in a Digraph
- <u>Conclusion</u>

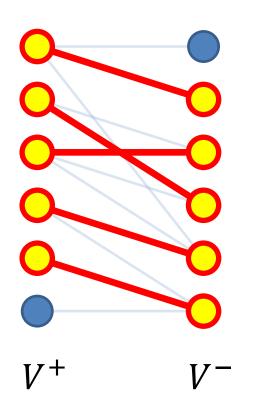
Outline

- **Preliminaries:** How to Compute DM-decomposition
 - Find a Maximum Matching in a Bipartite Graph
 - Decompose a Digraph into Strongly Connected Components
- Result: How to Make a Bipartite Graph DM-irreducible
 - Make a Digraph Strongly Connected
 - Find Edge-Disjoint s–t Paths in a Digraph
- <u>Conclusion</u>



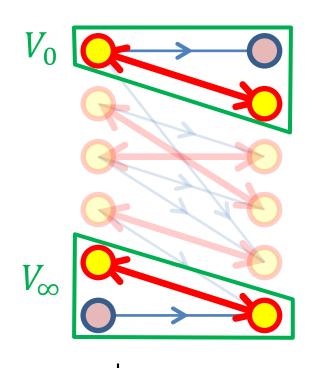
<u>Given</u> $G = (V^+, V^-; E)$: Bipartite Graph

• Find a Maximum Matching M in G

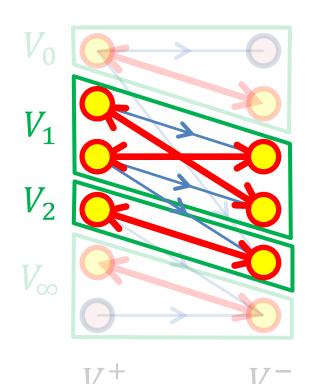


- Find a **Maximum Matching** *M* in *G*
- Orient Edges so that
 - $M \implies$ Both Directions \leftrightarrow

$$E \setminus M \implies$$
 Left to Right \rightarrow



- Find a **Maximum Matching** *M* in *G*
- <u>Orient Edges</u> so that $M \implies$ Both Directions \leftrightarrow $E \setminus M \implies$ Left to Right \rightarrow
- V_0 : <u>Reachable to</u> $V^- \setminus \partial^- M$
- V_{∞} : <u>Reachable from</u> $V^+ \setminus \partial^+ M$



- Find a **Maximum Matching** *M* in *G*
- <u>Orient Edges</u> so that $M \implies$ Both Directions \leftrightarrow $E \setminus M \implies$ Left to Right \rightarrow
- V_0 : <u>Reachable to</u> $V^- \setminus \partial^- M$
- V_{∞} : <u>Reachable from</u> $V^+ \setminus \partial^+ M$
- V_i : Strongly Connected Component of $G - V_0 - V_\infty$

Outline

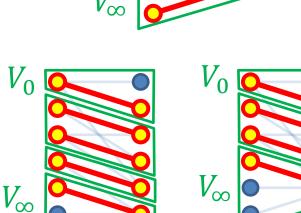
- Preliminaries: How to Compute DM-decomposition
 - Find a Maximum Matching in a Bipartite Graph
 - Decompose a Digraph into Strongly Connected Components
- **Result:** How to Make a Bipartite Graph DM-irreducible
 - Make a Digraph Strongly Connected
 - Find Edge-Disjoint s-t Paths in a Digraph
- <u>Conclusion</u>

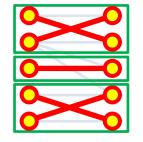
Case Analysis

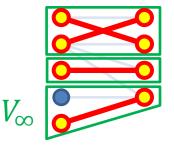
<u>Case 1.</u> When $V_0 = \emptyset = V_\infty$

<u>Case 2.</u> When $V_0 = \emptyset \neq V_\infty$

<u>Case 3.</u> When $V_0 \neq \emptyset \neq V_\infty$





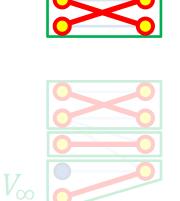


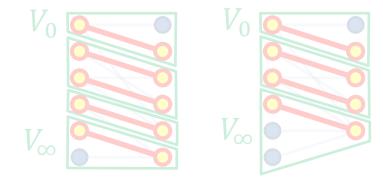
Case Analysis

<u>Case 1.</u> When $V_0 = \emptyset = V_\infty$

<u>**Case 2.</u>** When $V_0 = \emptyset \neq V_\infty$ </u>

<u>Case 3.</u> When $V_0 \neq \emptyset \neq V_{\infty}$





Case 1. When $V_0 = \emptyset = V_\infty$

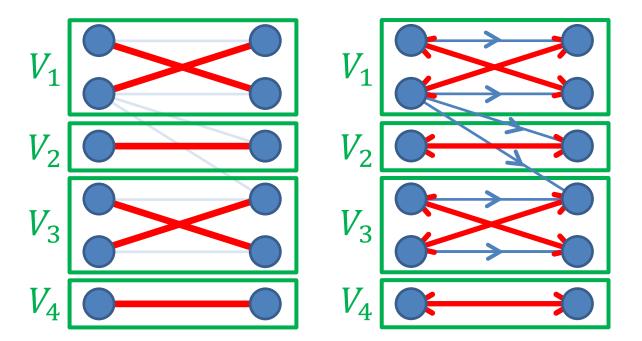
 $V_1 \bigcirc 0 & \bigcirc 0 \\ V_2 \bigcirc 0 & \bigcirc 0 \\ V_3 & \bigcirc 0 & \bigcirc 0 \\ V_4 & \bigcirc 0 & 0 \\ V_4 & \bigcirc 0 & 0 \\$

DM-decomposition

- $|V_i^+| = |V_i^-|$ $(i \neq 0, \infty)$
- ∀Max. Matching in G is a union of
 Perfect Matchings in G[V_i]

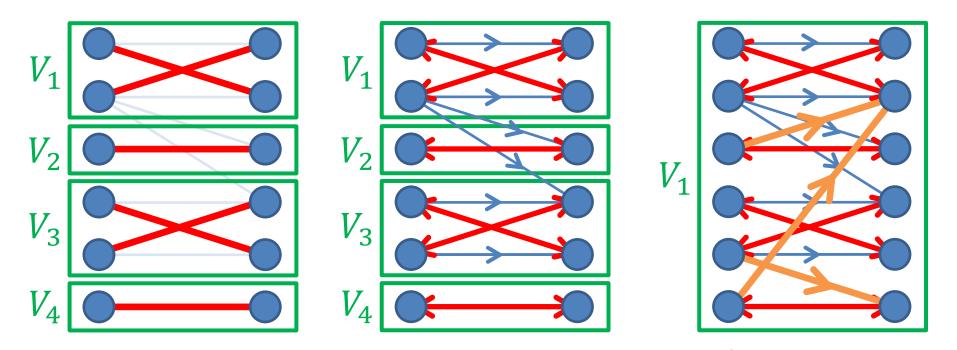
- $|V^+| = |V^-|$
- G has a Perfect Matching

Case 1. When $V_0 = \emptyset = V_\infty$



DM-decomposition = Strg. Conn. Comps.

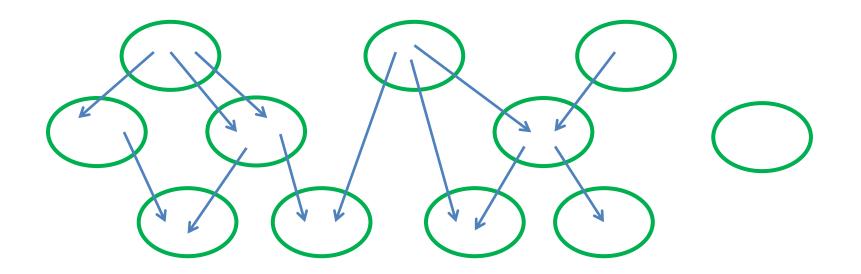
Case 1. When $V_0 = \emptyset = V_\infty$



DM-decomposition = Strg. Conn. Comps. $\rightarrow \frac{\text{Make it Strg. Conn.}}{\text{by Adding Edges}}$

Obs. <u>DM-irreducibility</u> is Equivalent to <u>Strong Connectivity</u> of the Oriented Graph

<u>**Given</u>** G = (V, E): Directed Graph</u>



FindMinimum Number of Additional Edgesto Make GStrongly Connected

<u>Given</u> G = (V, E): Directed Graph

: Strg. Conn. Comp.

Each Source needs an Entering Edge

FindMinimum Number of Additional Edgesto Make GStrongly Connected

<u>Given</u> G = (V, E): Directed Graph

: Strg. Conn. Comp.

Each <u>Source</u> needs an <u>Entering Edge</u>

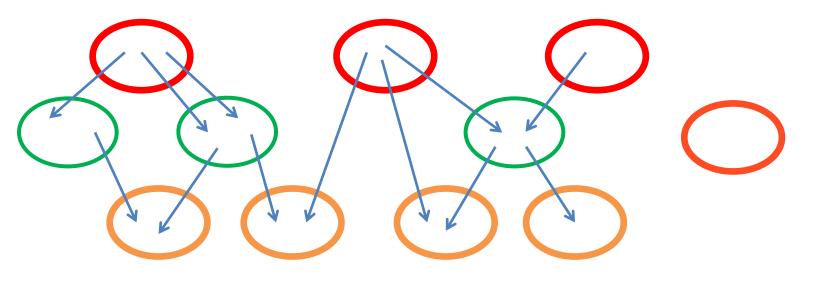
Each <u>Sink</u> needs a <u>Leaving Edge</u>

FindMinimum Number of Additional Edgesto Make GStrongly Connected

<u>**Given</u>** G = (V, E): Directed Graph NOT Strg. Conn.</u>

FindMinimum Number of Additional Edgesto Make GStrongly Connected

<u>Obs.</u> max{# of **Sources**, # of **Sinks**} edges are **Necessary**.



<u>**Given</u>** G = (V, E): Directed Graph NOT Strg. Conn.</u>

FindMinimum Number of Additional Edgesto Make GStrongly Connected

<u>Obs.</u> max{# of **Sources**, # of **Sinks**} edges are **Necessary**.

<u>Thm.</u> max{# of **Sources**, # of **Sinks**} edges are **Sufficient**. ∃ **Polytime Algorithm** to find such Additional Edges.

[Eswaran–Tarjan 1976]

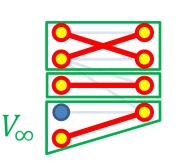
 \rightarrow Case 1 is **Polytime Solvable**.

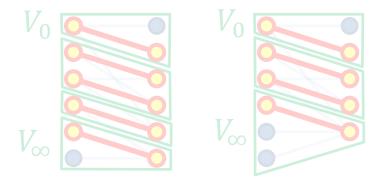
Case Analysis

<u>**Case 1.</u>** When $V_0 = \emptyset = V_\infty$ </u>

<u>Case 2.</u> When $V_0 = \emptyset \neq V_\infty$

<u>Case 3.</u> When $V_0 \neq \emptyset \neq V_{\infty}$





Case 2. When $V_0 = \emptyset \neq V_\infty$

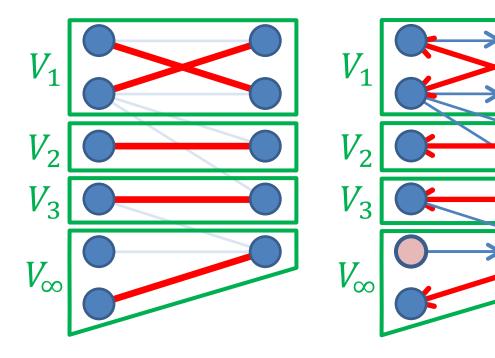
• $|V_i^+| = |V_i^-|$ $(i \neq 0, \infty)$

- $|V_{\infty}^+| > |V_{\infty}^-|$
- ∀Max. Matching in G is a union of
 Perfect Matchings in G[V_i]

DM-decomposition

- $|V^+| > |V^-|$
- G has a Perfect Matching

Case 2. When $V_0 = \emptyset \neq V_\infty$



 \geq

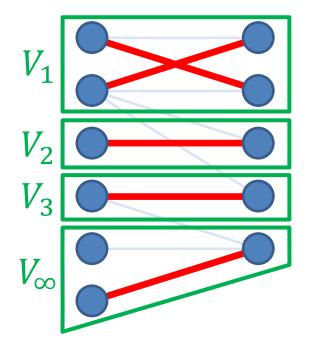
DM-decomposition

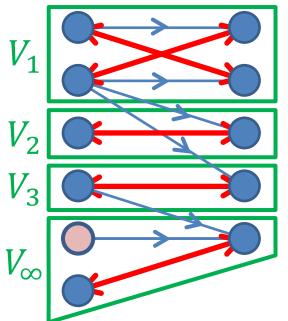
Reachability from Exposed Vertices

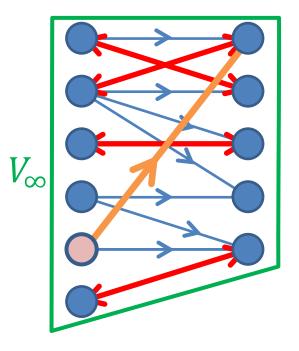
╋

Strg. Conn. Comps. of the Rest

Case 2. When $V_0 = \emptyset \neq V_\infty$



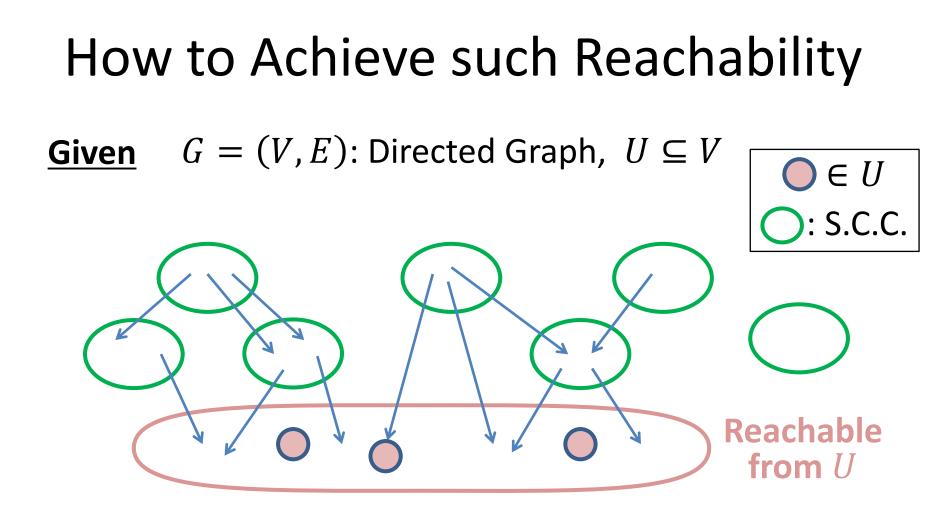




DM-decomposition

Reachability from Exposed Vertices

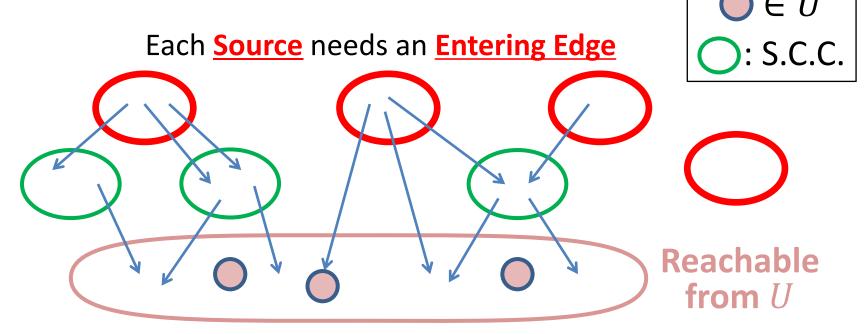
Strg. Conn. Comps. of the Rest Make ALL Vertices Reachable from Exposed Vertices by Adding Edges



FindMinimum Number of Additional Edgesto Make ALL VerticesReachable from U

How to Achieve such Reachability

<u>Given</u> G = (V, E): Directed Graph, $U \subseteq V$

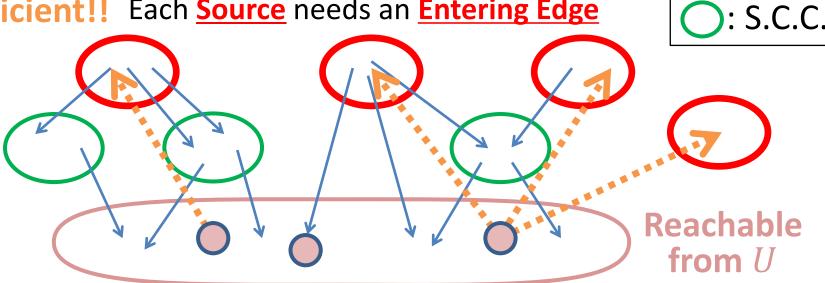


FindMinimum Number of Additional Edgesto Make ALL Vertices Reachable from U

How to Achieve such Reachability

G = (V, E): Directed Graph, $U \subseteq V$ Given

Sufficient!! Each Source needs an Entering Edge



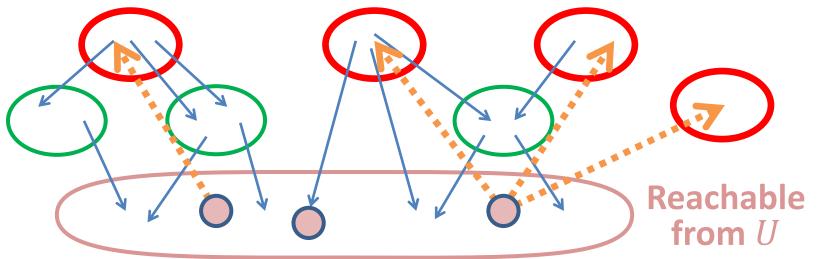
Minimum Number of Additional Edges Find to Make **ALL Vertices Reachable from** U $\in U$

How to Make a Digraph Strongly Connected

<u>Given</u> G = (V, E): Directed Graph, $U \subseteq V$

FindMinimum Number of Additional Edgesto Make ALL VerticesReachable from U

<u>Obs.</u> (# of **Sources**) edges are **Necessary and Sufficient**.



Summary of Cases 1 and 2

<u>Case 1.</u> $|V^+| = |V^-|$ and G has a Perfect Matching

OPT = max{# of **Sources**, # of **Sinks**}

<u>**Case 2.**</u> $|V^+| > |V^-|$ and G has a Perfect Matching

OPT = (# of Sources NOT Reachable from V_{∞})

Case 2'.
$$|V^+| < |V^-|$$
 and G has a Perfect Matching

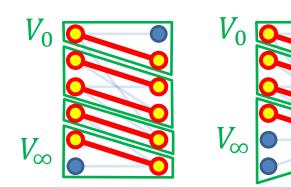
 $OPT = (\# of Sinks NOT Reachable to V_0)$

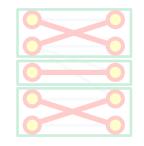
Case Analysis

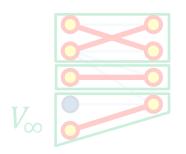
<u>Case 1.</u> When $V_0 = \emptyset = V_\infty$

<u>**Case 2.</u>** When $V_0 = \emptyset \neq V_\infty$ </u>

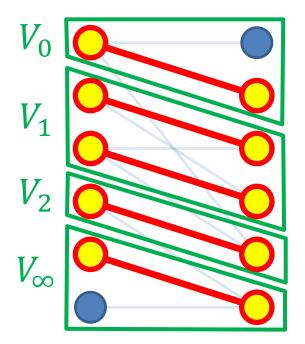
<u>Case 3.</u> When $V_0 \neq \emptyset \neq V_\infty$







Case 3. When $V_0 \neq \emptyset \neq V_\infty$

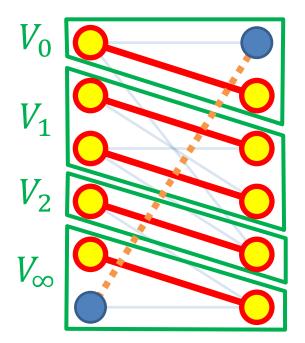


- $|V_0^+| < |V_0^-|$
- $|V_i^+| = |V_i^-|$ $(i \neq 0, \infty)$
- $|V_{\infty}^+| > |V_{\infty}^-|$
- ∀Max. Matching in G is a union of
 Perfect Matchings in G[V_i]

DM-decomposition

G has NO Perfect Matching

Case 3. When $V_0 \neq \emptyset \neq V_\infty$



- $|V_0^+| < |V_0^-|$
- $|V_i^+| = |V_i^-|$ $(i \neq 0, \infty)$
- $|V_{\infty}^+| > |V_{\infty}^-|$
- ∀Max. Matching in G is a union of
 Perfect Matchings in G[V_i]

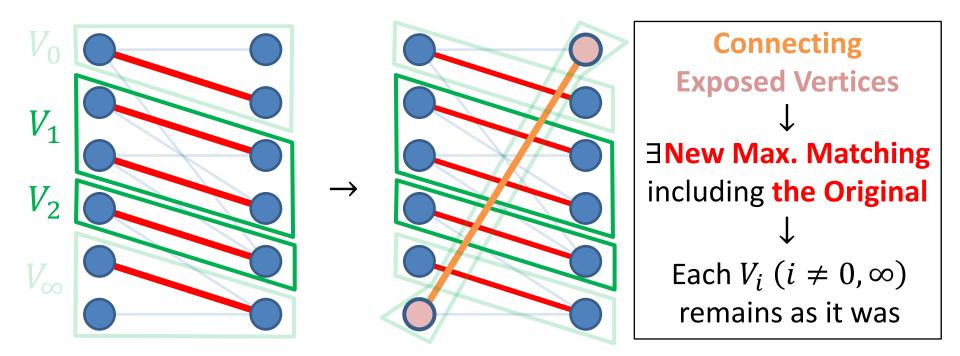
DM-decomposition

G has NO Perfect Matching

<u>Idea</u>

Adding Edges to Reduce to Cases 1,2 (3Perfect Matching)

Key Observation



DM-decomposition

<u>Idea</u>

Adding Edges to Reduce to Cases 1,2 (3Perfect Matching)

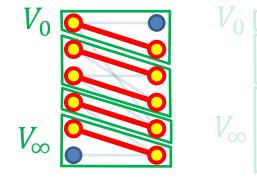
Case Analysis

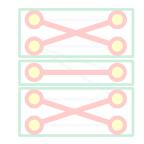
<u>**Case 1.</u>** When $V_0 = \emptyset = V_\infty$ </u>

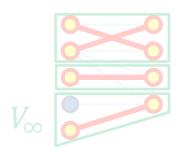
<u>**Case 2.</u>** When $V_0 = \emptyset \neq V_\infty$ </u>

Case 3. When
$$V_0 \neq \emptyset \neq V_\infty$$

Case 3.1. $|V^+| = |V^-|$





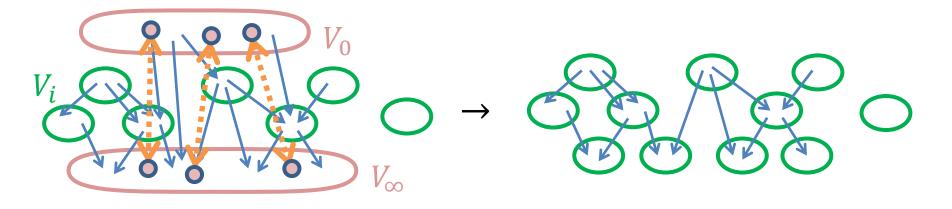


Case 3.1. When $|V^+| = |V^-|$

<u>Idea</u>

Adding Edges to Reduce to Case 1 (∃Perfect Matching) between Exposed Vertices

in a Max. Matching M in G

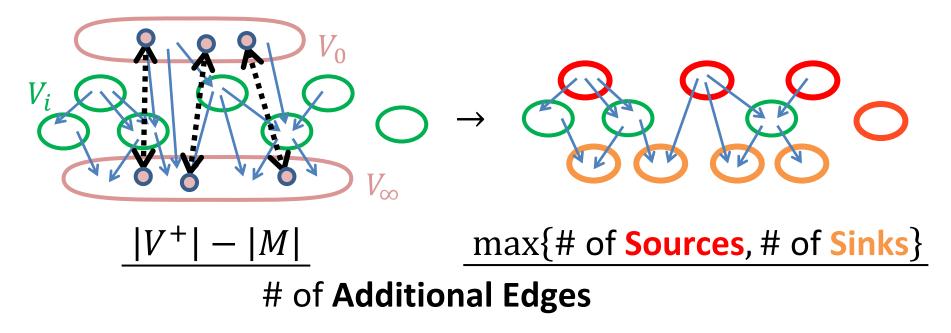


Case 3.1. When $|V^+| = |V^-|$

<u>Idea</u>

Adding Edges to Reduce to Case 1 (∃Perfect Matching) between Exposed Vertices

in a Max. Matching M in G

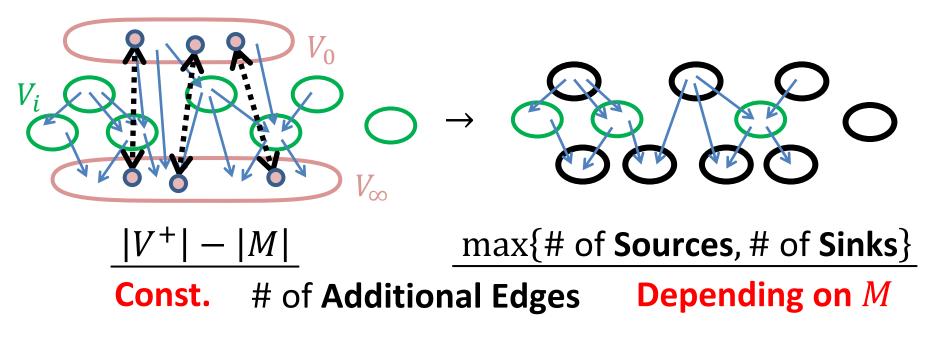


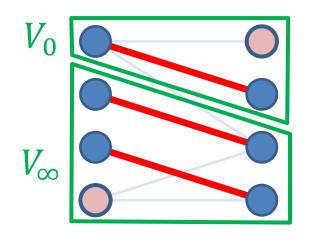
Case 3.1. When $|V^+| = |V^-|$

<u>Idea</u>

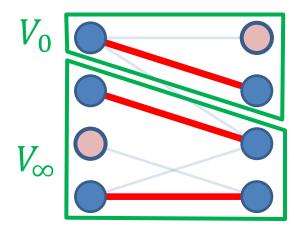
Adding Edges to Reduce to Case 1 (∃Perfect Matching) between Exposed Vertices

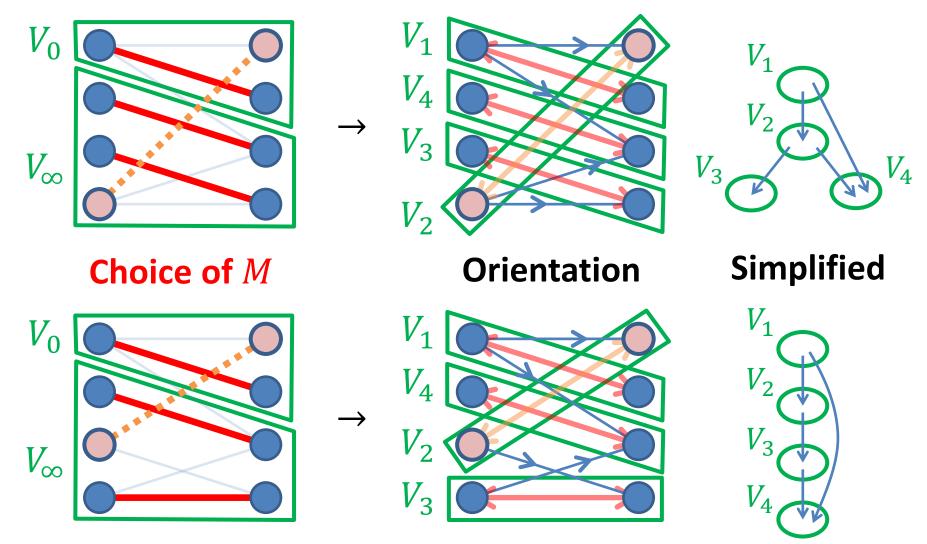
in a Max. Matching M in G

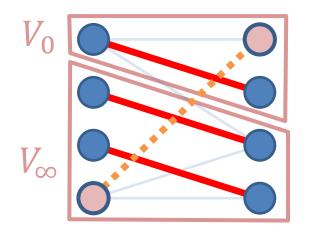


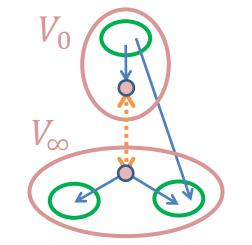


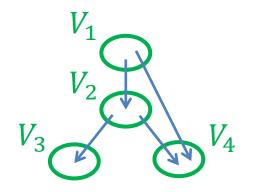
Choice of *M*



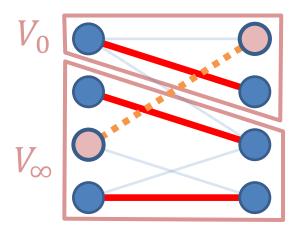




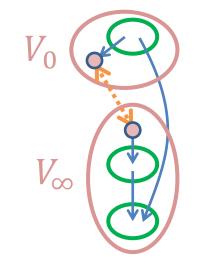


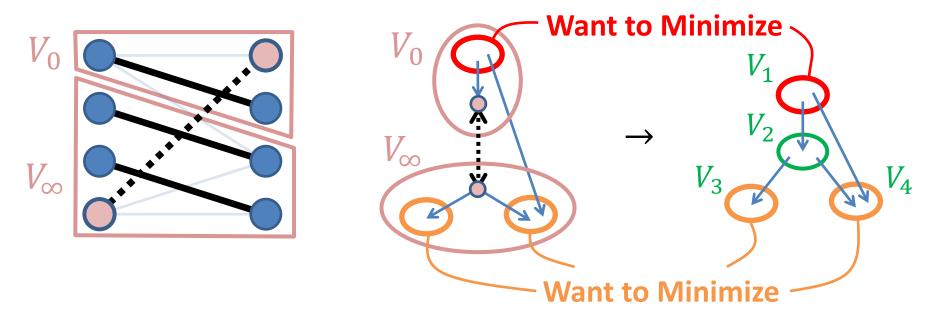


Choice of *M*



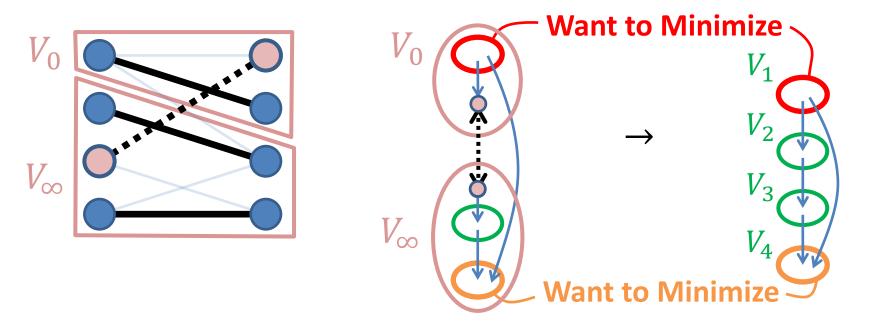
Strg. Conn. Comps.





<u>Obs.</u>

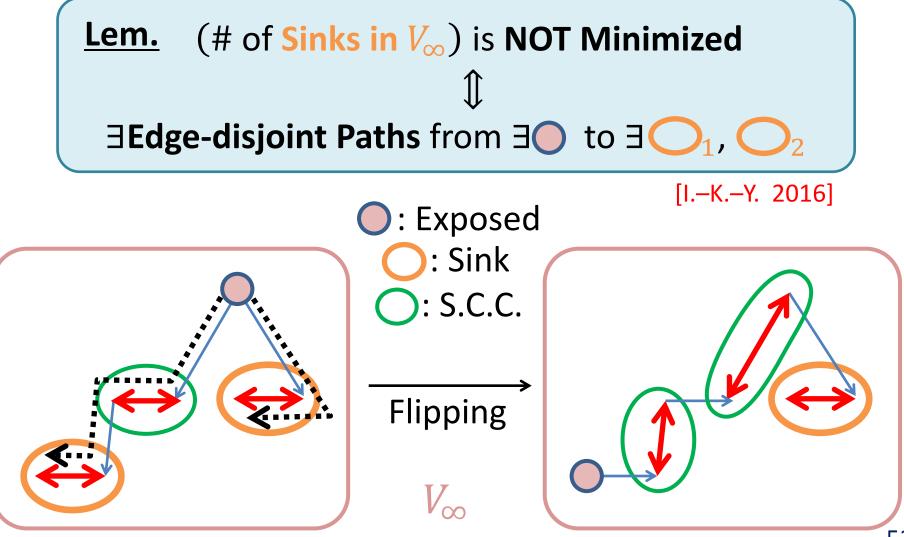
(# of **Resulting Sources**) = (# of **Sources in** V_0) + const. (# of **Resulting Sinks**) = (# of **Sinks in** V_∞) + const.



<u>Obs.</u>

(# of Sources in V_0) and (# of Sinks in V_∞) vary Indep. by choices of Perfect Matchings in $G[V_0]$ and $G[V_\infty]$.

How to Minimize (# of Sinks in V_{∞})

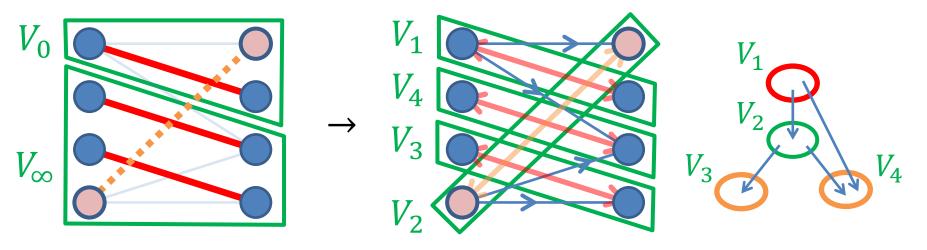


Summary of Cases 3.1

<u>Case 3.1.</u> $|V^+| = |V^-|$ and G has NO Perfect Matching

- Connect Exposed Vertices to Make Perfect Matching
 - \rightarrow Reduce to Case 1

OPT = max{# of **Sources**, # of **Sinks**}



Summary of Cases 3.1

<u>Case 3.1.</u> $|V^+| = |V^-|$ and G has NO Perfect Matching

- Connect Exposed Vertices to Make Perfect Matching
 - \rightarrow Reduce to Case 1

OPT = max{# of **Sources**, # of **Sinks**}

• Minimize (# of Sources in V_0) and (# of Sinks in V_∞), in Advance, by finding Edge-disjoint Paths repeatedly.

Summary of Cases 3.1

<u>Case 3.1.</u> $|V^+| = |V^-|$ and G has NO Perfect Matching

- Connect Exposed Vertices to Make Perfect Matching
 - \rightarrow Reduce to Case 1

OPT = max{# of **Sources**, # of **Sinks**}

• Minimize (# of Sources in V_0) and (# of Sinks in V_∞), in Advance, by finding Edge-disjoint Paths repeatedly.

<u>**Thm.</u>** One can find an optimal solution by this strategy.</u>

[I.-K.-Y. 2016]

Outline

- Preliminaries: How to Compute DM-decomposition
 - Find a Maximum Matching in a Bipartite Graph
 - Decompose a Digraph into Strongly Connected Components
- Result: How to Make a Bipartite Graph DM-irreducible
 - Make a Digraph Strongly Connected
 - Find Edge-Disjoint s–t Paths in a Digraph
- <u>Conclusion</u>

Conclusion

<u>Given</u> $G = (V^+, V^-; E)$: Bipartite Graph

FindMinimum Number of Additional Edgesto Make GDM-irreducible

<u>Thm.</u> This problem can be solved in polynomial time.

<u>Tools</u>

- Finding a Maximum Matching in a Bipartite Graph
- Decomposition into Strongly Connected Components
- Making a Digraph Strongly Connected by Adding Edges
- Finding **Edge-Disjoint** *s*–*t* **Paths** in a Digraph

[I.-K.-Y. 2016]