How to Make a Bipartite Graph DM-irreducible by Adding Edges

Satoru Iwata ${ }^{1}$, Jun Kato ${ }^{2}$, Yutaro Yamaguchi ${ }^{3}$

1. University of Tokyo, Japan.
2. TOYOTA Motor Corporation, Japan.
3. Osaka University, Japan.

Shonan Meeting 071 @Shonan April 12, 2016

Dulmage-Mendelsohn Decomposition

Given $\quad G=\left(V^{+}, V^{-} ; E\right)$: Bipartite Graph

reflecting Structure of Maximum Matching

Dulmage-Mendelsohn Decomposition

Given $\quad G=\left(V^{+}, V^{-} ; E\right)$: Bipartite Graph

- $\left|V_{0}^{+}\right|<\left|V_{0}^{-}\right|$or $V_{0}=\varnothing$
- $\left|V_{i}^{+}\right|=\left|V_{i}^{-}\right| \quad(i \neq 0, \infty)$
- $\left|V_{\infty}^{+}\right|>\left|V_{\infty}^{-}\right|$or $V_{\infty}=\varnothing$
- \forall Max. Matching in G is a union of Perfect Matchings in $G\left[V_{i}\right]$

Unique Partition of Vertex Set
reflecting Structure of Maximum Matchings

Dulmage-Mendelsohn Decomposition

Given $\quad G=\left(V^{+}, V^{-} ; E\right)$: Bipartite Graph

Dulmage-Mendelsohn Decomposition

[Dulmage-Mendelsohn 1958,59]
Given $\quad G=\left(V^{+}, V^{-} ; E\right)$: Bipartite Graph

DM-irreducibility

Def. A bipartite graph is DM-irreducible

§

The DM-decomposition consists of a single component

Obs. A bipartite graph G is DM-irreducible \Downarrow
$\forall e$: Edge in G, \exists Perfect Matching in G using e

DM-irreducibility

Obs. Complete bipartite graphs are DM-irreducible.

- Connected
- Every Edge is in some Perfect Matching

DM-irreducibility

Obs. Complete bipartite graphs are DM-irreducible.

- Connected
- Every Edge is in some Perfect Matching

Complete $\underset{\sim}{\nRightarrow}$ DM-irreducible
How many additional edges are necessary to make a bipartite graph DM-irreducible?

Our Problem

Given $\quad G=\left(V^{+}, V^{-} ; E\right)$: Bipartite Graph

Find Minimum Number of Additional Edges to Make G DM-irreducible

Our Problem

Given $\quad G=\left(V^{+}, V^{-} ; E\right)$: Bipartite Graph

Find Minimum Number of Additional Edges to Make G DM-irreducible

Our Result

Given $\quad G=\left(V^{+}, V^{-} ; E\right)$: Bipartite Graph
Find Minimum Number of Additional Edges to Make G DM-irreducible

Thm. This problem can be solved in polynomial time.
Tools
[I.-K.-Y. 2016]

- Finding a Maximum Matching in a Bipartite Graph
- Decomposition into Strongly Connected Components
- Making a Digraph Strongly Connected by Adding Edges
- Finding Edge-Disjoint $s-t$ Paths in a Digraph

Outline

- Preliminaries: How to Compute DM-decomposition
- Find a Maximum Matching in a Bipartite Graph
- Decompose a Digraph into Strongly Connected Components
- Result: How to Make a Bipartite Graph DM-irreducible
- Make a Digraph Strongly Connected
- Find Edge-Disjoint $s-t$ Paths in a Digraph
- Conclusion

Outline

- Preliminaries: How to Compute DM-decomposition
- Find a Maximum Matching in a Bipartite Graph
- Decompose a Digraph into Strongly Connected Components
- Result: How to Make a Bipartite Graph DM-irreducible
- Make a Digraph Strongly Connected
- Find Edge-Disjoint $s-t$ Paths in a Digraph
- Conclusion

How to Compute DM-decomposition

Given $\quad G=\left(V^{+}, V^{-} ; E\right)$: Bipartite Graph

How to Compute DM-decomposition

Given $\quad G=\left(V^{+}, V^{-} ; E\right)$: Bipartite Graph

- Find a Maximum Matching M in G

How to Compute DM-decomposition

Given $\quad G=\left(V^{+}, V^{-} ; E\right)$: Bipartite Graph

- Find a Maximum Matching M in G

- Orient Edges so that $M \Rightarrow$ Both Directions \leftrightarrow
$E \backslash M \Longrightarrow$ Left to Right

How to Compute DM-decomposition

Given $\quad G=\left(V^{+}, V^{-} ; E\right)$: Bipartite Graph

- Find a Maximum Matching M in G
- Orient Edges so that $M \Rightarrow$ Both Directions \leftrightarrow
$E \backslash M \Longrightarrow$ Left to Right \rightarrow
- V_{0} : Reachable to $V^{-} \backslash \partial^{-} M$
- $V_{\infty}:$ Reachable from $V^{+} \backslash \partial^{+} M$

$$
V^{+} \quad V^{-}
$$

How to Compute DM-decomposition

Given $\quad G=\left(V^{+}, V^{-} ; E\right)$: Bipartite Graph

- Find a Maximum Matching M in G

- Orient Edges so that
$M \Rightarrow$ Both Directions \leftrightarrow
$E \backslash M \Longrightarrow$ Left to Right \rightarrow
- V_{0} : Reachable to $V^{-} \backslash \partial^{-} M$
- V_{∞} : Reachable from $V^{+} \backslash \partial^{+} M$
- V_{i} : Strongly Connected Component of $G-V_{0}-V_{\infty}$

Outline

- Preliminaries: How to Compute DM-decomposition
- Find a Maximum Matching in a Bipartite Graph
- Decompose a Digraph into Strongly Connected Components
- Result: How to Make a Bipartite Graph DM-irreducible
- Make a Digraph Strongly Connected
- Find Edge-Disjoint $s-t$ Paths in a Digraph
- Conclusion

Case Analysis

Case 1. When $V_{0}=\emptyset=V_{\infty}$

Case 2. When $V_{0}=\emptyset \neq V_{\infty}$

Case 3. When $V_{0} \neq \emptyset \neq V_{\infty}$

Case Analysis

Case 1. When $V_{0}=\emptyset=V_{\infty}$

Case 2. When $V_{0}=\emptyset \neq V_{\infty}$

Case 3. When $V_{0} \neq \emptyset \neq V_{\infty}$

Case 1. When $V_{0}=\emptyset=V_{\infty}$

DM-decomposition

- $\left|V_{i}^{+}\right|=\left|V_{i}^{-}\right| \quad(i \neq 0, \infty)$
- \forall Max. Matching in G is a union of Perfect Matchings in $G\left[V_{i}\right]$ \downarrow
- $\left|V^{+}\right|=\left|V^{-}\right|$
- G has a Perfect Matching

Case 1. When $V_{0}=\emptyset=V_{\infty}$

DM-decomposition $=$ Strg. Conn. Comps.

Case 1. When $V_{0}=\emptyset=V_{\infty}$

DM-decomposition $=$ Strg. Conn. Comps. \rightarrow

Make it Strg. Conn.
by Adding Edges

Obs. DM-irreducibility is Equivalent to
Strong Connectivity of the Oriented Graph

How to Make a Digraph Strongly Connected

Given $G=(V, E)$: Directed Graph \bigcirc : Strg. Conn. Comp.

Find Minimum Number of Additional Edges to Make G Strongly Connected

How to Make a Digraph Strongly Connected

Given $G=(V, E)$: Directed Graph \bigcirc : Strg. Conn. Comp.
Each Source needs an Entering Edge

Find Minimum Number of Additional Edges to Make G Strongly Connected

How to Make a Digraph Strongly Connected

Given $G=(V, E)$: Directed Graph \bigcirc : Strg. Conn. Comp. Each Source needs an Entering Edge

Each Sink needs a Leaving Edge
Find Minimum Number of Additional Edges to Make G Strongly Connected

How to Make a Digraph Strongly Connected

Given $\quad G=(V, E)$: Directed Graph NOT Strg. Conn.
Find Minimum Number of Additional Edges to Make G Strongly Connected

Obs. max\{\# of Sources, \# of Sinks\} edges are Necessary.

How to Make a Digraph Strongly Connected

Given $\quad G=(V, E)$: Directed Graph NOT Strg. Conn.
Find Minimum Number of Additional Edges to Make G Strongly Connected

Obs. max\{\# of Sources, \# of Sinks\} edges are Necessary.

Thm. max\{\# of Sources, \# of Sinks\} edges are Sufficient. \exists Polytime Algorithm to find such Additional Edges.
[Eswaran-Tarjan 1976]
\rightarrow Case 1 is Polytime Solvable.

Case Analysis

Case 1. When $V_{0}=\varnothing=V_{\infty}$

Case 2. When $V_{0}=\emptyset \neq V_{\infty}$

Case 3. When $V_{0} \neq \varnothing \neq V_{\infty}$

Case 2. When $V_{0}=\emptyset \neq V_{\infty}$

DM-decomposition

- $\left|V_{i}^{+}\right|=\left|V_{i}^{-}\right| \quad(i \neq 0, \infty)$
- $\left|V_{\infty}^{+}\right|>\left|V_{\infty}^{-}\right|$
- \forall Max. Matching in G is a union of Perfect Matchings in $G\left[V_{i}\right]$

\downarrow

- $\left|V^{+}\right|>\left|V^{-}\right|$
- G has a Perfect Matching

Case 2. When $V_{0}=\emptyset \neq V_{\infty}$

DM-decomposition
=
Reachability from
Exposed Vertices $+$
Strg. Conn. Comps. of the Rest

Case 2. When $V_{0}=\emptyset \neq V_{\infty}$

DM-decomposition

Reachability from Exposed Vertices $+$
Strg. Conn. Comps. of the Rest

Make ALL Vertices Reachable from Exposed Vertices by Adding Edges

How to Achieve such Reachability

Given $\quad G=(V, E)$: Directed Graph, $U \subseteq V$
$\bigcirc \in U$
○: S.C.C.

Reachable from U

Find Minimum Number of Additional Edges to Make ALL Vertices Reachable from U

How to Achieve such Reachability

Given $\quad G=(V, E)$: Directed Graph, $U \subseteq V$
$\bigcirc \in U$
Each Source needs an Entering Edge

© S.C.C.

Reachable from U

Find Minimum Number of Additional Edges to Make ALL Vertices Reachable from U

How to Achieve such Reachability

Given $\quad G=(V, E)$: Directed Graph, $U \subseteq V$
Sufficient!! Each Source needs an Entering Edge
$\bigcirc \in U$

Reachable from U

Find Minimum Number of Additional Edges to Make ALL Vertices Reachable from U

How to Make a Digraph Strongly Connected
Given $\quad G=(V, E)$: Directed Graph, $U \subseteq V$
Find Minimum Number of Additional Edges to Make ALL Vertices Reachable from U

Obs. (\# of Sources) edges are Necessary and Sufficient.

Summary of Cases 1 and 2

Case 1. $\left|V^{+}\right|=\left|V^{-}\right|$and G has a Perfect Matching

$$
\text { OPT = max\{\# of Sources, \# of Sinks }\}
$$

Case 2. $\left|V^{+}\right|>\left|V^{-}\right|$and G has a Perfect Matching

$$
\text { OPT }=\left(\# \text { of Sources NOT Reachable from } V_{\infty}\right)
$$

Case 2'. $\left|V^{+}\right|<\left|V^{-}\right|$and G has a Perfect Matching

$$
\text { OPT }=\left(\# \text { of Sinks NOT Reachable to } V_{0}\right)
$$

Case Analysis

Case 1. When $V_{0}=\varnothing=V_{\infty}$

Case 2. When $V_{0}=\emptyset \neq V_{\infty}$

Case 3. When $V_{0} \neq \emptyset \neq V_{\infty}$

Case 3. When $V_{0} \neq \emptyset \neq V_{\infty}$

DM-decomposition

- $\left|V_{0}^{+}\right|<\left|V_{0}^{-}\right|$
- $\left|V_{i}^{+}\right|=\left|V_{i}^{-}\right| \quad(i \neq 0, \infty)$
- $\left|V_{\infty}^{+}\right|>\left|V_{\infty}^{-}\right|$
- \forall Max. Matching in G is a union of Perfect Matchings in $G\left[V_{i}\right]$
\downarrow
G has NO Perfect Matching

Case 3. When $V_{0} \neq \emptyset \neq V_{\infty}$

DM-decomposition

- $\left|V_{0}^{+}\right|<\left|V_{0}^{-}\right|$
- $\left|V_{i}^{+}\right|=\left|V_{i}^{-}\right| \quad(i \neq 0, \infty)$
- $\left|V_{\infty}^{+}\right|>\left|V_{\infty}^{-}\right|$
- \forall Max. Matching in G is a union of Perfect Matchings in $G\left[V_{i}\right]$
\downarrow
G has NO Perfect Matching

Idea
Adding Edges to Reduce to Cases 1,2 (\exists Perfect Matching)

Key Observation

Connecting

Exposed Vertices

$$
\downarrow
$$

ヨNew Max. Matching including the Original

Each $V_{i}(i \neq 0, \infty)$ remains as it was

DM-decomposition

Idea
Adding Edges to Reduce to Cases 1,2 (ヨPerfect Matching)

Case Analysis

Case 1. When $V_{0}=\varnothing=V_{\infty}$

Case 2. When $V_{0}=\emptyset \neq V_{\infty}$

Case 3. When $V_{0} \neq \emptyset \neq V_{\infty}$ Case 3.1. $\left|V^{+}\right|=\left|V^{-}\right|$

Case 3.1. When $\left|V^{+}\right|=\left|V^{-}\right|$

Idea

Adding Edges to Reduce to Case 1 (\exists Perfect Matching) between Exposed Vertices in a Max. Matching M in G

Case 3.1. When $\left|V^{+}\right|=\left|V^{-}\right|$

Idea

Adding Edges to Reduce to Case 1 (\exists Perfect Matching)
between Exposed Vertices
in a Max. Matching M in G

Case 3.1. When $\left|V^{+}\right|=\left|V^{-}\right|$

Idea

Adding Edges to Reduce to Case 1 (\exists Perfect Matching)
between Exposed Vertices
in a Max. Matching M in G

Sources and Sinks in Resulting Digraph

Choice of M

Sources and Sinks in Resulting Digraph

Choice of M

Orientation

Simplified

Sources and Sinks in Resulting Digraph

Choice of M

Strg. Conn. Comps.

Simplified

Sources and Sinks in Resulting Digraph

Obs.
(\# of Resulting Sources) $=\left(\#\right.$ of Sources in $\left.V_{0}\right)+$ const. (\# of Resulting Sinks) $=\left(\#\right.$ of Sinks in $\left.V_{\infty}\right)+$ const.

Sources and Sinks in Resulting Digraph

Obs.

(\# of Sources in V_{0}) and (\# of Sinks in V_{∞}) vary Indep. by choices of Perfect Matchings in $G\left[V_{0}\right]$ and $G\left[V_{\infty}\right]$.

How to Minimize (\# of Sinks in V_{∞})

Lem. (\# of Sinks in V_{∞}) is NOT Minimized

$$
\mathbb{I}
$$

\exists Edge-disjoint Paths from $\exists \bigcirc$ to \exists \square

O: Exposed
[I.-K.-Y. 2016]

Flipping

Summary of Cases 3.1

Case 3.1. $\left|V^{+}\right|=\left|V^{-}\right|$and G has NO Perfect Matching

- Connect Exposed Vertices to Make Perfect Matching \rightarrow Reduce to Case 1

$$
\mathrm{OPT}=\max \{\# \text { of Sources, } \# \text { of Sinks }\}
$$

Summary of Cases 3.1

Case 3.1. $\left|V^{+}\right|=\left|V^{-}\right|$and G has NO Perfect Matching

- Connect Exposed Vertices to Make Perfect Matching
\rightarrow Reduce to Case 1

$$
\text { OPT }=\max \{\# \text { of Sources, } \# \text { of Sinks }\}
$$

- Minimize (\# of Sources in V_{0}) and (\# of Sinks in V_{∞}), in Advance, by finding Edge-disjoint Paths repeatedly.

Summary of Cases 3.1

Case 3.1. $\left|V^{+}\right|=\left|V^{-}\right|$and G has NO Perfect Matching

- Connect Exposed Vertices to Make Perfect Matching
\rightarrow Reduce to Case 1

$$
\text { OPT }=\max \{\# \text { of Sources, } \# \text { of Sinks }\}
$$

- Minimize (\# of Sources in V_{0}) and (\# of Sinks in V_{∞}), in Advance, by finding Edge-disjoint Paths repeatedly.

Thm. One can find an optimal solution by this strategy.
[I.-K.-Y. 2016]

Outline

- Preliminaries: How to Compute DM-decomposition
- Find a Maximum Matching in a Bipartite Graph
- Decompose a Digraph into Strongly Connected Components
- Result: How to Make a Bipartite Graph DM-irreducible
- Make a Digraph Strongly Connected
- Find Edge-Disjoint $s-t$ Paths in a Digraph
- Conclusion

Conclusion

Given $\quad G=\left(V^{+}, V^{-} ; E\right)$: Bipartite Graph
Find Minimum Number of Additional Edges to Make G DM-irreducible

Thm. This problem can be solved in polynomial time.
Tools
[I.-K.-Y. 2016]

- Finding a Maximum Matching in a Bipartite Graph
- Decomposition into Strongly Connected Components
- Making a Digraph Strongly Connected by Adding Edges
- Finding Edge-Disjoint $s-t$ Paths in a Digraph

