Sending Secrets Swiftly: Rumors across Radio, Wireless and Telephone

R. Ravi
Carnegie Mellon University
Joint work with Jennifer Iglesias (CMU), Afshin Nikzad (Stanford), Rajmohan Rajaraman (Northeastern) and Ravi
Sundaram (Northeastern)

Minimum Telephone Multicast Time Problem

Given:

- A graph $G(V, E)$
- A source node r and a set of terminal nodes R Inform the terminals of the message of r.
How?
- Disjoint pairs of adjacent vertices exchange information in rounds
Goal:
- Use the minimum number of rounds to inform R

Questions for you

What is the minimum broadcast time for these graphs?

Questions for you

What is the minimum broadcast time for these graphs?

A new spanning tree objective

- Use critical arcs used in broadcast to define a r-arborescence
- Diameter and max out-degree are lower bounds on broadcast time

Approximating min poise trees

Poise of a tree $=$ diameter of $T+$ max degree of T

Known: Given a graph with a spanning tree of poise P, poly-time algo to find one of poise O(P log n) [Ravi'94]

Open: Find a spanning tree of poise $O(\mathrm{P})$

Broadcasting with Minimum Poise

Trees

Lemma [Ravi'94]: Given a tree of poise P, can find a telephone broadcast scheme from any root within time $O\left(\mathrm{P} \frac{\log n}{\log \log n}\right)$

Open: Given a tree of poise P, find a scheme that completes in time $O\left(\mathrm{P}+\log ^{2} \mathrm{n}\right)$

Communication Models

Telephone:
Exchanged messages form matchings
Radio:
Subset transmits, receivers hear if a unique neighbor transmits
Wireless/Edge-star:
Subset transmits, receiver can tune to any one transmitting neighbor

Min broadcast time in three models

Telephome

Radis

Wireless

Demand Types

Broadcast:
Deliver root's message to all
Gossip:
Deliver every node's message to all
Multicast:
Deliver root's message to a subset
Multi-commodity multicast:
Given (s, t) pairs, message of s must be delivered to t

Multi-commodity Multicast Types

Given pairs (s, t), deliver message from s to t Symmetric:
(s, t) demand pair implies (t, s) is also a demand pair
Asymmetric:
No restrictions

Related Work: Telephone

- Broadcast: $\frac{\log ^{2} n}{\log \log n}$-approximation [Ravi, FOCS94]
- Improvements to $\log n$ [Guha, BarNoy, Naor, Schieber, STOC98] and $\frac{\log n}{\log \log n}$ [Elkin, Kortsarz, SODA03]
- Lower bound of $3-\epsilon$ for undirected multicast [Elkin, Kortsarz, STOCO2]
- Multicommodity multicast: $O\left(2^{\log \log k \cdot \sqrt{\log k}}\right)$-approximation [Nikzad, Ravi ICALP14]

Related Work: Radio

- Broadcast in time $O\left(D+\log ^{2} n\right)$ in diameter D graph [Kowalski, Pelc 2007]
- Both terms are independently necessary via examples
- Gossip in time $O\left(D+\Delta \log ^{2} n\right)$ in diameter D graph of max degree Δ [Gasieniec, Peleg, Xin 2007]
- NP-hard to approximate gossip time in radio model to within $\Omega\left(\mathrm{n}^{\frac{1}{2}-\epsilon}\right)$ for any constant $\epsilon>0$ [Iglesias, Rajaraman, Ravi, Sundaram FSTTCS15]

Related Work: Wireless

- Radio Aggregation Scheduling: Message gathering with message transmissions forming an induced matching across receivers and senders: $\Theta\left(n^{1-\epsilon}\right)$ hardness [Gandhi+, ALGOSENSORS2015]

Results

	Broadcast	Gossip	Multicommodity
Radio	$D+O\left(\log ^{2} n\right)[12]$	$O(D+\Delta \log n)[10]$	Unknown
		$\Omega\left(n^{1 / 2-\epsilon}\right) \operatorname{hard}$	$\Omega\left(n^{1 / 2-\epsilon}\right)$ hard*
Edge-star	OPT $=D$	OPT $\cdot O\left(\frac{\log n}{\log \log n}\right)^{*}$	OPT• $\tilde{O}\left(2^{\sqrt{\log n}}\right)^{*}($ symmetric $)$
			OPT•O($\left.n^{\frac{2}{3}}\right)^{*}($ asymmetric $)$
Telephone	OPT $\cdot O\left(\frac{\log n}{\log \log n}\right)[7]$	OPT• $O\left(\frac{\log n}{\log \log n}\right)[7]$	OPT $\cdot O\left(2^{\sqrt{\log n}}\right)[13]$

Simple Algorithm for the Multicast Problem

1. Guess the length of the Optimal Solution, L
2. Extract a set of maximal vertexdisjoint paths of length at most $2 L$ between the terminals
3. Inform the set R^{\prime} recursively
4. Inform the vertices of the paths
5. Inform the rest of terminals using a minimum b-matching in $G[M, R \backslash M]$ where matched edges are "paths of length up to $\mathrm{L}^{\prime \prime}$

Analysis of the Algorithm

1. Guess the length of the Optimal Solution, L
2. Extract a set of maximal vertexdisjoint paths of length at most $2 L$ between the terminals
3. Inform the set R^{\prime} recursively
4. Inform the vertices of the paths
5. Inform the rest of terminals using a minimum b-matching in $G[M, R \backslash M]$ where matched edges are "paths of length up to L"

$$
\begin{gathered}
b \leq L \\
T(n) \leq \quad T(n / 2)+2 L+2 L \Rightarrow T(n) \leq 4 L \cdot \log n
\end{gathered}
$$

Analysis of the Algorithm

Why $b \leq L$?

- Look at the optimal solution.
- An L-matching is given by the paths which connect the uninformed terminals to the informed terminals.

Open Problems

	Broadcast	Gossip	Multicommodity
Radio	$D+O\left(\log ^{2} n\right)[12]$	$O(D+\Delta \log n)[10]$	Unknown
		$\Omega\left(n^{1 / 2-\epsilon}\right)$ hard* *	$\Omega\left(n^{1 / 2-\epsilon}\right)$ hard* *
Edge-star	$\mathrm{OPT}=D$	OPT.O($\left.\frac{\log n}{\log \log n}\right)^{*}$	OPT. $\tilde{O}\left(2^{\sqrt{\log n}}\right) *$ (symmetric)
			OPT.O($\left.n^{\frac{2}{3}}\right)^{*}$ (asymmetric)
Telephone	$\text { OPT. } O\left(\frac{\log n}{\log \log n}\right)[7]$	OPT. $O\left(\frac{\log n}{\log \log n}\right)[7]$	OPT. $\tilde{O}\left(2^{\sqrt{\log n}}\right)[13]$

