

Airports and Railways: Facility Location Meets Network Design

Tobias Mömke

Saarland University

Joint work with Anna Adamaszek and Antonios Antoniadis

NII Shonan Meeting No. 071 Shonan Village Center, 11–14 April 2016

1 💼

Facility Location: Bipartition between demands and facilities

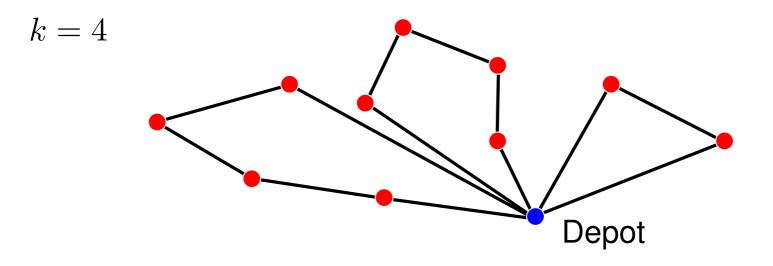
Network design:

Find network with specific properties

Relevant problems in between

Capacitated Vehicle Routing

Given: set of cities **Output:** set of tours of size at most k each that cover all the cities

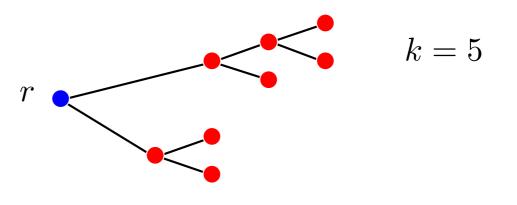


Capacitated Minimum Spanning Tree

Given: Edge-weighted graph G, root r, vertex demands, capacity k

Feasible solutions: Forests such that for each tree, total demand of its vertices at most k

Goal: Min. edge costs + connections of trees to root r



F Known Results

Capacitated Minimum Spanning Tree Current best approx., also in Euclidean setting: 3.15-approximation [Jothi–Raghavachari TALG '05]

Capacitated Vehicle Routing (CVRP) (i) PTAS for very large capacity ($k = \Omega(n)$) [Asano–Katoh–Tamaki–Tokuyama STOC '97] (ii) PTAS for small capacity ($k \le 2^{\log^{o(1)} n}$) [Adamaszek–Czumaj–Lingas ISAAC '09] (iii) QPTAS for all k [Das–Mathieu SODA '10]

Aim: Formalize connection between the two problem types (i. e., facility location and network design)

- Unify solutions to problems in between
- Create tool for solving such problems

Airports and Railways

Given: set of cities create pairwise connection with network of airports and railways

Each city: cost for building an airport Each railway line: cost proportional to distance

Each airport: serves at most k cities

Goal: minimize cost for building airports and railways

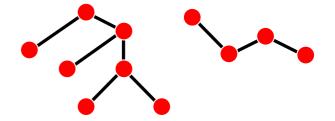
Given: Graph G with vertex costs a(v), edge costs r(e)

Goal: Compute a min.-cost network of $A \subseteq V(G)$ airports and $R \subseteq E(G)$ railways connecting all the cities, where each connected component contains at most k vertices, and at least one airport

^{**F**} Subproblems of AR

Natural Problems in Framework:

Network: forest or paths AR_F , AR_P



Capacitated or uncapacitated AR $_X$, AR $_X^\infty$

Arbitrary or uniform airport cost AR_X, 1AR_X $\forall v, a(v) = 1$

9

F Motivation: PTAS

PTAS for Euclidean {TSP, STP, etc.}

Only **QPTAS** for CVRP!

Airports and Railways more general than CVRP

 \Rightarrow no PTAS known

Identify Source of Hardness

Split Properties into(a) Respect Capacities(b) Allow arbitrary costs

- 1. Exact poly. time alg. for AR_F^{∞}
- 2. NP-hardness of AR_P^{∞} , $1AR_F$, $1AR_P$
- 3. PTAS for AR_P^{∞} , $1AR_F$, $1AR_P$ (2D Euclidean)
 - ⇒ We can handle arbitrary capacities and arbitrary airport costs separately

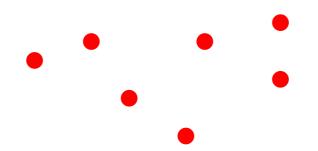
$\mathsf{AR}_F^\infty \in \mathsf{P}$

$1AR_P^{\infty}$ (and therefore AR_P , AR_P^{∞} , $1AR_P$) NP-hard Reduction from TSP-path

 $1AR_F$ (and therefore AR_F) NP-hard Reduction from Planar Monotone Cubic One-in-Three SAT

Uncapacitated Forest

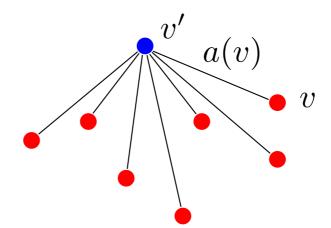
Solve MST with additional "sky vertex" \boldsymbol{v}'



Extension: ensure components of *average* size k (via matroid intersection)

^F Uncapacitated Forest

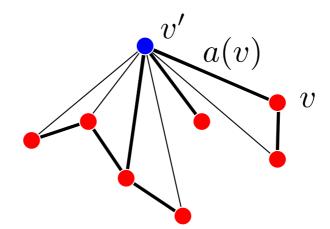
Solve MST with additional "sky vertex" \boldsymbol{v}'



Extension: ensure components of *average* size k (via matroid intersection)

^F Uncapacitated Forest

Solve MST with additional "sky vertex" \boldsymbol{v}'



Extension: ensure components of *average* size k (via matroid intersection)

^r Uncapacitated Paths

We develop a PTAS based on Arora's scheme

But almost each step needs some extra work

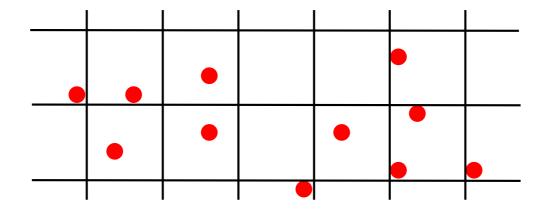
- Identify clusters (separate bounding boxes)
- New uncrossing
- Control number of crossings per portal
- Some extra work to combine DP cells

^C Uniform Airport Costs

- For both $1AR_F$ and $1AR_P$:
 - 1. Preprocess the instance
 - 2. Subdivide into sparse and dense sub-instances
 - 3. Solve sparse and dense substances independently
 - 4. Recombine them to result

Split instance into substances of size $\ell_i \times \ell_i$ with $\ell_i \leq 1/\varepsilon$

Randomly shift in both dimensions



Note 1: substances of size $O_{\varepsilon}(1)$ each. In Arora's scheme: $O_{\varepsilon}(n)$

Note2: OPT cannot contain edges longer than 1

Proof idea:

(i) Expected total cost of removed edges at most an ε -fraction of the optimal solution. (ii) Derandomized random shift.

^{**F**} Sparse vs Dense

Case 1: opt. of subinstance has $\leq 1/\epsilon^7$ components

Slight adaption of Arora's scheme, see [Asano–Katoh–Tamaki–Tokuyama STOC '97]

Case 2: opt. of subinstance has $> 1/\epsilon^7$ components

More interesting case

Dense Instances (Idea)

Start with an infinite capacity solution

Split instance into $\varepsilon^2\times\varepsilon^2$ cells

Cut each component of the infinite capacity solution into εk -vertex chunks, associate each with a cell

Connect chunks greedily but cheaply

Show:

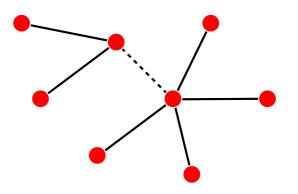
(i) Existence of almost optimal "chunk-respecting" solution

(ii) Find good "chunk-respecting" solution"

 $1\mathsf{AR}_F$

Return trees of sizes between εk and $5\varepsilon k$

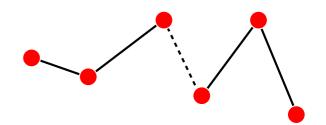
MST in Euclidean plane: degree at most 5 (kissing number)



Collect the trees bottom-up

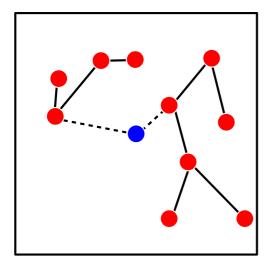
 $1 \mathbf{A} \mathbf{R}_P$

Cut each path into pieces of length εk



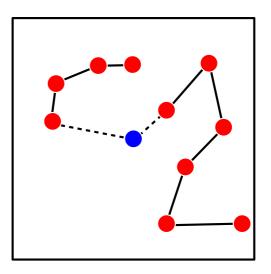
20

Associate Chunks with Cells



Forest:

pick an arbitrary vertex for each chunk



Paths:

Assign each endpoint of each chunk

Assembling cunks

Forest Case: greedily collect chunks for each cell

Path Case: follow a path, connect endpoint to another endpoint in same cell

^{**F**} Proof Sketch

Polynomial running time + Feasibility

Solutions for the uncapacitated case are lower bound (up to $(1 + \varepsilon)$) for the optimal solution

Airport cost: Roughly as many airports as OPT, "stuck" at most once per cell

Edge cost: Added at most $1/\varepsilon$ edges each of cost at most $\varepsilon^2 \sqrt{2}$; each component has cost at least 1

^{**F**} Open Problems

Find PTAS for general versions AR_F and AR_P in Euclidean space, planar graphs, etc.

Other metrics

Further problems in the Airport and Railway framework?

Other special instance classes of AR_P and AR_F ?