Approximating Directed Steiner Problems via Tree Embedding

Bundit Laekhanukit

Weizmann Institute of Science Rehovot, Israel

Directed Steiner Tree (DST)

Directed Steiner Tree (DST)

Directed Steiner Tree (DST)

k-Connected DST (k-DST)

http://crab.rutgers.edu/~guyk/fpt.pptx

What're known in late 90's

Algorithms

DST	PolyTime	$\|T\| \wedge \mathbf{c}$, for $\mathbf{c > 0}$	[CCCDGGL'99]
	QPolyTime	$(\log \|T\|)^{\wedge} 3$	[CCCDGGL'99]
k-DST			

Hardness

DST	Set Cover Hard
k-DST	DST Hard

What're known in 2000's

Algorithms

DST	PolyTime	$\|T\| \wedge \mathbf{c}$, for $\mathbf{c}>0$	[CCCDGGL'99]
	QPolyTime	$(\log \|T\|)^{\wedge} 3$	[CCCDGGL'99]
k-DST			

Hardness

DST	$(\log \|T\|)^{\wedge}(2-\varepsilon)$	$\left[H K^{\prime} 02\right]$
k-DST	DST Hard	

Currently known

Algorithms

DST	PolyTime	$\|T\| \wedge \mathbf{c}$, for $\mathbf{c}>0$ [CCCDGGL'99]
	QPolyTime	$(\log \|T\|)^{\wedge} 3 / \log \log \|T\|[G L ' 15]$
k-DST		

Hardness

DST	$(\log \|T\|)^{\wedge}(2-\varepsilon)$		[HK'02]	
2-DST	DST Hard			
$\begin{aligned} & \text { k-DST } \\ & (k \gg 2) \end{aligned}$	k << \|T		$k^{\wedge} 1 / 2$	[L'14]
	k >> \|T		$\|T\| \wedge 1 / 4$	[L'14]
	General	$\mathrm{n}^{\wedge} \mathrm{c}, \exists \mathrm{c}$	NV'12]	

This Talks

k-DST

O(D k^\{D-1\} log n) Approx for D-Shallow [L'15]

 [Depth-D DAG is a special case]
2-DST

Õ $\left((\log n)^{\wedge} 2(\log |T|)^{\wedge} 2\right)$ Approx for General [GL'16] [in Quasi-Polynomial-Time]

This Talks

k-DST

O(D k^\{D-1\} log n) Approx for D-Shallow [L'15]

 [Depth-D DAG is a special case]
2-DST

Õ(($\log n)^{\wedge} \mathbf{2}^{\left.(\log |T|)^{\wedge} 2\right)}$ Approx for General [GL'16] [in Quasi-Polynomial-Time]

Please blame me for any bug!

Our key ingredient is a reduction from DST to Group Steiner Tree (GST) on Trees

Our key ingredient is a reduction from DST to Group Steiner Tree (GST) on Trees

DST to GST on Trees

Groups

List All paths (of length D)

DST to GST on Trees

List All paths (of length D)

DST to GST on Trees

List All paths (of length D)

k-DST to GST on Trees?

Groups

List All paths (of length D)

k-DST to GST on Trees?

List All paths (of length D)

How to make it work?

k-DST to GST on Trees?

Groups
There is a 1-1 map of paths.

k-DST to GST on Trees?

There is a 1-1 map of paths.

k-DST to GST on Trees

Groups
Consolidate two graphs with LP

Analysis

Pay O(k^\{D-2\}) for k-DST => Tree-GST

Round Tree-GST O(k D log n) times

Total Cost = O(D k^\{D-1\} $\log n)$ OPT

2-DST to GST on Trees

List All paths (of every length)

2-DST to GST on Trees

List All paths (of every length)

Independent Trees

Root r

Independent Trees

Root r

Independent Trees

Consolidate LPs again?

LP2: LP-GST

Consolidate LPs again?

LP2: LP-GST

Apply Zelikovsky's Height Reduction!

LP1: LP-DST
LP2: LP-GST (low-depth)

Problematic!
No metric-completion

Apply Zelikovsky's Height Reduction!

(b)

LP1: LP-DST
LP2: LP-GST (low-depth)
LP3: Mapping-LP

Let LP find a mapping! Then consolidate all LPs!

Analysis

Pay O(β) for 2-DST => Short Tree-GST

Round Tree-GST O(D $\log \mathrm{n}$) times

(Rand.) Path-Maping O(β log D) times

Total Cost $=O\left(\beta^{\wedge} 2 D \log D \log n\right)$ OPT

Conclusion

Open Problem

3-DST does not have 3 indep.trees [BK'11].

Open Problem

3-DST does not have 3 indep.trees [BK'11].

Can we decompose k-DST into $f(k) \log ^{\wedge} \mathrm{c} n$ trees s.t. k trees support k-disj paths?

Thank you!

