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We study a natural
generalization of

Directed Steiner Tree.
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Given Digraph G,
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k-Connected DST (k-DST)

Given Digraph G,
Root r, 

Set of Terminals T
Find min-cost

subgraph H with
r,t-path for all ter. t

Can we have
k-disj r,t-paths?



“A problem that we
do not know anything for”

G. Kortsarz  

http://crab.rutgers.edu/~guyk/fpt.pptx



Algorithms

DST

k-DST

What’re known in late 90’s

PolyTime

QPolyTime

   |T|^c, for c>0  [CCCDGGL'99]

   (log |T|)^3        [CCCDGGL'99] 

Hardness

DST Set Cover Hard

k-DST DST Hard
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Algorithms

DST

k-DST

Currently known

PolyTime

QPolyTime

   |T|^c, for c>0  [CCCDGGL'99]

   (log |T|)^3 / log log |T|  [GL'15] 

Hardness

DST                         (log |T|)^(2-ε)              [HK'02]

2-DST DST Hard

k-DST
(k >> 2)

k << |T|                 k^1/2                  [L'14]

               |T|^1/4                 [L'14]k >> |T|

            n^c, Ǝ c >0   [CLNV'12]General ETH
Gap SAT



k-DST

O(D k^{D-1} log n) Approx for D-Shallow [L’15]
       [Depth-D DAG is a special case]

This Talks

2-DST

Õ((log n)^2 (log |T|)^2) Approx for General [GL’16]
    [in Quasi-Polynomial-Time]



k-DST

O(D k^{D-1} log n) Approx for D-Shallow [L’15]
       [Depth-D DAG is a special case]

This Talks

2-DST

Õ((log n)^2 (log |T|)^2) Approx for General [GL’16]
    [in Quasi-Polynomial-Time]

Please blame me
for any bug!
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Our key ingredient is 
a reduction from DST to

Group Steiner Tree
(GST) on Trees

which does not work
for k-DST at all!
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List All paths (of length D)

Easy to
round LP!

[GKR’00]



k-DST to GST on Trees?
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List All paths (of length D)

This does not preserve
connectivity!
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k-DST to GST on Trees?

Root

Terminals

Root

Groups

t1 t2

a b (a)

(a,t1) (a,t2)

(b)

(b,a)

(b,a,t1) (b,a,t2) (b,t2)

There is a 1-1 map of paths.

Two graphs share
flow-paths



k-DST to GST on Trees!!!

Root

Terminals

Root

Groups

t1 t2

a b (a)

(a,t1) (a,t2)

(b)

(b,a)

(b,a,t1) (b,a,t2) (b,t2)

Consolidate two graphs with LP



Analysis

  Pay O(k^{D-2}) for k-DST => Tree-GST

Round Tree-GST O( k D log n) times

Total Cost = O(D k^{D-1} log n) OPT



Generalization to 2-DST
on General Graphs.



2-DST to GST on Trees

Root

Terminals

Root

Groups

t1 t2

a b (a)

(a,t1) (a,t2)

(b)

(b,a)

(b,a,t1) (b,a,t2) (b,t2)

List All paths (of every length)



2-DST to GST on Trees

Root

Terminals

Root

Groups

t1 t2

a b (a)

(a,t1) (a,t2)

(b)

(b,a)

(b,a,t1) (b,a,t2) (b,t2)

List All paths (of every length)

Pay
factor-two



How can we pay only
factor-two?



Independent Trees
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Root r

Root r

tRoot r
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Independent Trees

t

Root r

Root r

tRoot r

t

P1

P2

P1 and P2
are disjoint.



Independent Trees

2-DST has 2 Indep. Trees [GT05,K11] (but not Edge Disjoint)

t

Root r

Root r

tRoot r

t

P1

P2

P1 and P2
are disjoint.



Consolidate LPs again?

Root Root

t1 t2

a b (a)

(a,t1) (a,t2)

(b)

(b,a)

(b,a,t1) (b,a,t2) (b,t2)

LP1: LP-DST LP2: LP-GST



Consolidate LPs again?

Root Root

t1 t2

a b (a)

(a,t1) (a,t2)

(b)

(b,a)

(b,a,t1) (b,a,t2) (b,t2)

LP1: LP-DST LP2: LP-GST

Problematic!
LP2 has expo-size



Apply Zelikovsky’s Height Reduction!

Root
Root

t1 t2

a b (a)

(a,t1) (a,t2)

(b)

(b,t1) (b,t2)

LP1: LP-DST LP2: LP-GST (low-depth)

Problematic!
No metric-completion



Apply Zelikovsky’s Height Reduction!

Root
Root

t1 t2

a b (a)

(a,t1) (a,t2)

(b)

(b,t1) (b,t2)

LP1: LP-DST LP2: LP-GST (low-depth)

Let LP find a mapping!
Then consolidate all LPs!

(b)

(b)

(b,t2)

LP3: Mapping-LP



Analysis

  Pay O(β) for 2-DST => Short Tree-GST

Round Tree-GST O( D log n) times

Total Cost = O( β^2 D log D log n) OPT

  (Rand.) Path-Maping O(β log D) times

  β = Height-Reduction
Factor



Conclusion

O(D k^D log n)-Approx for k-DST
on D-shallow instances.

Polylog-Approx for 2-DST
 on General Graphs 
(in Quasi-Poly time).



Open Problem

  3-DST does not have
3 indep.trees [BK’11].



Open Problem

  3-DST does not have
3 indep.trees [BK’11].

Can we decompose k-DST into
f(k) log^c n trees s.t. k trees

support k-disj paths?



Thank you!
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