Threshold Influence Model for Allocating Advertising Budgets

Nao Kakimura University of Tokyo

Joint work with Takuro Fukunaga，Atsushi Miyauchi， Yuni Iwamasa

Topic: Budget Allocation for Marketing

- Modelling information diffusion
- Simple algorithm for optimization

Q. How can we allocate budgets for effective advertisement?

Target customers

Simple Model: Maximum Coverage

- Maximize \#customers watching ads max. $f(X)$

$$
f(X)=\#\{t:|N(t) \cap X| \geq 1\}
$$

$$
\text { s.t. }|X| \leqq k
$$

TV and DM $\rightarrow 5$ people are covered
max. $f(X)=\sum_{t \in T} \operatorname{Pr}[t]$
s.t. $|X| \leqq k$
>Source-side model \subseteq max. monotone submodular fns - Each source has a probability

$$
\operatorname{Pr}[t \text { is influenced }]=1-\prod_{s \in N(t) \cap X}\left(1-p_{s}\right)
$$

> Target-side model \approx max. thresholds coverage - Each target has a probability
$\operatorname{Pr}[t$ is influenced $]=1-\left(1-p_{t}\right)^{N(t) \cap X \mid}$

Maximum Thresholds Coverage

- Each customer has a threshold

$$
f(X)=\#\left\{t:|N(t) \cap X| \geq \theta_{t}\right\}
$$

max. $f(X)$
s.t. $|X| \leqq k$

TV newspaperDM Social ads

Maximum Thresholds Coverage

\#customers whose received influence $\geqq \theta_{t}$

> Observation

- Each threshold is 1 = maximum coverage
\square (1-1/e)-approximation
- Harder than the densest k-subgraph problem
- f is not submodular or supermodular in general
\square If θ is randomly chosen, (1-1/e)-approximation
\rightarrow Today: Different objective on the same model

This Talk: Problem with Different Objective

> Maximizing cost-effectiveness

- performance of budgets without constraint

$$
\max \frac{f(X)}{|X|} \text { \# customers influenced }
$$

>NP-hard

Result: Cost-Effectiveness Approximation

1) Decremental greedy algorithm

- Repeatedly remove one source w./ min. contribution
- Approx. factor $=\max \operatorname{deg}(t)$
- Works for a more general case
\square when influence is submodular
\square when sources/targets have weights

2) LP-based algorithm

- Approx. factor $=\max \left(\operatorname{deg}(t)-\theta_{t}+1\right)$

Result: Cost-Effectiveness Approximation

1) Decremental greedy algorithm

- Repeatedly remove one source w./ min. contribution
- Approx. factor $=\max \operatorname{deg}(t)$
- Works for a more general case
\square when influence is submodular
\square when sources/targets have weights

2) LP-based algorithm

- Approx. factor $=\max \left(\operatorname{deg}(t)-\theta_{t}+1\right)$
T

LP for Threshold Model

>Generalizing LP for densest subgraph [Charikar00]

$$
\left(\theta_{t}=\operatorname{deg}(t)=2 \text { for any } t\right)
$$

- Each source $s: x_{s}$
- Each target $t: y_{t}$

sub to
Covering constraints

It is not good to have only
At least θ_{t} of neighboring x_{s} 's are 1 $\Leftrightarrow y_{t}=1$

Constraint choosing 2 out of 3

$>$ At least 2 of x_{s}^{\prime} s are $1 \Leftrightarrow y_{t}=1$
$\bullet \Leftrightarrow$ Sum of the 2 smallest ones is $\geqq 1$
$\left(\begin{array}{lllll}1 & 1 & 1\end{array}\right)\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)\left(\begin{array}{lll}1 & \left.\begin{array}{lll}0 & 0\end{array}\right)\end{array}\left(\begin{array}{llll}0 & \underbrace{0}_{-} & 0\end{array}\right)\right.$

Constraint choosing θ_{t} out of $d=\operatorname{deg}(t)$

$>$ At least θ_{t} of x_{s}^{\prime} s are $1 \Leftrightarrow y_{t}=1$
$\bullet \Leftrightarrow$ Sum of the p_{t} smallest ones is $\geqq 1$

$$
\begin{aligned}
& \left.\quad \begin{array}{l}
p_{t}=\operatorname{deg}(t)-\theta_{t}+1 \\
\left(\begin{array}{llll}
1 & \cdots
\end{array}\right) \\
\theta_{t}
\end{array}\right) \\
& {\left[\begin{array}{c}
x_{1}+x_{2}+\cdots+x_{p_{t}} \\
x_{2}+x_{3}+\cdots+x_{p_{t}+1}
\end{array}\right.} \\
& \geq y_{t}
\end{aligned}
$$

for any choice of p_{t}-size subsets

LP for Threshold Model

$$
\begin{aligned}
& \max y_{t} \\
& t T \\
& \forall t \in T \\
& \forall U \subseteq N(t),|U|=p_{t} \\
& x_{s}=1 \leftarrow \text { Normalization } \\
& S \quad S
\end{aligned}
$$

Exponential \#consts

- Rem. This LP can be solved in poly-time
\square target t is valid if the sum of minimum p_{t} values $\geqq y_{t}$

LP for Threshold Model

$$
\begin{array}{cl}
\max _{t T_{t}} & \\
y_{s} & \\
x_{s} \quad y_{t} & \forall t \in T \\
& \forall U \subseteq N(t),|U|=p_{t} \\
{ }_{s s_{s}}=1 & \leftarrow \text { Normalization }
\end{array}
$$

Exponential \#consts
[Thm]
LP-optimal value \geqq optimal cost-effectiveness

Rounding Algorithm

- Find an LP-optimal solution $\boldsymbol{x}, \boldsymbol{y}$
- For a number r in $[0,1]$, define $X(r)=\left\{s \mid x_{s} \geqq r / p\right\}$
- Return the best $X(r)$ by changing r

[Thm]
Rounded solution $X(r)$ is p-approximation

Rounding Algorithm

- Find an LP-optimal solution $\boldsymbol{x}, \boldsymbol{y}$
- For a number r in $[0,1]$, define $X(r)=\left\{s \mid x_{s} \geqq r / p\right\}$
- Return the best $X(r)$ by changing r

Covering at least

$$
Y(r)=\left\{t \mid y_{t} \geqq r\right\}
$$

Sum of the p_{t} smallest ones $\geqq r$ \Leftrightarrow The θ_{t} th smallest ones $\geqq r / p$
$\Leftrightarrow \theta_{t}$ of x_{s}^{\prime} s are in $X(r)$
[lemma]

$$
\exists r \quad \frac{|Y(r)|}{|X(r)|} \geq \frac{L P O P T}{p}
$$

Proof Idea of Lemma

$>$ If every r satisfies $|Y(r)|<\frac{L P}{p}|X(r)|$

$$
\int_{0}^{1}|Y(r)| d r<\frac{L P}{p} \int_{0}^{1}|X(r)| d r
$$

$$
\begin{array}{lll}
x_{s} & y_{t}
\end{array}
$$

$$
s \quad U
$$

$$
x_{s}=1
$$

[lemma]

$$
\exists r \quad \frac{|Y(r)|}{|X(r)|} \geq \frac{L P O P T}{p}
$$

Proof Idea of Lemma

$>$ If every r satisfies $\left.\left|Y(r) k \frac{L P}{p}\right| X(r) \right\rvert\,$

$$
\int_{0}^{1}|Y(r)| d r<\frac{L P}{p} \int_{0}^{1}|X(r)| d r
$$

$$
\begin{array}{ll}
x_{s} & y_{t}
\end{array}
$$

$$
s \quad U
$$

$$
x_{s}=1
$$

$S \quad S$

$$
\sum_{i}^{y_{1}=L P}
$$

\rightarrow contradiction

$$
Y(r)=\left\{t \mid y_{t} \geqq r\right\}
$$

Summary

$>\max \left(\operatorname{deg}(t)-\theta_{t}+1\right)$-approximation

- Q. Better approximation?
$\square \mathrm{P}$ when $\theta_{t}=1$ for any t (maximum coverage)
- when f is submodular, opt is a singleton
$\square \mathrm{P}$ when $\theta_{t}=\operatorname{deg}(t)$ for any t (densest subhypergraph)
- f is supermodular
Q. Fractional optimization for other problems?
- Densest k-subgraph vs Densest subgraph
Q. Approx. for size-constrained problem?
- LP for densest k-subhypergraph gives deg(s)-approximation [Arulselvan14]
max. $f(X)$
s.t. $|X| \leqq k$

Thank you for your attention

