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Modelling information diffusion

Simple algorithm for optimization

Topic: Budget Allocation for Marketing
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TV Newspaper DM Social ads

…

Target customers

Q. How can we allocate budgets
for effective advertisement?

Media
sources



Simple Model: Maximum Coverage
3

Maximize #customers watching ads max.   f (X) 

s.t. |X|≦k}1|)(|:{#)(  XtNtXf

TV newspaper DM Socail ads

TV and DM → 5 people are covered



Two Influence Models[Alon et al.12]
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Source-side model

Each source has a probability

Target-side model

Each target has a probability

max.   

s.t. |X|≦k

 



XtNs

spt
)(

11]influencedisPr[

  |)(|
11]influencedisPr[

XtN

tpt








Tt

tXf ]Pr[)( Expected #influenced customers

≈ max. thresholds coverage
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Maximum Thresholds Coverage
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Each customer has a threshold max.   f (X) 

s.t. |X|≦k}|)(|:{#)( tXtNtXf 

TV newspaperDM Social ads

1 10 2 6 3 3 1 2

1 2 2 2 1 0 0 0 Received influence

influenced iff
sum ≧ threshold

Threshold θt



Maximum Thresholds Coverage
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Observation

Each threshold is 1 = maximum coverage

 (1-1/e)-approximation

Harder than the densest k-subgraph problem

 f is not submodular or supermodular in general

If θ is randomly chosen, (1-1/e)-approximation 

→ Today: Different objective on the same model

max.   f (X) 

s.t. |X|≦k
#customers whose 

received influence ≧ θt



This Talk: Problem with Different Objective
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Maximizing cost-effectiveness

 performance of budgets without constraint

NP-hard

max
f (X)

| X |

# customers influenced

the cost spent



Result: Cost-Effectiveness Approximation
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1) Decremental greedy algorithm

Repeatedly remove one source w./ min. contribution

Approx. factor = max deg(t) 

Works for a more general case

 when influence is submodular

 when sources/targets have weights 

2) LP-based algorithm

Approx. factor = max (deg(t) – θt +1)

T

S

deg(t)
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LP for Threshold Model
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Generalizing LP for densest subgraph [Charikar00]

Each source s : xs

Each target t : yt

max yt
tÎT

å

sub to 
Covering constraints

At least θt of neighboring xs’s are 1

⇔ yt =1

tt

ts

s yx 
ofneighbor:

It is not good to have only

(θt =deg(t)=2 for any t)



Constraint choosing 2 out of 3
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At least 2 of xs’s are 1 ⇔ yt =1

⇔ Sum of the 2 smallest ones is ≧1

x1 + x2 ³ yt
x2 + x3 ³ yt

x1 + x3 ³ yt

θt=2

x1

x2

x3

yt

 011  001  000 111



Constraint choosing θt out of d=deg(t)
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At least θt of xs’s are 1 ⇔ yt =1

⇔ Sum of the pt smallest ones is ≧1

θt

x1

x2

xd

yt

 0011 

pt = deg(t) – θt +1 

θt

for any choice of pt-size subsets
…



LP for Threshold Model
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Rem. This LP can be solved in poly-time

 target t is valid if the sum of minimum pt values ≧ yt

max yt
tÎT

å

xs
sÎU

å ³ yt
Tt

xs
sÎS

å =1

Exponential #consts

tpUtNU  ||),(

← Normalization



LP for Threshold Model
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max yt
tÎT

å

xs
sÎU

å ³ yt
Tt

xs
sÎS

å =1

Exponential #consts

tpUtNU  ||),(

← Normalization

[Thm]

LP-optimal value ≧ optimal cost-effectiveness



Rounding Algorithm
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Find an LP-optimal solution x, y

For a number r in [0,1], define X(r) = { s | xs≧ r/p }

Return the best X(r) by changing r

t
Tt

pp


 max

r/p

x

X(r) 

[Thm]

Rounded solution X(r) is p-approximation



Rounding Algorithm
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Find an LP-optimal solution x, y

For a number r in [0,1], define X(r) = { s | xs≧ r/p }

Return the best X(r) by changing r

t
Tt

pp


 max

r/p

x

X(r) 

Covering at least 

Y(r) = { t | yt≧ r }

Sum of the pt smallest ones ≧ r

[lemma]

p

LPOPT

rX

rY


|)(|

|)(|
r

⇔ The θt th smallest ones ≧ r/p

⇔ θt of xs’s are in X(r)



Proof Idea of Lemma
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 If every r satisfies |)(||)(| rX
p

LP
rY 
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tÎT

å

xs
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å ³ yt
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sÎS

å =1

[lemma]
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Proof Idea of Lemma
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 If every r satisfies 

 
1

0

1

0
|)(||)(| drrX

p

LP
drrY

ppx
s

s LPy
t

t 

Y(r) = { t | yt≧ r }

y

r/p

x

X(r) 

→ contradiction

max yt
tÎT

å

xs
sÎU

å ³ yt

xs
sÎS

å =1

|)(||)(| rX
p

LP
rY 



Summary
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max(deg(t) – θt +1)-approximation

Q. Better approximation?

 P when θt = 1 for any t (maximum coverage)

 when f is submodular, opt is a singleton

 P when θt = deg(t) for any t (densest subhypergraph)

 f is supermodular

Q. Fractional optimization for other problems?

 Densest k-subgraph vs Densest subgraph

Q. Approx. for size-constrained problem?

LP for densest k-subhypergraph gives

deg(s)-approximation [Arulselvan14]
max.   f (X) 

s.t. |X|≦k

max
f (X)

| X |



Thank you for your attention




