Threshold Influence Model for Allocating Advertising Budgets

Nao Kakimura University of Tokyo

Joint work with Takuro Fukunaga, Atsushi Miyauchi, Yuni Iwamasa

ERATO Kawarabayashi Large Graph Project

Shonan 2016

2016/04/12

Topic: Budget Allocation for Marketing

- Modelling information diffusion
- Simple algorithm for optimization

Q. How can we allocate budgets for effective advertisement?

Target customers

Simple Model: Maximum Coverage

Maximize #customers watching ads

 $f(X) = \#\{ t : |N(t) \cap X| \ge 1 \}$

TV and DM \rightarrow 5 people are covered

max. f(X)

s.t. $|X| \leq k$

Two Influence Models[Alon et al.12]

max.
$$f(X) = \sum_{t \in T} \Pr[t]$$

s.t. $|X| \leq k$

Expected #influenced customers

Source-side model ⊆ max. monotone submodular fns
 Each source has a probability

Pr[t is influenced] =
$$1 - \prod_{s \in N(t) \cap X} (1 - p_s)$$

➤ Target-side model ≈ max. thresholds coverage
 ● Each target has a probability

Pr[t is influenced] = $1 - (1 - p_t)^{|N(t) \cap X|}$

Maximum Thresholds Coverage

Each customer has a threshold

$$f(X) = \#\{ t : | N(t) \cap X \ge \theta_t \}$$

$$\max f(X)$$

s.t. $|X| \leq k$

Maximum Thresholds Coverage

#customers whose received influence $\geq \theta_t$

Observation

- Each threshold is 1 = maximum coverage
 - (1-1/e)-approximation
- Harder than the densest k-subgraph problem
 f is not submodular or supermodular in general
 If θ is randomly chosen, (1-1/e)-approximation
- \rightarrow **Today**: Different objective on the same model

This Talk: Problem with Different Objective

Maximizing cost-effectiveness

performance of budgets without constraint

$$\max \frac{f(X)}{|X|} \quad \begin{array}{l} \text{# customers influenced} \\ \text{the cost spent} \end{array}$$

Result: Cost-Effectiveness Approximation

- 1) Decremental greedy algorithm
 - Repeatedly remove one source w./ min. contribution
 - Approx. factor = $\max \deg(t)$
 - Works for a more general case
 - when influence is submodular
 - when sources/targets have weights
- 2) LP-based algorithm
 - Approx. factor = max $(\deg(t) \theta_t + 1)$

Result: Cost-Effectiveness Approximation

- 1) Decremental greedy algorithm
 - Repeatedly remove one source w./ min. contribution
 - Approx. factor = $\max \deg(t)$
 - Works for a more general case
 - when influence is submodular
 - when sources/targets have weights
- 2) LP-based algorithm
 - Approx. factor = max $(\deg(t) \theta_t + 1)$

LP for Threshold Model

Generalizing LP for densest subgraph [Charikar00] (\(\theta_t = deg(t) = 2 for any t)\)

- Each source $s : x_s$
- Each target t : y_t

It is not good to have only

 $\sum x_s \geq \theta_t y_t$ s:neighbor of t

Constraint choosing 2 out of 3

> At least 2 of x_s 's are $1 \Leftrightarrow y_t = 1$ • \Leftrightarrow Sum of the 2 smallest ones is ≥ 1

$$(1 \ 1 \ 1) (1 \ 1 \ 0) (1 \ 0 \ 0) (0 \ 0 \ 0)$$

$$x_{1} + x_{2} \quad {}^{3} y_{t}$$

$$x_{2} + x_{3} \quad {}^{3} y_{t}$$

$$x_{1} + \quad x_{3} \quad {}^{3} y_{t}$$

$$x_{1}$$

$$x_{2}$$

$$y_{t}$$

$$y_{t}$$

$$\theta_{t}=2$$

Constraint choosing θ_t out of $d = \deg(t)$

At least θ_t of x_s 's are 1 ⇔ $y_t = 1$ • Sum of the p_t smallest ones is ≥1

LP for Threshold Model

• Rem. This LP can be solved in poly-time \Box target *t* is valid if the sum of minimum p_t values $\ge y_t$

LP for Threshold Model

[Thm]

LP-optimal value ≥ optimal cost-effectiveness

Rounding Algorithm

- Find an LP-optimal solution x, y
- For a number r in [0,1], define $X(r) = \{ s \mid x_s \ge r/p \}$
- Return the best X(r) by changing r

 $= \max_{t \in T} p_t$

Rounding Algorithm

- Find an LP-optimal solution x, y
- For a number r in [0,1], define $X(r) = \{ s \mid x_s \ge r/p \}$
- Return the best X(r) by changing r

Covering at least

 $p = \max_{t \in T} p_t$

16

$$Y(r) = \{ t \mid y_t \ge r \}$$

Sum of the p_t smallest ones $\geq r$ \Leftrightarrow The θ_t th smallest ones $\geq r/p$ $\Leftrightarrow \theta_t$ of x_s 's are in X(r) Proof Idea of Lemma > If every *r* satisfies $|Y(r)| < \frac{LP}{p} |X(r)|$

$$\int_{0}^{1} |Y(r)| \, dr < \frac{LP}{p} \int_{0}^{1} |X(r)| \, dr$$

 $\max \mathop{a}_{t\hat{i}}^{s} y_{t}$ $\mathop{a}_{s\hat{i}}^{0} x_{s}^{-3} y_{t}$ $\mathop{a}_{s\hat{i}}^{0} x_{s} = 1$

[lemma]
$$\exists r \quad \frac{|Y(r)|}{|X(r)|} \ge \frac{LPOPT}{p}$$

Summary

- > max(deg(t) θ_t +1)-approximation
 - Q. Better approximation?
 - **P** when $\theta_t = 1$ for any *t* (maximum coverage)
 - when f is submodular, opt is a singleton
 - **P** when $\theta_t = \deg(t)$ for any *t* (densest subhypergraph)
 - *f* is supermodular
- Q. Fractional optimization for other problems?
 - Densest k-subgraph vs Densest subgraph
- Q. Approx. for size-constrained problem?
 - LP for densest k-subhypergraph gives deg(s)-approximation [Arulselvan14]

 $\max f(X)$
s.t. $|X| \leq k$

Thank you for your attention