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2-coloring graphs and hypergraphs

Given a graph G, it is easy to tell if it is 2-colorable (bipartite).

Given a 3-uniform hypergraph, NP-hard to tell if it is 2-colorable
(with no monochromatic hyperedges).

Will later muse: What “causes” this dramatic change in
computational complexity?



2-coloring: a finer dichotomy

Fact (nice exercise): Given a 2t-uniform hypergraph that is
promised to admit a perfectly balanced 2-coloring, one can
efficiently find a 2-coloring without monochromatic hyperedges.

(2-coloring graphs is special case when t=1)

What if there is an almost-balanced 2-coloring
(hypergraph has low discrepancy)!?

Theorem [Austrin-G.-Hastad'|4]:. Vt = 1, given a (2t+1)-uniform hypergh,
it is NP-hard to distinguish between following cases:
* (Yes): there is a near-balanced coloring (with discrepancy 1),
* (No): every 2-coloring leaves a monochromatic hyperedge




This Talk

Two directions in which AGH can be
strengthened/generalized

|. Stronger hardness for hypergraphs with nice colorings

2. Study broader class of “promise problems”

(that generalize coloring low-discrepancy hypergraphs)



Stronger coloring hardness |

Hardness of approximate hypergraph coloring

[G.-Hastad-Sudan’00; Dinur-Regev-Smyth’03]

For r 2 3, it is NP-hard to color a 2-colorable r-uniform hypergraph
with 10'% colors.

Comment: Recent developments (spurred by low-degree long code), show

hardness of coloring 2-colorable hypergraphs with exp((log n)'''%) colors
[Dinur-G!13; G.-Harsha-Hastad-Srinivasan-Varma’l 4; Khot-Saket’ | 4, Huang’ | 5]

Theorem: [G.-Lee’|5] Approximate hypergraph coloring is hard
even when a near-balanced 2-coloring exists: vVt 2 2,

Given a 2t-uniform hypergraph admitting a near-balanced 2-
coloring (< t+| vertices of a color in each hyperedge),

it is NP-hard to color it with 10'? colors.




Stronger coloring hardness ||

What if we are promised something stronger than low-discrepancy?

Eg., what if a r-uniform hypergraph is (r + 1)-strongly colorable?

* {-strongly colorable: vertex coloring with £ colors so that
every hyperedge has all vertices of different colors
* {-strongly colorable for £ < 2r — 2 implies 2-colorability

Theorem: [Brakensiek-G.163a]

Givena | 3%]-strongly colorable r-uniform hypergraph,

it is NP-hard to 2-color it (with no monochromatic edges)

We conjecture that similar hardness holds for (r + 1)-

strongly colorable case (which will imply the AGH hardness for
low-discrepancy hypergraphs)



This Talk

Two directions in which AGH can be
strengthened/generalized

2. Study broader class of “promise problems”

(that generalize coloring low-discrepancy hypergraphs)



Back to Slide 1

Given a graph G, it is easy to tell if it is 2-colorable (bipartite).

 Collection of #(x,y) constraints

Given a 3-uniform hypergraph, NP-hard to tell if it is 2-colorable
(with no monochromatic hyperedges).

* Collection of Not-all-Equal(x,y,z) constraints

What “causes” this dramatic change in computational complexity?



Operations preserving relations

f :{0,1}* = {0,1} preserves a relation R € {0,1}* if
\v4 (ai,a%, ...,a}c) ER,i=1,2..,L,

1 .2 L 1 2 L
(f(at,a?,...,at),....f(ak, at, ...,ak )) €ER

Imagine k X L matrix whose columns belong to R.
Then applying f row-wise yields a k-tuple in R.

f(O 11 ..0)=bh R, = {(0,1),(1,0)} (2-coloring)
f(1 00 ... 1)=by Which f preserve R, Antipodal fns

fCO1 1 ..0)=hb R; = {0,1}° \ {(0,0,0),(1,1,1)}
fF(COO1 ..1)=h, (2-coloring 3-hypergraphs)
fC100 ...1)=bhb3 Which f preserve R3?

Dictator functions



Polymorphisms & complexity distinction!?

Polymorphisms of R (Pol(R)) ={ f | f preserves R}

Easy vs hard explained by:

* For 2-coloring graphs, non-trivial polymorphisms exist
(Majority, Odd Parity, any antipodal function)

* For 2-coloring 3-hypergraphs, there are only trivial
(dictatorial) polymorphisms



Constraint Satisfaction Problem
(CSP)

I' ={R{,R,, ..., Rg} finite set of relations over {0,1}

(more generally, any finite domain D)

CSP(I') instance given by (V, C):
* V set of variables
* ( set of constraints of form (7, P) where
P €T & 7 is a k-tuple of variables (k = arity(P))

Goal: Is there an assignment 0:V — D that satisfies all
constraints in C, i.e., (a(rl), . O'(Tk)) ePV(t,P)eC?

2-colorability of graphs: CSP(#)
2-colorability of 3-hypergraphs: CSP(NAE;)



Boolean CSP dichotomy theorem [Schaefer 1978]

For every finite set I" of relations over {0,1},
CSP(T) is in P or NP-complete.

CSP(T) is in P if:
i. Every relation in I' is 0-valid
ii. Every relationin I' is |-valid
iii. Every relation in I' is a 2CNF
iv. Every relation in I' is affine
v. Every relation in I' is a conjunction of Horn clauses
vi. Every relation in I" is a conjunction of dual Horn

clauses
Otherwise CSP(I') is NP-complete



Contemporary polymorphic view

Theorem: A Boolean CSP(T) is
* polytime solvable if Pol(T') is non-trivial
(contains a non-dictator), and
* NP-complete if Pol(I) is trivial (contains only dictators).

Polymorphisms in tractable cases of Schaefer’s theorem:
Constant 0 or 1 function (trivial cases)
Majority(x,y,z) (2SAT)

AND(x,y) (Horn SAT)

OR(x,y) (dual Horn SAT)

x Dy Dz (affine equations)

Thm: CSP(T’) is in P if Pol(I") contains 0,1, Majority (of odd arity),
AND, OR, parity (of odd arity); otherwise it is NP-complete



CSP dichotomy conjecture

Feder-Vardi conjecture (1998): For every I' over an arbitrary
finite domain, CSP(I') is in P or NP-complete.

Algebraic dichotomy conjecture (Bulatov-Jeavons-Krokhin’05):
CSP(I) is in P if Pol(I') contains non-dictatorial functions;
otherwise CSP(I') is NP-complete.

Polymorphisms are the correct tool:

» Galois correspondence: Pol(I') € Pol(I'") = I'’ reduces to T’

» CSPs with same polymorphisms have identical complexity

> If Pol(T') is trivial, then CSP(I") is NP-complete.



Low-discrepancy 2-coloring as “promise” CSP

Given a 2t-uniform hypergraph that is promised to admit a
perfectly balanced 2-coloring, one can efficiently find a 2-coloring
that avoids monochromatic edges.

P={xe{0,1)2 |wt(x) =t}  Q ={0,1}2t\ {02, 12t}

Given a satisfiable CSP(P) instance, can find an assignment
satisfying it as a CSP(Q) instance.

Polymorphic explanation!?
» Weak polymorphism f € Pol(P, Q) is a function mapping
inputs in P to output in ()

For above pair, Majority, for odd L is a weak polymorphism



Promise CSP view of AGH theorem

Given a (2t+1)-uniform hypergh, NP-hard to distinguish whether
* (Yes): there is a near-balanced coloring (with discrepancy 1),
* (No): every 2-coloring leaves a monochromatic hyperedge

P={xe{01}** lwt(x) € {t,t +1}} Q ={0,1}2t*1\ {0%¢+1,12t+1}

Thm restatement: Given a satisfiable CSP(P) instance, it is NP-hard
to find an assighment satisfying it as a CSP(Q) instance.

But there are non-dictatorial weak polymorphisms
» Majority . € Pol(P, Q) forodd m < 2t — 1

Reason behind AGH theorem:
= If f € Pol(P, Q) then f isa (2t — 1)-junta”
" Proof based on elementary combinatorial arguments
* Hardness via reduction from Label Cover



Promise CSP dichotomy?

For two predicates P € Q < {0,1}*, PCSP(P, Q) is the problem of
telling if (i) an instance is satisfiable as a CSP(P) instance, or
(ii) it is unsatisfiable even as a CSP(Q) instance.

Captures notorious problems PCSP(I') defined similarly
such as approximate graph coloring:  for a finite set

P={(12),(23),(31,21,3B2),13)} T ={(P,0,),.., (P, Q)
Q={@NIije{L2,..,10}%i+} of re{laticlm-;airs, P; € Q; }

Questions driving this research agenda:
Is every PCSP(T") in P or NP-hard?
Do weak polymorphisms govern this dichotomy?
Can one characterize the tractable cases?

Harder than CSP dichotomy conjecture! Focus on Boolean domain.



Algorithms for PCSPs

Recall: 3 efficient algorithm for PCSP(P, Q) for
P={xe {01} Iwt(x) =t}  Q={0,1}*"\{0%, 1%}

(Weak) polymorphism behind algo: Majority of odd # inputs

Turns out there there are algorithms based on
new polymorphisms in PCSP setting...



A new weak polymorphism
Proposition (Brakensiek-G.16) PCSP(P, Q) is tractable for

P={x€{0,1}* |wt(x) = a} Q = {0,1}* \ {0%, 1%}
(foranya € {1,2, ...,k — 1})

Hypergraph H = (V, E) with integer a,, Ve € E,0 < a, < |e|;
if 3 a 2-coloring with exactly a, vertices colored Red in each e,
then can efficiently 2-color it without monochromatic edges.

Algorithm is based on linear programming

Underlying weak polymorphism: Alternating threshold (of odd arity)

ATL(Zl,Zz, ...,ZL) — 1(Z1 — Z9 + Zg — Zy + ...— VA + Zr > O)



Symmetric CSPs

A relation P € {0,1}* is symmetric if membership x € P
only depends on the Hamming weight of x

CSP(I')/PCSP(I") is symmetric if all relations in [ are symmetric.

Natural subclass (k-SAT, NAE k-SAT, discrepancy, etc. are symmetric)
Horn SAT is not symmetric

Partial Dichotomy Theorem for promise CSPs [Brakensiek-G. 6]
Let PCSP(I') be any Boolean promise CSP with symmetric
relations (allowing negations). Then PCSP(T') is in P or NP-hard.




Tractable cases

Thm [Brakensiek-G.16] Let I' be a set of symmetric
relation pairs (including Boolean negation).

Then PCPS(T) is in P if weak polymorphisms of I' contain:

i. Parity of L variables for all odd L, or

ii. Majority of L variables for all odd L, or

iii. Alternating Threshold of L variables for odd L, or
iv. the “anti’-version of any of the above for all odd L.

Otherwise PCSP(T') is NP-hard.

Algorithms:
» Case i: Gaussian elimination over F,
* Cases ii,iii: Linear programming

* Work for general, non-symmetric case as well



A word about hardness side

Structural classification of weak polymorphisms:
If I' doesn’t admit Parity; ,Maj; , AT, as a weak polymorphism

for some odd L4, L,, L3, (or their “antis” for some odd arity),
then there exists C(I') < oo such that
every weak polymorphism f:{0,1}™ — {0,1} of I satisfies:
« 35 c{l1,2,.. m}ofsize C(T) s.t.
f(x) =f(000..00)ifx;=0Vi€eS

While we don’t get a dictator/junta,
this interfaces well with a Label Cover reduction.



Summary

Promise CSPs capture several interesting problems,
including variants of graph/hypergraph coloring

Viewpoint has led to new hardness results for coloring
= 6-coloring 4-colorable graphs is NP-hard
* new NP-hardness proof that 4-coloring 3-colorable graphs
(already known in [Khanna-Linial-Safra’93, G.-Khanna’00]

Partial dichotomy theorem: Every symmetric Boolean promise
CSP (allowing negations) is either in P or NP-hard

» Road beyond symmetric case seems difficult but exciting
" Have to cope with further algorithms & polymorphisms,
and work with less structure for hardness.



