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2-coloring graphs and hypergraphs

Given a graph G, it is easy to tell if it is 2-colorable (bipartite).

Given a 3-uniform hypergraph, NP-hard to tell if it is 2-colorable

(with no monochromatic hyperedges).

Will later muse:  What “causes” this dramatic change in 

computational complexity?



2-coloring: a finer dichotomy

Fact (nice exercise): Given a 2t-uniform hypergraph that is 

promised to admit a perfectly balanced 2-coloring, one can 

efficiently find a 2-coloring without monochromatic hyperedges.

(2-coloring graphs is special case when t=1)

Theorem [Austrin-G.-Hastad’14]:. ∀𝑡 ≥ 1, given a (2t+1)-uniform hypergh,

it is NP-hard to distinguish between following cases:

• (Yes): there is a near-balanced coloring (with discrepancy 1),

• (No): every 2-coloring leaves a monochromatic hyperedge

What if there is an almost-balanced 2-coloring 

(hypergraph has low discrepancy)?



This Talk

Two directions in which AGH can be 

strengthened/generalized

1. Stronger hardness for hypergraphs with nice colorings

2. Study broader class of “promise problems” 

(that generalize coloring low-discrepancy hypergraphs)



Stronger coloring hardness I

Hardness of approximate hypergraph coloring 

[G.-Håstad-Sudan’00; Dinur-Regev-Smyth’03]

For r ≥ 3, it is NP-hard to color a 2-colorable r-uniform hypergraph 

with 1010 colors.

Comment: Recent developments (spurred by low-degree long code), show 

hardness of coloring 2-colorable hypergraphs with exp((log n)1/10) colors  

[Dinur-G.’13; G.-Harsha-Hastad-Srinivasan-Varma’14; Khot-Saket’14, Huang’15]

Theorem: [G.-Lee’15] Approximate hypergraph coloring is hard 

even when a near-balanced 2-coloring exists:  ∀ t ≥ 2,

Given a 2t-uniform hypergraph admitting a near-balanced 2-

coloring (≤  t+1 vertices of a color in each hyperedge), 

it is NP-hard to color it with 1010 colors.



Stronger coloring hardness II

Theorem: [Brakensiek-G.’16a]  

Given a ⌈ 3𝑟
2
⌉-strongly colorable 𝑟-uniform hypergraph, 

it is NP-hard to 2-color it (with no monochromatic edges)

What if we are promised something stronger than low-discrepancy?

Eg., what if a 𝑟-uniform hypergraph is 𝑟 + 1 -strongly colorable?

• ℓ-strongly colorable: vertex coloring with ℓ colors so that 

every hyperedge has all vertices of different colors

• ℓ-strongly colorable for ℓ ≤ 2𝑟 − 2 implies 2-colorability

We conjecture that similar hardness holds for 𝑟 + 1 -

strongly colorable case (which will imply the AGH hardness for 

low-discrepancy hypergraphs)



This Talk

Two directions in which AGH can be 

strengthened/generalized

1. Stronger hardness for hypergraphs with nice colorings

2. Study broader class of “promise problems” 

(that generalize coloring low-discrepancy hypergraphs)



Back to Slide 1

Given a graph G, it is easy to tell if it is 2-colorable (bipartite).

Given a 3-uniform hypergraph, NP-hard to tell if it is 2-colorable

(with no monochromatic hyperedges).

What “causes” this dramatic change in computational complexity?

• Collection of ≠(x,y) constraints

• Collection of Not-all-Equal(x,y,z) constraints



Operations preserving relations

𝑓 ∶ 0,1 𝐿 → 0,1 preserves a relation 𝑅 ⊆ 0,1 𝑘 if 

∀ 𝑎1
𝑖 , 𝑎2

𝑖 , … , 𝑎𝑘
𝑖 ∈ 𝑅, 𝑖 = 1,2, … , 𝐿,

( 𝑓(𝑎1
1, 𝑎1

2, … , 𝑎1
𝐿) , … , 𝑓 𝑎𝑘

1 , 𝑎𝑘
2, … , 𝑎𝑘

𝐿 ) ∈ 𝑅

Imagine 𝑘 × 𝐿 matrix whose columns belong to 𝑅.
Then applying 𝑓 row-wise yields a 𝑘-tuple in 𝑅.

0   1   1   …  0 

1 0   0   …  1𝑓 ( ) = 𝑏2

𝑓 ( ) = 𝑏1

0   1   1   …  0 𝑓 ( ) = 𝑏1

𝑅2 = { 0,1 , 1,0 } (2-coloring)

Which 𝑓 preserve 𝑅2? Antipodal fns

0   0   1   …  1 

1   0   0 …  1 𝑓 ( ) = 𝑏3

𝑓 ( ) = 𝑏2

𝑅3 = 0,1 3 ∖ { 0,0,0 , 1,1,1 }
(2-coloring 3-hypergraphs)

Which 𝑓 preserve 𝑅3?

Dictator functions



Polymorphisms & complexity distinction?

Polymorphisms of 𝑅 (Pol(𝑅)) = { 𝑓 ∣ 𝑓 preserves 𝑅}

• For 2-coloring graphs, non-trivial polymorphisms exist

(Majority, Odd Parity, any antipodal function)

• For 2-coloring 3-hypergraphs, there are only trivial 

(dictatorial) polymorphisms

Easy vs hard explained by:



Constraint Satisfaction Problem 
(CSP)

Γ = {𝑅1, 𝑅2, … , 𝑅𝑠} finite set of relations over {0,1}
(more generally, any finite domain 𝐷)

CSP(Γ) instance given by (𝑉, 𝐶):
• 𝑉 set of variables

• 𝐶 set of constraints of form 𝜏, 𝑃 where 

𝑃 ∈ Γ & 𝜏 is a k-tuple of variables (𝑘 = arity 𝑃 )

Goal:  Is there an assignment 𝜎: 𝑉 → 𝐷 that satisfies all 

constraints in 𝐶, i.e., 𝜎 𝜏1 , … , 𝜎 𝜏𝑘 ∈ 𝑃 ∀ 𝜏, 𝑃 ∈ 𝐶 ?

2-colorability of graphs: CSP(≠)
2-colorability of 3-hypergraphs: CSP(NAE3)



Boolean CSP dichotomy theorem [Schaefer 1978] 
For every finite set Γ of relations over 0,1 ,
CSP(Γ) is in P or NP-complete.

CSP(Γ) is in P if:

i. Every relation in Γ is 0-valid

ii. Every relation in Γ is 1-valid

iii. Every relation in Γ is a 2CNF

iv. Every relation in Γ is affine

v. Every relation in Γ is a conjunction of Horn clauses

vi. Every relation in Γ is a conjunction of dual Horn 

clauses 

Otherwise CSP(Γ) is NP-complete



Contemporary polymorphic view
Theorem:  A Boolean CSP(Γ) is

• polytime solvable if Pol(Γ) is non-trivial 

(contains a non-dictator), and 

• NP-complete if Pol(Γ) is trivial (contains only dictators).

Polymorphisms in tractable cases of Schaefer’s theorem:

• Constant 0 or 1 function (trivial cases)

• Majority(x,y,z)   (2SAT)

• AND(x,y)   (Horn SAT)

• OR(x,y)  (dual Horn SAT)

• 𝑥 ⊕ 𝑦⊕ 𝑧 (affine equations)

Thm: CSP(Γ) is in P if Pol(Γ) contains 0,1, Majority (of odd arity),  

AND, OR, parity (of odd arity); otherwise it is NP-complete



CSP dichotomy conjecture

Feder-Vardi conjecture (1998): For every Γ over an arbitrary 

finite domain, CSP(Γ) is in P or NP-complete.

Algebraic dichotomy conjecture (Bulatov-Jeavons-Krokhin’05):

CSP(Γ) is in P if Pol(Γ) contains non-dictatorial functions;

otherwise CSP(Γ) is NP-complete.

Polymorphisms are the correct tool:

 Galois correspondence: Pol(Γ) ⊆ Pol(Γ′) ⇒ Γ′ reduces to Γ

 CSPs with same polymorphisms have identical complexity

 If Pol(Γ) is trivial, then CSP(Γ) is NP-complete.



Low-discrepancy 2-coloring as “promise” CSP

𝑃 = { 𝑥 ∈ 0,1 2𝑡 ∣ wt 𝑥 = 𝑡} 𝑄 = 0,1 2𝑡 ∖ {02𝑡 , 12𝑡}

Given a satisfiable CSP(𝑃) instance, can find an assignment

satisfying it as a CSP(𝑄) instance.

Polymorphic explanation?

 Weak polymorphism 𝑓 ∈ Pol(𝑃, 𝑄) is a function mapping

inputs in 𝑃 to output in 𝑄

For above pair, MajorityL for odd L is a weak polymorphism

Given a 2t-uniform hypergraph that is promised to admit a 

perfectly balanced 2-coloring, one can efficiently find a 2-coloring 

that avoids monochromatic edges.



Promise CSP view of AGH theorem

Given a (2t+1)-uniform hypergh, NP-hard to distinguish whether

• (Yes): there is a near-balanced coloring (with discrepancy 1),

• (No): every 2-coloring leaves a monochromatic hyperedge

𝑃 = { 𝑥 ∈ 0,1 2𝑡+1 ∣wt 𝑥 ∈ {𝑡, 𝑡 + 1}} 𝑄 = 0,1 2𝑡+1 ∖ {02𝑡+1, 12𝑡+1}

Thm restatement: Given a satisfiable CSP(𝑃) instance, it is NP-hard 

to find an assignment satisfying it as a CSP(𝑄) instance.

But there are non-dictatorial weak polymorphisms 

 Majoritym ∈ Pol(𝑃, 𝑄) for odd m ≤ 2𝑡 − 1

Reason behind AGH theorem:

 If 𝑓 ∈ Pol(𝑃, 𝑄) then 𝑓 is a (2𝑡 − 1)-junta*

 Proof based on elementary combinatorial arguments

 Hardness via reduction from Label Cover



Promise CSP dichotomy?
For two predicates 𝑃 ⊆ 𝑄 ⊆ 0,1 𝑘, PCSP(𝑃, 𝑄) is the problem of

telling if (i) an instance is satisfiable as a CSP(𝑃) instance, or

(ii) it is unsatisfiable even as a CSP(𝑄) instance.

Captures notorious problems 

such as approximate graph coloring:
• 𝑃 = 1,2 , 2,3 , 3,1 , 2,1 , 3,2 , 1,3
• 𝑄 = { 𝑖, 𝑗 ∣ 𝑖, 𝑗 ∈ 1,2, , … , 10 ; 𝑖 ≠ 𝑗}

PCSP(Γ) defined similarly 

for a finite set 

Γ = { 𝑃1, 𝑄1 , … , 𝑃𝑠, 𝑄𝑠 }

of relation-pairs, 𝑃𝑖 ⊆ 𝑄𝑖

Questions driving this research agenda: 

Is every PCSP(Γ) in P or NP-hard? 

Do weak polymorphisms govern this dichotomy?

Can one characterize the tractable cases?

Harder than CSP dichotomy conjecture! Focus on Boolean domain.



Algorithms for PCSPs

Recall: ∃ efficient algorithm for PCSP(𝑃, 𝑄) for

𝑃 = { 𝑥 ∈ 0,1 2𝑡 ∣ wt 𝑥 = 𝑡} 𝑄 = 0,1 2𝑡 ∖ {02𝑡 , 12𝑡}

(Weak) polymorphism behind algo:  Majority of odd # inputs

Turns out there there are algorithms based on 

new polymorphisms in PCSP setting…



A new weak polymorphism

𝑃 = { 𝑥 ∈ 0,1 𝑘 ∣ wt 𝑥 = 𝑎} 𝑄 = 0,1 𝑘 ∖ {0𝑘 , 1𝑘}

Algorithm is based on linear programming

Underlying weak polymorphism: Alternating threshold (of odd arity)

𝐴𝑇𝐿 𝑧1, 𝑧2, … , 𝑧𝐿 = 1(𝑧1 − 𝑧2 + 𝑧3 − 𝑧4 + …− 𝑧𝐿−1 + 𝑧𝐿 > 0)

Proposition (Brakensiek-G.’16) PCSP(𝑃, 𝑄) is tractable for 

(for any 𝑎 ∈ {1,2, … , 𝑘 − 1})

Hypergraph 𝐻 = (𝑉, 𝐸) with integer 𝑎𝑒 , ∀𝑒 ∈ 𝐸, 0 < 𝑎𝑒 < 𝑒 ;
if ∃ a 2-coloring with exactly 𝑎𝑒 vertices colored Red in each 𝑒, 

then can efficiently 2-color it without monochromatic edges.



Symmetric CSPs

CSP(Γ)/PCSP(Γ) is symmetric if all relations in Γ are symmetric. 

A relation 𝑃 ⊆ 0,1 𝑘 is symmetric if membership 𝑥 ∈ 𝑃
only depends on the Hamming weight of 𝑥

Natural subclass (k-SAT, NAE k-SAT, discrepancy, etc. are symmetric)

Horn SAT is not symmetric

Partial Dichotomy Theorem for promise CSPs [Brakensiek-G.’16] 

Let PCSP(Γ) be any Boolean promise CSP with symmetric 

relations (allowing negations).  Then PCSP(Γ) is in P or NP-hard. 



Tractable cases
Thm [Brakensiek-G.’16] Let Γ be a set of symmetric 

relation pairs (including Boolean negation). 

Then PCPS(Γ) is in P if weak polymorphisms of Γ contain:

i. Parity of L variables for all odd L, or

ii. Majority of L variables for all odd L, or

iii. Alternating Threshold of L variables for odd L, or

iv. the “anti”-version of any of the above for all odd L.

Otherwise PCSP(Γ) is NP-hard.

Algorithms:

 Case i: Gaussian elimination over 𝐹2
 Cases ii,iii:  Linear programming

 Work for general, non-symmetric case as well



A word about hardness side

Structural classification of weak polymorphisms:

If Γ doesn’t admit 𝑃𝑎𝑟𝑖𝑡𝑦𝐿1 ,𝑀𝑎𝑗𝐿2 , 𝐴𝑇𝐿3 as a weak polymorphism

for some odd 𝐿1, 𝐿2, 𝐿3,  (or their “antis” for some odd arity),

then there exists 𝐶 Γ < ∞ such that 

every weak polymorphism 𝑓: 0,1 𝑚 → 0,1 of Γ satisfies:

• ∃ 𝑆 ⊂ 1,2, … ,𝑚 of size 𝐶 Γ s.t. 

𝑓 𝑥 = 𝑓 000…00 if 𝑥𝑖 = 0 ∀𝑖 ∈ 𝑆

While we don’t get a dictator/junta, 

this interfaces well with a Label Cover reduction.



Summary

 Road beyond symmetric case seems difficult but exciting

 Have to cope with further algorithms & polymorphisms, 

and work with less structure for hardness.

Promise CSPs capture several interesting problems,

including variants of graph/hypergraph coloring

Viewpoint has led to new hardness results for coloring 

 6-coloring 4-colorable graphs is NP-hard

 new NP-hardness proof that 4-coloring 3-colorable graphs 

(already known in [Khanna-Linial-Safra’93, G.-Khanna’00] 

Partial dichotomy theorem:  Every symmetric Boolean promise 

CSP (allowing negations) is either in P or NP-hard


