Coloring low-discrepancy hypergraphs, Weak Polymorphisms, and Promise Constraint Satisfaction

Venkatesan Guruswami

Carnegie Mellon University

NII Shonan Meeting
Current Trends in Combinatorial Optimization
April 14, 2016

2-coloring graphs and hypergraphs

Given a graph G, it is easy to tell if it is 2-colorable (bipartite).

Given a 3-uniform hypergraph, NP-hard to tell if it is 2-colorable (with no monochromatic hyperedges).

Will later muse: What "causes" this dramatic change in computational complexity?

2-coloring: a finer dichotomy

Fact (nice exercise): Given a $2 t$-uniform hypergraph that is promised to admit a perfectly balanced 2-coloring, one can efficiently find a 2 -coloring without monochromatic hyperedges.
(2-coloring graphs is special case when $\mathrm{t}=1$)
What if there is an almost-balanced 2-coloring (hypergraph has low discrepancy)?

Theorem [Austrin-G.-Hastad' 14]:. $\forall t \geq 1$, given a ($2 t+1$)-uniform hypergh, it is NP-hard to distinguish between following cases:

- (Yes): there is a near-balanced coloring (with discrepancy 1),
- (No): every 2-coloring leaves a monochromatic hyperedge

This Talk

Two directions in which AGH can be strengthened/generalized
I. Stronger hardness for hypergraphs with nice colorings
2. Study broader class of "promise problems"
(that generalize coloring low-discrepancy hypergraphs)

Stronger coloring hardness I

Hardness of approximate hypergraph coloring
[G.-Håstad-Sudan'00; Dinur-Regev-Smyth'03]
For $r \geq 3$, it is NP-hard to color a 2-colorable r-uniform hypergraph with 10^{10} colors.

Comment: Recent developments (spurred by low-degree long code), show hardness of coloring 2-colorable hypergraphs with $\exp \left((\log n)^{1 / 10}\right)$ colors [Dinur-G.'I3; G.-Harsha-Hastad-Srinivasan-Varma' I4; Khot-Saket'|4, Huang' I5]

Theorem: [G.-Lee'15] Approximate hypergraph coloring is hard even when a near-balanced 2-coloring exists: $\forall \mathrm{t} \geq 2$,

Given a $2 t$-uniform hypergraph admitting a near-balanced 2coloring ($\leq \mathrm{t}+\mid$ vertices of a color in each hyperedge), it is NP-hard to color it with 10^{10} colors.

Stronger coloring hardness II

What if we are promised something stronger than low-discrepancy?
Eg., what if a r-uniform hypergraph is $(r+1)$-strongly colorable?

- ℓ-strongly colorable: vertex coloring with ℓ colors so that every hyperedge has all vertices of different colors
- ℓ-strongly colorable for $\ell \leq 2 r-2$ implies 2 -colorability

Theorem: [Brakensiek-G.'I6a]
Given a $\left\lceil\frac{3 r}{2}\right\rceil$-strongly colorable r-uniform hypergraph, it is NP-hard to 2-color it (with no monochromatic edges)

We conjecture that similar hardness holds for $(r+1)$ strongly colorable case (which will imply the AGH hardness for low-discrepancy hypergraphs)

This Talk

Two directions in which AGH can be strengthened/generalized
I. Stronger hardness for hypergraphs with nice colorings
2. Study broader class of "promise problems"
(that generalize coloring low-discrepancy hypergraphs)

Back to Slide 1

Given a graph G, it is easy to tell if it is 2 -colorable (bipartite).

- Collection of $\neq(x, y)$ constraints

Given a 3-uniform hypergraph, NP-hard to tell if it is 2-colorable (with no monochromatic hyperedges).

- Collection of Not-all-Equal(x, y, z) constraints

What "causes" this dramatic change in computational complexity?

Operations preserving relations

$f:\{0,1\}^{L} \rightarrow\{0,1\}$ preserves a relation $R \subseteq\{0,1\}^{k}$ if $\forall\left(a_{1}^{i}, a_{2}^{i}, \ldots, a_{k}^{i}\right) \in R, i=1,2, \ldots, L$,
$\left(f\left(a_{1}^{1}, a_{1}^{2}, \ldots, a_{1}^{L}\right), \ldots, f\left(a_{k}^{1}, a_{k}^{2}, \ldots, a_{k}^{L}\right)\right) \in R$
Imagine $k \times L$ matrix whose columns belong to R.
Then applying f row-wise yields a k-tuple in R.

$$
\begin{array}{ccc}
f\left(\begin{array}{ccccc}
0 & 1 & 1 & \ldots & 0
\end{array}\right)=b_{1} & R_{2}=\{(0,1),(1,0)\}(2 \text {-coloring }) \\
f\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 1
\end{array}\right)=b_{2} & \text { Which } f \text { preserve } R_{2} \text { ? Antipodal fns } \\
& & \\
f\left(\begin{array}{lllll}
0 & 1 & 1 & 0
\end{array}\right)=b_{1} & R_{3}=\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\} \\
f\left(\begin{array}{llllll}
0 & 0 & 1 & \ldots & 1
\end{array}\right)=b_{2} & (2 \text {-coloring 3-hypergraphs }) \\
f\left(\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 1
\end{array}\right)=b_{3} & \text { Which } f \text { preserve } R_{3} ?
\end{array}
$$

Dictator functions

Polymorphisms \& complexity distinction?

Polymorphisms of $R(\operatorname{Pol}(R))=\{f \mid f$ preserves $R\}$

Easy vs hard explained by:

- For 2-coloring graphs, non-trivial polymorphisms exist (Majority, Odd Parity, any antipodal function)
- For 2-coloring 3-hypergraphs, there are only trivial (dictatorial) polymorphisms

Constraint Satisfaction Problem (CSP)
$\Gamma=\left\{R_{1}, R_{2}, \ldots, R_{s}\right\}$ finite set of relations over $\{0,1\}$ (more generally, any finite domain D)
$\operatorname{CSP}(\Gamma)$ instance given by (V, C) :

- V set of variables
- C set of constraints of form (τ, P) where $P \in \Gamma \& \tau$ is a k -tuple of variables $(k=\operatorname{arity}(P))$

Goal: Is there an assignment $\sigma: V \rightarrow D$ that satisfies all constraints in C, i.e., $\left(\sigma\left(\tau_{1}\right), \ldots, \sigma\left(\tau_{k}\right)\right) \in P \forall(\tau, P) \in C$?

2-colorability of graphs: $\operatorname{CSP}(\neq)$
2-colorability of 3-hypergraphs: $\operatorname{CSP}\left(\mathrm{NAE}_{3}\right)$

Boolean CSP dichotomy theorem [Schaefer 1978]

For every finite set Γ of relations over $\{0,1\}$,
$\operatorname{CSP}(\Gamma)$ is in P or NP-complete.
$\operatorname{CSP}(\Gamma)$ is in P if:
i. Every relation in Γ is 0 -valid
ii. Every relation in Γ is I-valid
iii. Every relation in Γ is a 2 CNF
iv. Every relation in Γ is affine
v. Every relation in Γ is a conjunction of Horn clauses
vi. Every relation in Γ is a conjunction of dual Horn clauses
Otherwise $\operatorname{CSP}(\Gamma)$ is NP-complete

Contemporary polymorphic view

Theorem: A Boolean $\operatorname{CSP}(\Gamma)$ is

- polytime solvable if $\operatorname{Pol}(\Gamma)$ is non-trivial (contains a non-dictator), and
- NP-complete if $\operatorname{Pol}(\Gamma)$ is trivial (contains only dictators).

Polymorphisms in tractable cases of Schaefer's theorem:

- Constant 0 or 1 function (trivial cases)
- Majority (x, y, z) (2SAT)
- AND(x, y) (Horn SAT)
- OR(x,y) (dual Horn SAT)
- $x \oplus y \oplus z$ (affine equations)

Thm: $\operatorname{CSP}(\Gamma)$ is in P if $\mathrm{Pol}(\Gamma)$ contains $0, \mathrm{I}$, Majority (of odd arity), AND, OR, parity (of odd arity); otherwise it is NP-complete

CSP dichotomy conjecture

Feder-Vardi conjecture (1998): For every Γ over an arbitrary finite domain, $\operatorname{CSP}(\Gamma)$ is in P or NP-complete.

Algebraic dichotomy conjecture (Bulatov-Jeavons-Krokhin’05): $\operatorname{CSP}(\Gamma)$ is in P if $\mathrm{Pol}(\Gamma)$ contains non-dictatorial functions; otherwise $\operatorname{CSP}(\Gamma)$ is NP-complete.

Polymorphisms are the correct tool:
$>$ Galois correspondence: $\operatorname{Pol}(\Gamma) \subseteq \operatorname{Pol}\left(\Gamma^{\prime}\right) \Rightarrow \Gamma^{\prime}$ reduces to Γ
$>$ CSPs with same polymorphisms have identical complexity
$>$ If $\operatorname{Pol}(\Gamma)$ is trivial, then $\operatorname{CSP}(\Gamma)$ is NP -complete.

Low-discrepancy 2-coloring as "promise" CSP

Given a 2 t-uniform hypergraph that is promised to admit a perfectly balanced 2 -coloring, one can efficiently find a 2 -coloring that avoids monochromatic edges.

$$
P=\left\{x \in\{0,1\}^{2 t} \mid \mathrm{wt}(x)=t\right\} \quad Q=\{0,1\}^{2 t} \backslash\left\{0^{2 t}, 1^{2 t}\right\}
$$

Given a satisfiable $\operatorname{CSP}(P)$ instance, can find an assignment satisfying it as a $\operatorname{CSP}(Q)$ instance.

Polymorphic explanation?
$>$ Weak polymorphism $f \in \operatorname{Pol}(P, Q)$ is a function mapping inputs in P to output in Q

For above pair, Majority ${ }_{L}$ for odd L is a weak polymorphism

Promise CSP view of AGH theorem

Given a ($2 \mathrm{t}+1$)-uniform hypergh, NP-hard to distinguish whether

- (Yes): there is a near-balanced coloring (with discrepancy 1),
- (No): every 2-coloring leaves a monochromatic hyperedge

$$
P=\left\{x \in\{0,1\}^{2 t+1} \mid \operatorname{wt}(x) \in\{t, t+1\}\right\} \quad Q=\{0,1\}^{2 t+1} \backslash\left\{0^{2 t+1}, 1^{2 t+1}\right\}
$$

Thm restatement: Given a satisfiable $\operatorname{CSP}(P)$ instance, it is NP-hard to find an assignment satisfying it as a $\operatorname{CSP}(Q)$ instance.

But there are non-dictatorial weak polymorphisms
$>$ Majority $_{\mathrm{m}} \in \operatorname{Pol}(P, Q)$ for odd $\mathrm{m} \leq 2 t-1$
Reason behind AGH theorem:

- If $f \in \operatorname{Pol}(P, Q)$ then f is a $(2 t-1)$-junta*
- Proof based on elementary combinatorial arguments
- Hardness via reduction from Label Cover

Promise CSP dichotomy?

For two predicates $P \subseteq Q \subseteq\{0,1\}^{k}, \operatorname{PCSP}(P, Q)$ is the problem of telling if (i) an instance is satisfiable as a $\operatorname{CSP}(P)$ instance, or
(ii) it is unsatisfiable even as a $\operatorname{CSP}(Q)$ instance.

Captures notorious problems
such as approximate graph coloring:

- $P=\{(1,2),(2,3),(3,1),(2,1),(3,2),(1,3)\}$
- $Q=\{(i, j) \mid i, j \in\{1,2,, \ldots, 10\} ; i \neq j\}$

PCSP(Г) defined similarly for a finite set $\Gamma=\left\{\left(P_{1}, Q_{1}\right), \ldots,\left(P_{s}, Q_{s}\right)\right\}$ of relation-pairs, $P_{i} \subseteq Q_{i}$

Questions driving this research agenda: Is every PCSP(Г) in P or NP-hard?
Do weak polymorphisms govern this dichotomy?
Can one characterize the tractable cases?
Harder than CSP dichotomy conjecture! Focus on Boolean domain.

Algorithms for PCSPs

Recall: \exists efficient algorithm for $\operatorname{PCSP}(P, Q)$ for
$P=\left\{x \in\{0,1\}^{2 t} \mid \mathrm{wt}(x)=t\right\} \quad Q=\{0,1\}^{2 t} \backslash\left\{0^{2 t}, 1^{2 t}\right\}$
(Weak) polymorphism behind algo: Majority of odd \# inputs

Turns out there there are algorithms based on new polymorphisms in PCSP setting...

A new weak polymorphism

Proposition (Brakensiek-G.'I6) $\operatorname{PCSP}(P, Q)$ is tractable for

$$
\begin{gathered}
P=\left\{x \in\{0,1\}^{k} \mid \mathrm{wt}(x)=a\right\} \quad Q=\{0,1\}^{k} \backslash\left\{0^{k}, 1^{k}\right\} \\
(\text { for any } a \in\{1,2, \ldots, k-1\})
\end{gathered}
$$

Hypergraph $H=(V, E)$ with integer $a_{e}, \forall e \in E, 0<a_{e}<|e|$; if \exists a 2-coloring with exactly a_{e} vertices colored Red in each e, then can efficiently 2 -color it without monochromatic edges.

Algorithm is based on linear programming
Underlying weak polymorphism: Alternating threshold (of odd arity)

$$
A T_{L}\left(z_{1}, z_{2}, \ldots, z_{L}\right)=1\left(z_{1}-z_{2}+z_{3}-z_{4}+\ldots-z_{L-1}+z_{L}>0\right)
$$

Symmetric CSPs

A relation $P \subseteq\{0,1\}^{k}$ is symmetric if membership $x \in P$ only depends on the Hamming weight of x
$\operatorname{CSP}(\Gamma) / \operatorname{PCSP}(\Gamma)$ is symmetric if all relations in Γ are symmetric.
Natural subclass (k-SAT, NAE k-SAT, discrepancy, etc. are symmetric) Horn SAT is not symmetric

Partial Dichotomy Theorem for promise CSPs [Brakensiek-G.'I6]
Let $\operatorname{PCSP}(\Gamma)$ be any Boolean promise CSP with symmetric relations (allowing negations). Then $\operatorname{PCSP}(\Gamma)$ is in P or NP -hard.

Tractable cases

Thm [Brakensiek-G.'I6] Let Γ be a set of symmetric relation pairs (including Boolean negation).
Then $\operatorname{PCPS}(\Gamma)$ is in P if weak polymorphisms of Γ contain:
i. Parity of L variables for all odd L, or
ii. Majority of L variables for all odd L, or
iii. Alternating Threshold of L variables for odd L, or
iv. the "anti"-version of any of the above for all odd L.

Otherwise $\operatorname{PCSP}(\Gamma)$ is NP-hard.
Algorithms:

- Case i: Gaussian elimination over F_{2}
- Cases ii,iii: Linear programming
- Work for general, non-symmetric case as well

A word about hardness side

Structural classification of weak polymorphisms:
If Γ doesn't admit Parity $_{L_{1}}, M a j_{L_{2}}, A T_{L_{3}}$ as a weak polymorphism for some odd L_{1}, L_{2}, L_{3}, (or their "antis" for some odd arity), then there exists $C(\Gamma)<\infty$ such that every weak polymorphism $f:\{0,1\}^{m} \rightarrow\{0,1\}$ of Γ satisfies:

- $\exists S \subset\{1,2, \ldots, m\}$ of size $C(\Gamma)$ s.t.

$$
f(x)=f(000 \ldots 00) \text { if } x_{i}=0 \forall i \in S
$$

While we don't get a dictator/junta, this interfaces well with a Label Cover reduction.

Summary

Promise CSPs capture several interesting problems, including variants of graph/hypergraph coloring

Viewpoint has led to new hardness results for coloring

- 6-coloring 4-colorable graphs is NP-hard
- new NP-hardness proof that 4-coloring 3-colorable graphs (already known in [Khanna-Linial-Safra'93, G.-Khanna'00]

Partial dichotomy theorem: Every symmetric Boolean promise CSP (allowing negations) is either in P or NP-hard
> Road beyond symmetric case seems difficult but exciting

- Have to cope with further algorithms \& polymorphisms, and work with less structure for hardness.

