Coloring low-discrepancy hypergraphs, Weak Polymorphisms, and Promise Constraint Satisfaction

> Venkatesan Guruswami Carnegie Mellon University

NII Shonan Meeting Current Trends in Combinatorial Optimization April 14, 2016

2-coloring graphs and hypergraphs

Given a graph G, it is easy to tell if it is 2-colorable (bipartite).

Given a 3-uniform hypergraph, NP-hard to tell if it is 2-colorable (with no monochromatic hyperedges).

Will later muse: What "causes" this dramatic change in computational complexity?

2-coloring: a finer dichotomy

<u>Fact (nice exercise)</u>: Given a **2t**-uniform hypergraph that is promised to admit a *perfectly balanced 2-coloring*, one can *efficiently* find a 2-coloring without monochromatic hyperedges.

(2-coloring graphs is special case when t=1)

What if there is an almost-balanced 2-coloring (hypergraph has low discrepancy)?

<u>Theorem [Austrin-G.-Hastad'14]</u>:. $\forall t \geq 1$, given a (2t+1)-uniform hypergh, it is NP-hard to distinguish between following cases:

- (Yes): there is a near-balanced coloring (with discrepancy 1),
- (No): every 2-coloring leaves a monochromatic hyperedge

This Talk

Two directions in which AGH can be strengthened/generalized

- I. Stronger hardness for hypergraphs with nice colorings
- Study broader class of "promise problems"

 (that generalize coloring low-discrepancy hypergraphs)

Stronger coloring hardness I

Hardness of *approximate* hypergraph coloring [G.-Håstad-Sudan'00; Dinur-Regev-Smyth'03] For $r \ge 3$, it is NP-hard to color a 2-colorable r-uniform hypergraph with 10^{10} colors.

<u>Comment</u>: Recent developments (spurred by low-degree long code), show hardness of coloring 2-colorable hypergraphs with exp((log n)^{1/10}) colors [Dinur-G.'13; G.-Harsha-Hastad-Srinivasan-Varma'14; Khot-Saket'14, Huang'15]

<u>Theorem</u>: [G.-Lee'15] Approximate hypergraph coloring is hard even when a *near-balanced 2-coloring* exists: $\forall t \ge 2$,

Given a 2t-uniform hypergraph admitting a near-balanced 2coloring (\leq t+1 vertices of a color in each hyperedge), it is NP-hard to color it with 10¹⁰ colors.

Stronger coloring hardness II

What if we are promised something stronger than low-discrepancy?

Eg., what if a r-uniform hypergraph is (r + 1)-strongly colorable?

- ℓ -strongly colorable: vertex coloring with ℓ colors so that every hyperedge has all vertices of different colors
- ℓ -strongly colorable for $\ell \leq 2r 2$ implies 2-colorability

<u>Theorem</u>: [Brakensiek-G.'16a] Given a $\begin{bmatrix} \frac{3r}{2} \end{bmatrix}$ -strongly colorable *r*-uniform hypergraph,

it is NP-hard to 2-color it (with no monochromatic edges)

We conjecture that similar hardness holds for (r + 1)strongly colorable case (which will imply the AGH hardness for low-discrepancy hypergraphs)

This Talk

Two directions in which AGH can be strengthened/generalized

- I. Stronger hardness for hypergraphs with nice colorings
- Study broader class of "promise problems" (that generalize coloring low-discrepancy hypergraphs)

Back to Slide 1

Given a graph G, it is easy to tell if it is 2-colorable (bipartite).

• Collection of \neq (x,y) constraints

Given a 3-uniform hypergraph, NP-hard to tell if it is 2-colorable (with no monochromatic hyperedges).

• Collection of Not-all-Equal(x,y,z) constraints

What "causes" this dramatic change in computational complexity?

Operations preserving relations

 $f : \{0,1\}^{L} \to \{0,1\} \text{ preserves a relation } R \subseteq \{0,1\}^{k} \text{ if } \\ \forall \left(a_{1}^{i}, a_{2}^{i}, \dots, a_{k}^{i}\right) \in R, i = 1, 2, \dots, L, \\ \left(f\left(a_{1}^{1}, a_{1}^{2}, \dots, a_{1}^{L}\right), \dots, f\left(a_{k}^{1}, a_{k}^{2}, \dots, a_{k}^{L}\right)\right) \in R$

Imagine $k \times L$ matrix whose columns belong to R. Then applying f row-wise yields a k-tuple in R.

 $f(0 \ 1 \ 1 \ \dots \ 0) = b_1 \qquad R_2 = \{(0,1), (1,0)\} (2\text{-coloring})$ $f(1 \ 0 \ 0 \ \dots \ 1) = b_2 \qquad \text{Which } f \text{ preserve } R_2 \text{? Antipodal fns}$ $f(0 \ 1 \ 1 \ \dots \ 0) = b_1 \qquad R_3 = \{0,1\}^3 \setminus \{(0,0,0), (1,1,1)\}$ $f(0 \ 0 \ 1 \ \dots \ 1) = b_2 \qquad (2\text{-coloring } 3\text{-hypergraphs})$ $f(1 \ 0 \ 0 \ \dots \ 1) = b_3 \qquad \text{Which } f \text{ preserve } R_3 \text{?}$ Dictator functions

Polymorphisms & complexity distinction?

Polymorphisms of R (Pol(R)) = { $f \mid f$ preserves R}

Easy vs hard explained by:

- For 2-coloring graphs, non-trivial polymorphisms exist (Majority, Odd Parity, any antipodal function)
- For 2-coloring 3-hypergraphs, there are only trivial (dictatorial) polymorphisms

Constraint Satisfaction Problem (CSP)

 $\Gamma = \{R_1, R_2, \dots, R_s\}$ finite set of relations over $\{0, 1\}$ (more generally, any finite domain *D*)

 $\mathsf{CSP}(\Gamma)$ instance given by (V, C):

- V set of variables
- C set of constraints of form (τ, P) where $P \in \Gamma \& \tau$ is a k-tuple of variables $(k = \operatorname{arity}(P))$

<u>Goal</u>: Is there an assignment $\sigma: V \to D$ that satisfies all constraints in *C*, i.e., $(\sigma(\tau_1), \dots, \sigma(\tau_k)) \in P \forall (\tau, P) \in C$?

2-colorability of graphs: CSP(≠)
2-colorability of 3-hypergraphs: CSP(NAE₃)

Boolean CSP dichotomy theorem [Schaefer 1978] For every finite set Γ of relations over $\{0,1\}$, CSP(Γ) is in P or NP-complete.

 $CSP(\Gamma)$ is in P if:

- i. Every relation in Γ is 0-valid
- ii. Every relation in Γ is I-valid
- iii. Every relation in Γ is a 2CNF
- iv. Every relation in Γ is affine
- v. Every relation in Γ is a conjunction of Horn clauses
- vi. Every relation in Γ is a conjunction of dual Horn clauses

Otherwise $CSP(\Gamma)$ is NP-complete

Contemporary polymorphic view

Theorem: A Boolean $CSP(\Gamma)$ is

- polytime solvable if Pol(Γ) is non-trivial (contains a non-dictator), and
- NP-complete if $Pol(\Gamma)$ is trivial (contains only dictators).

Polymorphisms in tractable cases of Schaefer's theorem:

- Constant 0 or 1 function (trivial cases)
- Majority(x,y,z) (2SAT)
- AND(x,y) (Horn SAT)
- OR(x,y) (dual Horn SAT)
- $x \oplus y \oplus z$ (affine equations)

Thm: $CSP(\Gamma)$ is in P if Pol(Γ) contains 0, I, Majority (of odd arity), AND, OR, parity (of odd arity); otherwise it is NP-complete

CSP dichotomy conjecture

Feder-Vardi conjecture (1998): For every Γ over an arbitrary finite domain, CSP(Γ) is in P or NP-complete.

Algebraic dichotomy conjecture (Bulatov-Jeavons-Krokhin'05): $CSP(\Gamma)$ is in P if Pol(Γ) contains non-dictatorial functions; otherwise $CSP(\Gamma)$ is NP-complete.

Polymorphisms are the correct tool:

- \succ Galois correspondence: Pol(Γ) ⊆ Pol(Γ') ⇒ Γ' reduces to Γ
- > CSPs with same polymorphisms have identical complexity
- > If Pol(Γ) is trivial, then CSP(Γ) is NP-complete.

Low-discrepancy 2-coloring as "promise" CSP

Given a 2t-uniform hypergraph that is promised to admit a *perfectly balanced 2-coloring*, one can *efficiently* find a 2-coloring that avoids monochromatic edges.

 $P = \{ x \in \{0,1\}^{2t} \mid \mathsf{wt}(x) = t \} \qquad Q = \{0,1\}^{2t} \setminus \{0^{2t}, 1^{2t}\}$

Given a satisfiable CSP(P) instance, can find an assignment satisfying it as a CSP(Q) instance.

Polymorphic explanation?

Weak polymorphism $f \in Pol(P, Q)$ is a function mapping inputs in P to output in Q

For above pair, Majority_L for odd L is a weak polymorphism

Promise CSP view of AGH theorem

Given a (2t+1)-uniform hypergh, NP-hard to distinguish whether

- (Yes): there is a near-balanced coloring (with discrepancy 1),
- (No): every 2-coloring leaves a monochromatic hyperedge

 $P = \{ x \in \{0,1\}^{2t+1} \mid \mathsf{wt}(x) \in \{t,t+1\} \} \qquad Q = \{0,1\}^{2t+1} \setminus \{0^{2t+1},1^{2t+1}\}$

<u>Thm restatement</u>: Given a satisfiable CSP(P) instance, it is NP-hard to find an assignment satisfying it as a CSP(Q) instance.

But there are non-dictatorial weak polymorphisms \geq Majority_m \in Pol(P, Q) for odd m $\leq 2t - 1$

Reason behind AGH theorem:

- If $f \in Pol(P, Q)$ then f is a (2t 1)-junta^{*}
- Proof based on elementary combinatorial arguments
- Hardness via reduction from Label Cover

Promise CSP dichotomy?

For two predicates $P \subseteq Q \subseteq \{0,1\}^k$, PCSP(P,Q) is the problem of telling if (i) an instance is satisfiable as a CSP(P) instance, or (ii) it is unsatisfiable even as a CSP(Q) instance.

Captures notorious problems such as approximate graph coloring:

- $P = \{(1,2), (2,3), (3,1), (2,1), (3,2), (1,3)\}$
- $Q = \{(i,j) \mid i,j \in \{1,2,,...,10\}; i \neq j\}$

PCSP(Γ) defined similarly for a finite set $\Gamma = \{ (P_1, Q_1), \dots, (P_s, Q_s) \}$ of relation-pairs, $P_i \subseteq Q_i$

Questions driving this research agenda: Is every PCSP(Γ) in P or NP-hard? Do weak polymorphisms govern this dichotomy? Can one characterize the tractable cases?

Harder than CSP dichotomy conjecture! Focus on Boolean domain.

Algorithms for PCSPs

Recall: \exists efficient algorithm for PCSP(P, Q) for $P = \{ x \in \{0,1\}^{2t} \mid wt(x) = t \} \qquad Q = \{0,1\}^{2t} \setminus \{0^{2t}, 1^{2t}\}$

(Weak) polymorphism behind algo: Majority of odd # inputs

Turns out there there are algorithms based on new polymorphisms in PCSP setting...

A new weak polymorphism

<u>Proposition</u> (Brakensiek-G.'16) PCSP(P, Q) is tractable for

$$P = \{ x \in \{0,1\}^k \mid \mathsf{wt}(x) = a \} \qquad Q = \{0,1\}^k \setminus \{0^k, 1^k\}$$

(for any $a \in \{1,2, \dots, k-1\}$)

Hypergraph H = (V, E) with integer a_e , $\forall e \in E, 0 < a_e < |e|$; if \exists a 2-coloring with exactly a_e vertices colored Red in each e, then can efficiently 2-color it without monochromatic edges.

Algorithm is based on linear programming

Underlying weak polymorphism: Alternating threshold (of odd arity)

 $AT_L(z_1, z_2, \dots, z_L) = 1(z_1 - z_2 + z_3 - z_4 + \dots - z_{L-1} + z_L > 0)$

Symmetric CSPs

A relation $P \subseteq \{0,1\}^k$ is symmetric if membership $x \in P$ only depends on the Hamming weight of x

 $CSP(\Gamma)/PCSP(\Gamma)$ is symmetric if all relations in Γ are symmetric.

Natural subclass (k-SAT, NAE k-SAT, discrepancy, etc. are symmetric) Horn SAT is *not* symmetric

Partial Dichotomy Theorem for promise CSPs [Brakensiek-G.'16] Let $PCSP(\Gamma)$ be any Boolean promise CSP with symmetric relations (allowing negations). Then $PCSP(\Gamma)$ is in P or NP-hard.

Tractable cases

<u>Thm</u> [Brakensiek-G.'16] Let Γ be a set of symmetric relation pairs (including Boolean negation). Then PCPS(Γ) is in P if weak polymorphisms of Γ contain:

- i. Parity of L variables for all odd L, or
- ii. Majority of L variables for all odd L, or
- iii. Alternating Threshold of L variables for odd L, or
- iv. the "anti"-version of any of the above for all odd L.

Otherwise $PCSP(\Gamma)$ is NP-hard.

Algorithms:

- Case i: Gaussian elimination over F_2
- Cases ii,iii: Linear programming
- Work for general, non-symmetric case as well

A word about hardness side

Structural classification of weak polymorphisms: If Γ doesn't admit $Parity_{L_1}, Maj_{L_2}, AT_{L_3}$ as a weak polymorphism for some odd L_1, L_2, L_3 , (or their "antis" for some odd arity), then there exists $C(\Gamma) < \infty$ such that every weak polymorphism $f: \{0,1\}^m \to \{0,1\}$ of Γ satisfies:

•
$$\exists S \subset \{1, 2, ..., m\}$$
 of size $C(\Gamma)$ s.t.
 $f(x) = f(000 ... 00)$ if $x_i = 0 \ \forall i \in S$

While we don't get a dictator/junta, this interfaces well with a Label Cover reduction.

Summary

Promise CSPs capture several interesting problems, including variants of graph/hypergraph coloring

Viewpoint has led to new hardness results for coloring

- 6-coloring 4-colorable graphs is NP-hard
- new NP-hardness proof that 4-coloring 3-colorable graphs (already known in [Khanna-Linial-Safra'93, G.-Khanna'00]

Partial dichotomy theorem: Every symmetric Boolean promise CSP (allowing negations) is either in P or NP-hard

- > Road beyond symmetric case seems difficult but exciting
 - Have to cope with further algorithms & polymorphisms, and work with less structure for hardness.