Independent Sets in Sparse Graphs

Approximation Algorithms via Ramsey-theoretic ideas

> Anupam Gupta Carnegie Mellon University

work with Nikhil Bansal (TU Eindhoven) and Guru Guruganesh (CMU) STOC 2015 / arXiv 1504.04767

independent set problem

Given graph G, approximate the largest independent set (size = α (G))Notoriously hard: $\Omega(n^{0.999...})$ Best approx: $n/\log^3 n$ [Feige 04]

independent set problem

Given graph G, approximate the largest independent set (size = α (G))Notoriously hard: $\Omega(n^{0.999...})$ Best approx: $n/\log^3 n$ [Feige 04]

Our Focus: max. degree = d (avg. degree d suffices)

(d+1) approximation trivial [Greedy
$$\ge \frac{n}{d+1}$$
]
Tight: e.g., n/(d+1) disjoint copies of K_{d+1}

LP/SDP relaxations

IP: max
$$\sum_{i} x_{i}$$
 s.t. $x_{i} + x_{j} \le 1$ if (i, j) $\in E$ $x_{i} \in \{0, 1\}$

LP relaxation useless:

 $\Omega(d)$ integrality gap (each $x_i = 1/2$)

Q. What do semidefinite programs give?Q. How do "lift/project" hierarchies help?

progress timeline

progress timeline

*Ignoring poly(log log d) factors

our results

our results (in words)

Theorem 1:

A randomized algorithm for MaxIS on degree-d graphs with (almost-tight) approximation factor

$$\tilde{O}\left(\frac{d}{\log^2 d}\right)$$

and run time $poly(n, 2^d)$.

Theorem 2:

The integrality gap of the Lovasz ϑ -function is at most

$$\tilde{O}\left(\frac{d}{\log^{3/2} d}\right)$$

 \Rightarrow estimate MaxIS size to within this factor in poly-time.

our chief weapon is...

╋

Frank P. Ramsey (1903-30)

Ramsey results for sparse graphs

Thm: If
$$K_3$$
-free, $\alpha(G) \ge \left(\frac{n}{d}\right) \log d$

Celebrated result; pioneered "Rödl" nibble method Several proofs known. Tight.

Thm: If
$$K_r$$
-free, $\alpha(G) \ge \left(\frac{n}{d}\right) \log d \cdot \frac{1}{r \log \log d}$

Beautiful application of entropy method (non-algorithmic)

Remove the log log d?

What is the right dependence on r?

[Ajtai Komlos Szemeredi 80]

[Shearer 95]

Ramsey results to remember...

Thm:
$$\[\prod K_r - \text{free}, \ \alpha(G) \ge \widetilde{\Omega}\left(\left(\frac{n}{d}\right) \cdot \frac{\log d}{r}\right) \]$$

Conjecture:

$$\alpha(G) \ge \Omega\left(\left(\frac{n}{d}\right) \cdot \frac{\log d}{\log r}\right)$$

Laci Lovasz (c. 1982)

the Lovasz ϑ -function

SDP: vector v_i for vertex i.

$$\vartheta(G) = \max \Sigma_i \quad v_i \cdot v_i$$
$$v_i \cdot v_j = 0 \quad \text{if } (i,j) \in E$$
$$v_i \cdot v_1 = v_i \cdot v_i$$
$$v_1 \cdot v_1 = 1$$

	1	
C		v ₁

Intended solution: $v_i = v_1$ if i chosen, 0 otherwise. Define: $x_i \coloneqq v_i \cdot v_i$

Facts:

1. $\alpha(G) \le \vartheta(G) \le \overline{\chi}(G)$ 2. If C is a clique in G, then $x(C) \le 1$.

Halperin gives
$$\approx \frac{d}{\log d}$$
 approx

Overall
$$\tilde{O}\left(\frac{d}{\log d}\right)$$
 approximation

Same factor as Ramsey!

Can we combine Halperin + Ramsey?

how to do better?

how to do better?

From now on, imagine all vertices have x_i in this range

But:
$$x(C) \le 1$$
 for all cliques!
 $x_i = \frac{1}{\log^2 d}$
 $x_i = \frac{8 \log \log d}{\log d}$
 $x_i = 1$
So: largest clique has size $r := \log^2 d$

Find a large ind.set in a K_r -free graph, where $r = \log^2 d$.

can we use Shearer?!?

Find a large ind.set in a K_r -free graph, where $r = \log^2 d$.

Thm: If
$$K_r$$
-free, $\alpha(G) \ge \widetilde{\Omega}\left(\left(\frac{n}{d}\right) \cdot \frac{\log d}{r}\right)$
Conjecture: $\alpha(G) \ge \Omega\left(\left(\frac{n}{d}\right) \cdot \frac{\log d}{\log r}\right)$

For us, $r = \log^2 d$, so Shearer is worse than greedy n/d !!

7~

Theorem 3:
$$\alpha(G) \ge \widetilde{\Omega}\left(\left(\frac{n}{d}\right) \cdot \sqrt{\frac{\log d}{\log r}}\right)$$

putting it in the picture

Theorem 2: The integrality gap of the Lovasz ϑ -function is at most $\tilde{O}\left(\frac{d}{\log^{3/2} d}\right)$ \Rightarrow estimate MaxIS size to within this factor in poly-time.

so now to prove...

Theorem 3: if G is
$$K_r$$
-free, then $\alpha(G) \ge \widetilde{\Omega}\left(\left(\frac{n}{d}\right) \cdot \sqrt{\frac{\log d}{\log r}}\right)$

Let's first prove

Theorem: if G is K_3 -free, then $\alpha(G) \ge \Omega\left(\frac{n}{d}\log d\right)$

via Shearer's entropy approach

Assume d-regular graph G.

triangle-free graph

Theorem: if G is
$$K_3$$
-free, then $\alpha(G) \ge \Omega\left(\frac{n}{d}\log d\right)$

Pick a random independent set S from G.

$$\Phi_v := 1(v \in S) + \frac{|N(v) \cap S|}{d}$$

(show $\mathbb{E}[\#S]$ is large.)

so $\sum_{v} \Phi_{v} \leq 2 |S|$

Suffices to show: for all vertices, $\mathbb{E}[\Phi_v] \ge \frac{\log d}{d}$

triangle-free graph

Theorem: if G is K_3 -free, then $\alpha(G) \ge \Omega\left(\frac{n}{d}\log d\right)$

Pick a random independent set *S* from G.

$$\Phi_v \coloneqq 1(v \in S) + \frac{|N(v) \cap S|}{d}$$

Suffices to show: for all vertices, $\mathbb{E}[\Phi_v] \ge \frac{\log d}{d}$

Condition on $S \setminus (\{v\} \cup N(v))$

Let X be the still-available vertices in N(v)Want to pick a random ind.set from $X \cup \{v\}$

But X has no edges! $\leftarrow G$ is triangle free!

1. Number of independent sets is $2^{x} + 1$

2. Average size of independent set in X is x/2

triangle-free graph

Theorem: if G is K_3 -free, then $\alpha(G) \ge \Omega\left(\frac{n}{d}\log d\right)$

Pick a random independent set *S* from G.

$$\Phi_{v} \coloneqq 1(v \in S) + \frac{|N(v) \cap S|}{d}$$

Suffices to show: for all vertices, $\mathbb{E}[\Phi_v] \ge \frac{\log d}{d}$

1. Number of independent sets is $2^{x} + 1$

2. Average size of independent set in X is x/2

$$\mathbb{E}[\Phi_{v}] = \frac{1}{2^{x}+1} \cdot 1 + \frac{2^{x}}{2^{x}+1} \cdot \frac{\mathbb{E}[\text{size of ind. set in } X]}{d}$$
$$\approx \frac{1}{2^{x}} + \frac{x/2}{d} \ge \Omega\left(\frac{\log d}{d}\right)$$

extending to Shearer

Theorem: if G is K_3 -free, then $\alpha(G) \ge \Omega\left(\frac{n}{d}\log d\right)$

Pick a random independent set S from G.

$$\Phi_v \coloneqq 1(v \in S) + \frac{|N(v) \cap S|}{d}$$

Suffices to show: for all vertices, $\mathbb{E}[\Phi_v] \ge \frac{\log d}{d}$

1. Number of independent sets is $2^x + 1$

2. Average size of independent set in X is x/2

```
For K_r-free:
```

1. Number of ind.sets is $2^{\alpha(X)}$ and $\alpha(X) \ge x^{1/r}$ (off-diagonal Ramsey)

2. If number of ind.sets is $2^{\varepsilon x}$ then average size is $\frac{\varepsilon x}{\log 1/\varepsilon}$

 $\Rightarrow \textbf{Shearer's Theorem: if G is } K_r \text{-free, then } \alpha(G) \ge \Omega\left(\frac{n}{d} \cdot \frac{\log d}{r \log \log d}\right)$

for our theorem: a puzzle

suppose K_3 -free graph G, so $\alpha(G) \ge \frac{n}{d} \log d =: A$

puzzle: how many ind.sets in G?

at least $2^{\alpha(G)} \approx 2^A$ at most $\binom{n}{\alpha(G)} \approx d^A$

what's the truth?

to recap

Our question: Find a large ind.set in a K_r -free graph, where $r = \log^2 d$.

Thm:
$$\[mathbb{M}\]$$
 If K_r -free, $\alpha(G) \ge \widetilde{\Omega}\left(\left(\frac{n}{d}\right) \cdot \frac{\log d}{r}\right)$
Conjecture: $\alpha(G) \ge \Omega\left(\left(\frac{n}{d}\right) \cdot \frac{\log d}{\log r}\right)$

Theorem 3:
$$\alpha(G) \geq \widetilde{\Omega}\left(\left(\frac{n}{d}\right) \cdot \sqrt{\frac{\log d}{\log r}}\right)$$

Theorem 2:

The integrality gap of the Lovasz ϑ -function is at most

$$\tilde{O}\left(\frac{d}{\log^{3/2} d}\right)$$

 \Rightarrow estimate MaxIS size to within this factor in poly-time.

thanks!