Independent Sets in Sparse Graphs

Approximation Algorithms
via
Ramsey-theoretic ideas

Anupam Gupta
Carnegie Mellon University

work with Nikhil Bansal (TU Eindhoven) and Guru Guruganesh (CMU)
STOC 2015 / arXiv 1504.04767

independent set problem

Given graph G, approximate the largest independent set (size $=\alpha(\mathrm{G})$)

Notoriously hard:
Best approx:
$\Omega\left(n^{0.999 . . .}\right)$
$n / \log ^{3} n$
[Hastad 96, ...]
[Feige 04]

independent set problem

Given graph G, approximate the largest independent set (size $=\alpha(\mathrm{G})$)

Notoriously hard:
Best approx:
$\Omega\left(n^{0.999 . . .}\right)$
$n / \log ^{3} n$
[Hastad 96, ...]
[Feige 04]

Our Focus: max. degree = d (avg. degree d suffices)
(d +1) approximation trivial $\quad\left[\right.$ Greedy $\left.\geq \frac{n}{d+1}\right]$
Tight: e.g., $\mathrm{n} /(\mathrm{d}+1)$ disjoint copies of K_{d+1}

LP/SDP relaxations

IP: $\max \sum_{i} x_{i} \quad$ s.t. $x_{i}+x_{j} \leq 1 \quad$ if $(\mathrm{i}, \mathrm{j}) \in E \quad x_{i} \in\{0,1\}$

LP relaxation useless:

$$
\Omega(\mathrm{d}) \text { integrality gap (each } x_{i}=1 / 2 \text {) }
$$

Q. What do semidefinite programs give?
Q. How do "lift/project" hierarchies help?

progress timeline

*Ignoring poly(log $\log d)$ factors

progress timeline

our results

our results (in words)

Theorem 1:

A randomized algorithm for MaxIS on degree-d graphs with (almost-tight) approximation factor

$$
\tilde{O}\left(\frac{d}{\log ^{2} d}\right)
$$

and run time $\operatorname{poly}\left(n, 2^{d}\right)$.

Theorem 2:
The integrality gap of the Lovasz ϑ-function is at most

$$
\tilde{O}\left(\frac{d}{\log ^{3 / 2} d}\right)
$$

\Rightarrow estimate MaxIS size to within this factor in poly-time.

our chief weapon is...

why

Frank P. Ramsey (1903-30)

Ramsey results for sparse graphs

Thm: If K_{3}-free, $\quad \alpha(G) \geq\left(\frac{n}{d}\right) \log d$

Celebrated result; pioneered "Rödl" nibble method Several proofs known.
Tight.
[Ajtai Komlos Szemeredi 80]

Thm: If K_{r}-free, $\quad \alpha(G) \geq\left(\frac{n}{d}\right) \log d \cdot \frac{1}{\mathrm{r} \log \log d}$
Beautiful application of entropy method (non-algorithmic)

Remove the $\log \log d$?
What is the right dependence on r ?

Ramsey results to remember...

Thm: Ω If K_{r}-free, $\alpha(G) \geq \widetilde{\Omega}\left(\left(\frac{n}{d}\right) \cdot \frac{\log d}{r}\right)$

Conjecture: $\quad \alpha(G) \geq \Omega\left(\left(\frac{n}{d}\right) \cdot \frac{\log d}{\log r}\right)$

the Lovasz ϑ-function

SDP: vector v_{i} for vertex i .

$$
\vartheta(G)=\quad \operatorname{Max} \Sigma_{i} v_{i} \cdot v_{i} . \quad \text { if }(i, j) \in E
$$

Intended solution: $v_{i}=v_{1}$ if i chosen, 0 otherwise.

Define: $x_{i}:=v_{i} \cdot v_{i}$

Facts:

1. $\alpha(G) \leq \vartheta(G) \leq \bar{\chi}(G)$
2. If C is a clique in G , then $x(C) \leq 1$.

Halperin gives $\approx \frac{d}{\log d}$ approx

Use greedy on "low" vertices
$\operatorname{Pr}[$ vertex in IndSet $] \geq \frac{1}{d}$
Round the "high" vertices using Karger-Motwani-Sudan rounding

Get a $\frac{d}{\log ^{2} d}$-approx on these!

$$
\text { Overall } \tilde{O}\left(\frac{d}{\log d}\right) \text { approximation }
$$

Same factor as Ramsey!
Can we combine Halperin + Ramsey?

how to do better?

Use greedy on "low" vertices
$\operatorname{Pr}[$ vertex in IndSet $] \geq \frac{1}{d}$
Round the "high" vertices using Karger-Motwani-Sudan rounding

how to do better?

From now on, imagine all vertices have x_{i} in this range

So: largest clique has size $r:=\log ^{2} d$

Find a large ind.set in a K_{r}-free graph, where $r=\log ^{2} d$.

can we use Shearer?!?

Find a large ind.set in a K_{r}-free graph, where $r=\log ^{2} d$.
Thm: 2 If K_{r}-free, $\alpha(G) \geq \widetilde{\Omega}\left(\left(\frac{n}{d}\right) \cdot \frac{\log d}{r}\right)$
Conjecture: $\quad \alpha(G) \geq \Omega\left(\left(\frac{n}{d}\right) \cdot \frac{\log d}{\log r}\right)$
For us, $r=\log ^{2} d$, so Shearer is worse than greedy $n / d!!$

If only conjecture were true...
Theorem 3: $\alpha(G) \geq \widetilde{\Omega}\left(\left(\frac{n}{d}\right) \cdot \sqrt{\frac{\log d}{\log r}}\right)$

putting it in the picture

greedy here
$\left(\frac{d}{\log ^{2} d}\right)$-approx
our results here
$\tilde{O}\left(\frac{d}{\log ^{3 / 2} d}\right)$-approx
hyperplane rounding
$\frac{d}{\log ^{2} d}$-approx

Theorem 2:

The integrality gap of the Lovasz ϑ-function is at most

$$
\tilde{O}\left(\frac{d}{\log ^{3 / 2} d}\right)
$$

\Rightarrow estimate MaxIS size to within this factor in poly-time.

so now to prove...

Theorem 3: if G is K_{r}-free, then $\alpha(G) \geq \widetilde{\Omega}\left(\left(\frac{n}{d}\right) \cdot \sqrt{\frac{\log d}{\log r}}\right)$

Let's first prove
Theorem: if G is K_{3}-free, then $\alpha(G) \geq \Omega\left(\frac{n}{d} \log d\right)$ via Shearer's entropy approach

Assume d-regular graph G.

triangle-free graph

Theorem: if G is K_{3}-free, then $\alpha(G) \geq \Omega\left(\frac{n}{d} \log d\right)$

Pick a random independent set S from G.

$$
\Phi_{v}:=1(v \in S)+\frac{|N(v) \cap S|}{d}
$$

Suffices to show: for all vertices, $\mathbb{E}\left[\Phi_{v}\right] \geq \frac{\log d}{d}$
(show $\mathbb{E}[\# S]$ is large.)

$$
\text { so } \sum_{v} \Phi_{v} \leq 2|S|
$$

triangle-free graph

Theorem: if G is K_{3}-free, then $\alpha(G) \geq \Omega\left(\frac{n}{d} \log d\right)$
Pick a random independent set S from G.

$$
\Phi_{v}:=1(v \in S)+\frac{|N(v) \cap S|}{d}
$$

Suffices to show: for all vertices, $\mathbb{E}\left[\Phi_{v}\right] \geq \frac{\log d}{d}$
Condition on $S \backslash(\{v\} \cup N(v))$
Let X be the still-available vertices in $N(v)$
Want to pick a random ind.set from $X \cup\{v\}$
But X has no edges!
$\Leftarrow G$ is triangle free!

1. Number of independent sets is $2^{x}+1$

2. Average size of independent set in X is $x / 2$

triangle-free graph

Theorem: if G is K_{3}-free, then $\alpha(G) \geq \Omega\left(\frac{n}{d} \log d\right)$
Pick a random independent set S from G.

$$
\Phi_{v}:=1(v \in S)+\frac{|N(v) \cap S|}{d}
$$

Suffices to show: for all vertices, $\mathbb{E}\left[\Phi_{v}\right] \geq \frac{\log d}{d}$

1. Number of independent sets is $2^{x}+1$
2. Average size of independent set in X is $x / 2$

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{v}\right] & =\frac{1}{2^{x}+1} \cdot 1+\frac{2^{x}}{2^{x}+1} \cdot \frac{\mathbb{E}[\text { size of ind.set in } X]}{d} \\
& \approx \frac{1}{2^{x}}+\frac{x / 2}{d} \quad \geq \Omega\left(\frac{\log d}{d}\right)
\end{aligned}
$$

$G \backslash(\{0\} \cup N(0))$

extending to Shearer

Theorem: if G is K_{3}-free, then $\alpha(G) \geq \Omega\left(\frac{n}{d} \log d\right)$
Pick a random independent set S from G.

$$
\Phi_{v}:=1(v \in S)+\frac{|N(v) \cap S|}{d}
$$

Suffices to show: for all vertices, $\mathbb{E}\left[\Phi_{v}\right] \geq \frac{\log d}{d}$

1. Number of independent sets is $2^{x}+1$
2. Average size of independent set in X is $x / 2$

For K_{r}-free:

1. Number of ind.sets is $2^{\alpha(X)}$ and $\alpha(X) \geq x^{1 / r}$ (off-diagonal Ramsey)
2. If number of ind.sets is $2^{\varepsilon x}$ then average size is $\frac{\varepsilon x}{\log 1 / \varepsilon}$
\Rightarrow Shearer's Theorem: if G is K_{r}-free, then $\alpha(G) \geq \Omega\left(\frac{n}{d} \cdot \frac{\log d}{r \log \log d}\right)$

for our theorem: a puzzle

suppose K_{3}-free graph G , so $\alpha(G) \geq \frac{n}{d} \log d=$: A
puzzle: how many ind.sets in G ?

$$
\begin{aligned}
& \text { at least } 2^{\alpha(G)} \approx 2^{A} \\
& \text { at } \operatorname{most}\binom{n}{\alpha(G)} \approx d^{A}
\end{aligned}
$$

what's the truth?

thought experiment: sample each node w.p. $p:=\frac{1}{\sqrt{d}}$
New graph G^{\prime} has $n^{\prime}=p n, d^{\prime}=p d$, so $\frac{n}{d} \approx \frac{n^{\prime}}{d^{\prime}}$

$$
\text { So } \alpha\left(G^{\prime}\right) \geq\left(n^{\prime} \frac{\log d \prime}{d^{\prime}}\right) \quad=\frac{n}{d} \cdot \frac{1}{2} \log d \quad=: A / 2
$$

But any ind.set of size $A / 2$ in G survives only w.p. $\left(\frac{1}{\sqrt{d}}\right)^{A / 2}$

$\Rightarrow \mathrm{G}$ has $\approx \sqrt{d}^{A / 2}$ independent sets of size $A / 2$!

to recap

Our question: Find a large ind.set in a K_{r}-free graph, where $r=\log ^{2} d$.
Thm: 9 If K_{r}-free, $\quad \alpha(G) \geq \widetilde{\Omega}\left(\left(\frac{n}{d}\right) \cdot \frac{\log d}{r}\right)$
Conjecture: $\quad \alpha(G) \geq \Omega\left(\left(\frac{n}{d}\right) \cdot \frac{\log d}{\log r}\right)$
Theorem 3: $\alpha(G) \geq \widetilde{\Omega}\left(\left(\frac{n}{d}\right) \cdot \sqrt{\frac{\log d}{\log r}}\right)$

Theorem 2:

The integrality gap of the Lovasz ϑ-function is at most

$$
\tilde{O}\left(\frac{d}{\log ^{3 / 2} d}\right)
$$

\Rightarrow estimate MaxIS size to within this factor in poly-time.

thanks!

