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N : a finite set of agents
E: a finite set of objects
≻i: an ordinal preference over set E for each agent i ∈ N

————————————————————————–
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N : a finite set of agents
E: a finite set of objects
≻i: an ordinal preference over set E for each agent i ∈ N

————————————————————————–
B ⊆ 2E: a family of available (feasible) sets of objects that
forms a family of bases of a matroid on E

————————————————————————–
Without money we consider how to choose one base B from
among B and allocate the goods in B to agents in an efficient
and fair manner.
————————————————————————–

(The case when B consists of a single base has been considered in the literature.)
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(E,B): a matroid with its rank function ρ : 2E → Z≥0
The base polytope of the matroid (the convex hull of all the
characteristic vectors χB of bases B ∈ B):

B(ρ) = {x ∈ RE | ∀X ⊂ E : x(X) ≤ ρ(X), x(E) = ρ(E)},

where for any X ⊆ E we define x(X) =
∑

e∈X x(e).

The submodular polyhedron associated with ρ:

P(ρ) = {x ∈ RE | ∀X ⊆ E : x(X) ≤ ρ(X)}
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(E,B): a matroid with its rank function ρ : 2E → Z≥0
The base polytope of the matroid (the convex hull of all the
characteristic vectors χB of bases B ∈ B):

B(ρ) = {x ∈ RE | ∀X ⊂ E : x(X) ≤ ρ(X), x(E) = ρ(E)},

where for any X ⊆ E we define x(X) =
∑

e∈X x(e).

The submodular polyhedron associated with ρ:

P(ρ) = {x ∈ RE | ∀X ⊆ E : x(X) ≤ ρ(X)}

Given a vector x ∈ P(ρ) a subset X of E is called tight for x
if we have x(X) = ρ(X).

sat(x): a unique maximal tight set for x

sat(x) = {e ∈ E | ∀α > 0 : x + αχe /∈ P(ρ)}

(Matroid (E,B) is often denoted by (E, ρ) as well.)
→
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For each i ∈ N let agent i’s preference be given by

Li : ei1 ≻i e
i
2 ≻i · · · ≻i e

i
m,

where {ei1, ei2, · · · , eim} = E.

L: the profile of preferences Li (i ∈ N)

ei1: the top (most favorite) good of agent i ∈ N

Define a nonnegative integral vector b(L) ∈ ZE
≥0 by

b(L) =
∑
i∈N

χei1
,

where we may have ei1 = ej1 for distinct i, j ∈ N .
→
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————————————————————————–
An N × E matrix P = (P (i, e) | i ∈ N, e ∈ E) is called a
random assignment if it satisfies

1. P (i, e) ≥ 0 for all i ∈ N and e ∈ E,

2. regarding each ith row Pi of P as a vector in RE
≥0, we have

x∗P ≡
∑
i∈N

Pi ∈ B(ρ).

————————————————————————–
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————————————————————————–
An N × E matrix P = (P (i, e) | i ∈ N, e ∈ E) is called a
random assignment if it satisfies

1. P (i, e) ≥ 0 for all i ∈ N and e ∈ E,

2. regarding each ith row Pi of P as a vector in RE
≥0, we have

x∗P ≡
∑
i∈N

Pi ∈ B(ρ).

————————————————————————–

First, we consider B(ρ) as a set of divisible goods and find an
allocation of the divisible goods in an efficient and fair manner.
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Random Assignment
Input: Preferences L = (Li | i ∈ N) and a matroid (E, ρ)

with ρ(E) ≤ |N |(= n).
Output: A random assignment matrix P ∈ RN×E

≥0 and a base
x∗P ∈ B(ρ).
Step 0: For each i ∈ N put xi ← 0 ∈ RE (the zero vector)
and put S0 ← ∅, p← 1, and x∗ ← 0.
Step 1: For current (updated) L = (Li | i ∈ N) compute

λ∗ = max{λ ≥ 0 | x∗ + λb(L) ∈ P(ρ)}.

For each i ∈ N put xi ← xi + λ∗χei1
.

Put x∗ ← x∗ + λ∗b(L) and Sp ← sat(x∗) for x∗ ∈ P(ρ).
Step 2: Put T ← Sp \ Sp−1.

Remove all elements of T and update Li (i ∈ N).
Step 3: If ρ(Sp) < ρ(E), then put p← p+ 1 and go to Step 1.

Otherwise put P (i, e)← xi(e) for all i ∈ N and e ∈ E.
Return P and x∗P = x∗.

Note that x∗
P = x∗ and for each agent i ∈ N the ith row sum of P is equal to ρ(E)/|N |.
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Example 1:
N = {1, 2, 3, 4}, E = {a, b, c, d}
Consider a uniform matroid M = (E,B) of rank two.
Preferences of all agents are given by

i ∈ N preference Li

1 a ≻1 b ≻1 c ≻1 d

2 a ≻2 c ≻2 b ≻2 d

3 a ≻3 c ≻3 d ≻3 b

4 b ≻4 a ≻4 d ≻4 c
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By Random Assignment we have

i ∈ N preference Li

1 a ≻1 b ≻1 c ≻1 d

2 a ≻2 c ≻2 b ≻2 d

3 a ≻3 c ≻3 d ≻3 b

4 b ≻4 a ≻4 d ≻4 c

b(L) =
( a b c d

3 1 0 0
)

S1 = {a}
λ∗ = 1/3 for p = 1

P =


a b c d

1 1/3 1/6 0 0

2 1/3 0 1/6 0

3 1/3 0 1/6 0

4 0 1/3 + 1/6 0 0
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By Random Assignment we have

i ∈ N preference Li

1 a ≻1 b ≻1 c ≻1 d

2 a ≻2 c ≻2 b ≻2 d

3 a ≻3 c ≻3 d ≻3 b

4 b ≻4 a ≻4 d ≻4 c

b(L) = (0, 2, 2, 0)

S1 = {a}, S2 = {a, b, c, d}
λ∗ = 1/6 for p = 2

P =


a b c d

1 1/3 1/6 0 0

2 1/3 0 1/6 0

3 1/3 0 1/6 0

4 0 1/3 + 1/6 0 0


x∗P = (1, 2/3, 1/3, 0)
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Example 2: E = {a, b, c, d}

B = {X | X ⊂ E, |X| = 2, X ̸= {a, b}}

This is a graphic matroid, which is represented by

�

�

� �

Figure 1: A graph with edge set E = {a, b, c, d}.
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i ∈ N preference Li

1 a ≻1 b ≻1 c ≻1 d

2 a ≻2 c ≻2 b ≻2 d

3 a ≻3 c ≻3 d ≻3 b

4 b ≻4 a ≻4 d ≻4 c

b(L) = (3, 1, 0, 0), (0, 0, 3, 1)

S1 = {a, b}, S2 = {a, b, c, d}
λ∗ = 1/4 for p = 1 and λ∗ = 1/4 for p = 2.

P =


a b c d

1 1/4 0 1/4 0

2 1/4 0 1/4 0

3 1/4 0 1/4 0

4 0 1/4 0 1/4


x∗P = (3/4, 1/4, 3/4, 1/4).
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Let P and Q be random assignments.
For each agent i ∈ N with preference relation ≻i given by
ei1 ≻i · · · ≻i e

i
m, define a relation (sd-dominance relation) ⪰d

i

between the ith rows Pi and Qi of P and Q, respectively, by

Pi ⪰d
i Qi ⇐⇒ ∀ℓ = 1, · · · ,m :

ℓ∑
k=1

P (i, eik) ≥
ℓ∑

k=1

Q(i, eik).

The random assignment Q is sd-dominated by P if we have
Pi ⪰d

i Qi for all i ∈ N and P ̸= Q.
We say that P is ordinally efficient if P is not sd-dominated
by any other random assignment.

“sd” stands for stochastic dominance [1].
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Let P and Q be random assignments.
For each agent i ∈ N with preference relation ≻i given by
ei1 ≻i · · · ≻i e

i
m, define a relation (sd-dominance relation) ⪰d

i

between the ith rows Pi and Qi of P and Q, respectively, by

Pi ⪰d
i Qi ⇐⇒ ∀ℓ = 1, · · · ,m :

ℓ∑
k=1

P (i, eik) ≥
ℓ∑

k=1

Q(i, eik).

The random assignment Q is sd-dominated by P if we have
Pi ⪰d

i Qi for all i ∈ N and P ̸= Q.
We say that P is ordinally efficient if P is not sd-dominated
by any other random assignment.

————————————————————————–
Theorem 1: The random assignment P obtained by the pro-
cedure Random Assignment is ordinally efficient.
————————————————————————–
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We say a random assignment P is envy-free with respect to
a profile of ordinal preferences ≻i for all i ∈ N if for all
i, j ∈ N we have Pi ⪰d

i Pj.
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We say a random assignment P is envy-free with respect to
a profile of ordinal preferences ≻i for all i ∈ N if for all
i, j ∈ N we have Pi ⪰d

i Pj.

————————————————————————–
Theorem 2: The random assignment P obtained by the pro-
cedure Random Assignment is envy-free.
————————————————————————–
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Randomized Assignment
Given the random assignment P and the base x∗P , compute a
probability distribution on realizations of assignments satisfy-
ing the following:

(1) The base x∗P is expressed as a convex combination of ex-
treme bases in B(ρ) (characteristic vectors of bases Bk ∈ B
(k ∈ K)):

x∗P =
∑
k∈K

µkχBk
(µk > 0 (∀k ∈ K),

∑
k∈K

µk = 1).

(2) Each P (i, e) is equal to the probability that agent i ∈ N

receives good e ∈ E.

Choose an assignment according to the computed probability
distribution.
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