A Solution to the Random Assignment Problem with a Matroidal Family of Goods

Satoru Fujishige

Research Institute for Mathematical Sciences Kyoto University, Japan

NII Shonan Meeting on Current Trends in Combinatorial Optimization April 11–14, 2016

> Joint work with Yoshio Sano (University of Tsukuba) and Ping Zhan (Edogawa University)

References

- [1] A. Bogomolnaia and H. Moulin: A new solution to the random assignment problem. *Journal of Economic Theory* **100** (2001) 295–328.
- [2] A.-K. Katta and J. Sethuraman: A solution to the random assignment problem on the full preference domain. *Journal of Economic Theory* **131** (2006) 231–250.
- [3] A. Bogomolnaia and E. J. Heo: Probabilistic assignment of objects: characterizing the serial rule. *Journal of Economic Theory* **147** (2012) 2072–2082.
- [4] T. Hashimoto, D. Hirata, O. Kesten, M. Kurino, and M. U. Ünver: Two axiomatic approaches to the probabilistic serial mechanism. *Theoretical Economics* 9 (2014) 253–277.
- [5] A. Bogomolnaia: Random assignment: redefining the serial rule. *Journal of Economic Theory* **158** (2015) 308–318.
- [6] L. J. Schulman and V. V. Vazirani: Allocation of divisible goods under lexicographic preferences. arXiv:1206.4366v4 [cs.GT] 11 Oct 2015.

N: a finite set of **agents** E: a finite set of **objects** \succ_i : an **ordinal preference** over set E for each agent $i \in N$

N: a finite set of **agents** E: a finite set of **objects** \succ_i : an **ordinal preference** over set E for each agent i ∈ N

 $\mathcal{B} \subseteq 2^E$: a family of available (feasible) sets of objects that forms **a family of bases of a matroid** on E

N: a finite set of **agents** *E*: a finite set of **objects** \succ_i : an **ordinal preference** over set *E* for each agent $i \in N$

 $\mathcal{B} \subseteq 2^E$: a family of available (feasible) sets of objects that forms **a family of bases of a matroid** on *E*

Without money we consider how to choose one base B from among \mathcal{B} and allocate the goods in B to agents **in an efficient and fair manner**.

(The case when \mathcal{B} consists of a single base has been considered in the literature.)

 $(E,\mathcal{B})\text{:}$ a matroid with its rank function $\rho:2^E\to\mathbb{Z}_{\geq 0}$

The **base polytope** of the matroid (the convex hull of all the characteristic vectors χ_B of bases $B \in \mathcal{B}$):

$$\mathcal{B}(\rho) = \{ x \in \mathbb{R}^E \mid \forall X \subset E : x(X) \le \rho(X), \ x(E) = \rho(E) \},\$$

where for any $X \subseteq E$ we define $x(X) = \sum_{e \in X} x(e)$.

The **submodular polyhedron** associated with ρ :

$$\mathbf{P}(\rho) = \{ x \in \mathbb{R}^E \mid \forall X \subseteq E : x(X) \le \rho(X) \}$$

 (E,\mathcal{B}) : a matroid with its rank function $\rho:2^E\to\mathbb{Z}_{\geq 0}$

The **base polytope** of the matroid (the convex hull of all the characteristic vectors χ_B of bases $B \in \mathcal{B}$):

$$\mathcal{B}(\rho) = \{ x \in \mathbb{R}^E \mid \forall X \subset E : x(X) \le \rho(X), \ x(E) = \rho(E) \},\$$

where for any $X \subseteq E$ we define $x(X) = \sum_{e \in X} x(e)$.

The **submodular polyhedron** associated with ρ :

$$\mathbf{P}(\rho) = \{ x \in \mathbb{R}^E \mid \forall X \subseteq E : x(X) \le \rho(X) \}$$

Given a vector $x \in P(\rho)$ a subset X of E is called *tight* for x if we have $x(X) = \rho(X)$.

sat(x): a unique maximal tight set for x

$$\operatorname{sat}(x) = \{ e \in E \mid \forall \alpha > 0 : x + \alpha \chi_e \notin \mathbb{P}(\rho) \}$$

(Matroid (E, \mathcal{B}) is often denoted by (E, ρ) as well.)

For each $i \in N$ let **agent** *i*'s **preference** be given by

 $L^i: e_1^i \succ_i e_2^i \succ_i \cdots \succ_i e_m^i,$

where $\{e_1^i, e_2^i, \cdots, e_m^i\} = E$.

 \mathcal{L} : the profile of preferences $L^i \ (i \in N)$

 e_1^i : the **top** (most favorite) **good** of agent $i \in N$

Define a nonnegative integral vector $b(\mathcal{L}) \in \mathbb{Z}_{\geq 0}^E$ by

$$b(\mathcal{L}) = \sum_{i \in N} \chi_{e_1^i},$$

 \rightarrow

where we may have $e_1^i = e_1^j$ for distinct $i, j \in N$.

An $N \times E$ matrix $P = (P(i, e) \mid i \in N, e \in E)$ is called a *random assignment* if it satisfies

- 1. $P(i, e) \ge 0$ for all $i \in N$ and $e \in E$,
- 2. regarding each *i*th row P_i of P as a vector in $\mathbb{R}^{E}_{\geq 0}$, we have

$$x_P^* \equiv \sum_{i \in N} P_i \in \mathcal{B}(\rho).$$

An $N \times E$ matrix $P = (P(i, e) \mid i \in N, e \in E)$ is called a *random assignment* if it satisfies

- 1. $P(i, e) \ge 0$ for all $i \in N$ and $e \in E$,
- 2. regarding each *i*th row P_i of P as a vector in $\mathbb{R}^{E}_{\geq 0}$, we have

$$x_P^* \equiv \sum_{i \in N} P_i \in \mathcal{B}(\rho).$$

First, we consider $B(\rho)$ as a set of **divisible** goods and find an allocation of the divisible goods in an efficient and fair manner.

Random_Assignment

Input: Preferences $\mathcal{L} = (L^i \mid i \in N)$ and a matroid (E, ρ) with $\rho(E) \leq |N| (= n)$.

Output: A random assignment matrix $P \in \mathbb{R}_{\geq 0}^{N \times E}$ and a base $x_P^* \in B(\rho)$.

Step 0: For each $i \in N$ put $x^i \leftarrow \mathbf{0} \in \mathbb{R}^E$ (the zero vector) and put $S_0 \leftarrow \emptyset$, $p \leftarrow 1$, and $x^* \leftarrow \mathbf{0}$.

Step 1: For current (updated) $\mathcal{L} = (L^i \mid i \in N)$ compute

$$\lambda^* = \max\{\lambda \ge 0 \mid x^* + \lambda b(\mathcal{L}) \in \mathcal{P}(\rho)\}$$

For each $i \in N$ put $x^i \leftarrow x^i + \lambda^* \chi_{e_1^i}$.

Put $x^* \leftarrow x^* + \lambda^* b(\mathcal{L})$ and $S_p \leftarrow \operatorname{sat}^1(x^*)$ for $x^* \in P(\rho)$. Step 2: Put $T \leftarrow S_p \setminus S_{p-1}$.

Remove all elements of T and update L^i $(i \in N)$.

Step 3: If $\rho(S_p) < \rho(E)$, then put $p \leftarrow p+1$ and go to Step 1. Otherwise put $P(i, e) \leftarrow x^i(e)$ for all $i \in N$ and $e \in E$. Return P and $x_P^* = x^*$.

Note that $x_P^* = x^*$ and for each agent $i \in N$ the *i*th row sum of P is equal to $\rho(E)/|N|$.

Example 1:

 $N = \{1, 2, 3, 4\}, E = \{a, b, c, d\}$ Consider a uniform matroid $\mathbf{M} = (E, \mathcal{B})$ of rank two. Preferences of all agents are given by

$$i \in N \quad \text{preference } L^i$$

$$1 \quad a \succ_1 b \succ_1 c \succ_1 d$$

$$2 \quad a \succ_2 c \succ_2 b \succ_2 d$$

$$3 \quad a \succ_3 c \succ_3 d \succ_3 b$$

$$4 \quad b \succ_4 a \succ_4 d \succ_4 c$$

By Random_Assignment we have

$$i \in N \quad \text{preference } L^{i}$$

$$1 \quad a \succ_{1} b \succ_{1} c \succ_{1} d$$

$$2 \quad a \succ_{2} c \succ_{2} b \succ_{2} d$$

$$3 \quad a \succ_{3} c \succ_{3} d \succ_{3} b$$

$$4 \quad b \succ_{4} a \succ_{4} d \succ_{4} c$$

$$a \quad b \quad c \quad d$$

$$b(\mathcal{L}) = (3 \quad 1 \quad 0 \quad 0)$$

$$S_{1} = \{a\}$$

$$\lambda^{*} = 1/3 \text{ for } p = 1$$

$$P = \begin{array}{c}a \quad b \quad c \quad d\\1/3 \quad 1/6 \quad 0 \quad 0\\1/3 \quad 0 \quad 1/6 \quad 0\\1/3 \quad 0 \quad 1/6 \quad 0\\0 \quad 1/3 + 1/6 \quad 0 \quad 0\end{array}$$

By Random_Assignment we have

$$i \in N \quad \text{preference } L^i$$

$$1 \quad a \succ_1 b \succ_1 c \succ_1 d$$

$$2 \quad a \succ_2 c \succ_2 b \succ_2 d$$

$$3 \quad a \succ_3 c \succ_3 d \succ_3 b$$

$$4 \quad b \succ_4 a \succ_4 d \succ_4 c$$

$$b(\mathcal{L}) = (0, 2, 2, 0)$$

$$S_1 = \{a\}, \quad S_2 = \{a, b, c, d\}$$

$$\lambda^* = 1/6 \text{ for } p = 2$$

$$P = \begin{array}{cccc} a & b & c & d \\ 1/3 & 1/6 & 0 & 0 \\ 1/3 & 0 & 1/6 & 0 \\ 3/1/3 & 0 & 1/6 & 0 \\ 0 & 1/3 + 1/6 & 0 & 0 \end{array} \right)$$
$$x_P^* = (1, 2/3, 1/3, 0)$$

Example 2: $E = \{a, b, c, d\}$ $\mathcal{B} = \{X \mid X \subset E, |X| = 2, X \neq \{a, b\}\}$

This is a graphic matroid, which is represented by

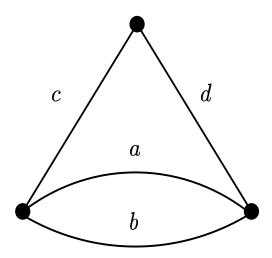


Figure 1: A graph with edge set $E = \{a, b, c, d\}$.

$$i \in N \quad \text{preference } L^i$$

$$1 \quad a \succ_1 b \succ_1 c \succ_1 d$$

$$2 \quad a \succ_2 c \succ_2 b \succ_2 d$$

$$3 \quad a \succ_3 c \succ_3 d \succ_3 b$$

$$4 \quad b \succ_4 a \succ_4 d \succ_4 c$$

$$b(\mathcal{L}) = (3, 1, 0, 0), \quad (0, 0, 3, 1)$$

$$S_1 = \{a, b\}, \qquad S_2 = \{a, b, c, d\}$$

$$\lambda^* = 1/4 \text{ for } p = 1 \text{ and } \lambda^* = 1/4 \text{ for } p = 2.$$

$$P = \begin{array}{cccc} a & b & c & d \\ 1 \begin{pmatrix} 1/4 & 0 & 1/4 & 0 \\ 2 & 1/4 & 0 & 1/4 & 0 \\ 3 & 1/4 & 0 & 1/4 & 0 \\ 4 & 0 & 1/4 & 0 & 1/4 \end{array}$$

$$x_P^* = (3/4, 1/4, 3/4, 1/4).$$

_	_
_	7

Let P and Q be random assignments.

For each agent $i \in N$ with preference relation \succ_i given by $e_1^i \succ_i \cdots \succ_i e_m^i$, define a relation (*sd-dominance* relation) \succeq_i^d between the *i*th rows P_i and Q_i of P and Q, respectively, by

$$P_i \succeq_i^{\mathrm{d}} Q_i \quad \Longleftrightarrow \quad \forall \ell = 1, \cdots, m : \sum_{k=1}^{\ell} P(i, e_k^i) \ge \sum_{k=1}^{\ell} Q(i, e_k^i).$$

The random assignment Q is *sd-dominated* by P if we have $P_i \succeq_i^d Q_i$ for all $i \in N$ and $P \neq Q$.

We say that P is *ordinally efficient* if P is not sd-dominated by any other random assignment.

"sd" stands for stochastic dominance [1].

Let P and Q be random assignments.

For each agent $i \in N$ with preference relation \succ_i given by $e_1^i \succ_i \cdots \succ_i e_m^i$, define a relation (*sd-dominance* relation) \succeq_i^d between the *i*th rows P_i and Q_i of P and Q, respectively, by

$$P_i \succeq_i^{\mathrm{d}} Q_i \quad \Longleftrightarrow \quad \forall \ell = 1, \cdots, m : \sum_{k=1}^{\ell} P(i, e_k^i) \ge \sum_{k=1}^{\ell} Q(i, e_k^i).$$

The random assignment Q is *sd-dominated* by P if we have $P_i \succeq_i^d Q_i$ for all $i \in N$ and $P \neq Q$.

We say that P is *ordinally efficient* if P is not sd-dominated by any other random assignment.

Theorem 1: *The random assignment P obtained by the procedure* Random_Assignment *is ordinally efficient.*

We say a random assignment P is *envy-free* with respect to a profile of ordinal preferences \succ_i for all $i \in N$ if for all $i, j \in N$ we have $P_i \succeq_i^d P_j$.

We say a random assignment P is *envy-free* with respect to a profile of ordinal preferences \succ_i for all $i \in N$ if for all $i, j \in N$ we have $P_i \succeq_i^d P_j$.

Theorem 2: *The random assignment P obtained by the procedure* Random_Assignment *is envy-free*.

Randomized Assignment

Given the random assignment P and the base x_P^* , compute a probability distribution on realizations of assignments satisfying the following:

(1) The base x_P^* is expressed as a **convex combination** of extreme bases in $B(\rho)$ (characteristic vectors **of bases** $B_k \in \mathcal{B}$ $(k \in K)$):

$$x_P^* = \sum_{k \in K} \mu_k \chi_{B_k}$$
 $(\mu_k > 0 \ (\forall k \in K), \ \sum_{k \in K} \mu_k = 1).$

(2) Each P(i, e) is equal to the probability that agent $i \in N$ receives good $e \in E$.

Choose an assignment according to the computed probability distribution.

 $\rightarrow \parallel$