Degree-sequences of highly-connected simple digraphs

Kristóf Bérczi and András Frank

MTA-ELTE Egerváry Research Group

NII Shonan meeting on
Current Trends in Combinatorial Optimization

April 2016

Degree sequences

Definition

The degree sequence of an undirected graph $G=(V, E)$ is a vector $d_{G} \in \mathbb{Z}^{V}$ where $d_{G}(v)=(\#$ edges in E incident to $v)$.

Example

Question
Given $m \in \mathbb{Z}^{V}$, does there exist a graph G with $d_{G}=m$ (such that...)?

Degree sequences

Definition

The out- and in-degree sequences of an digraph $D=(V, A)$ are vectors $d_{D}^{+}, d_{D}^{-} \in \mathbb{Z}^{V}$ where

$$
\begin{aligned}
& d_{D}^{+}(v)=(\# \text { edges in } A \text { leaving } v), \text { and } \\
& d_{D}^{-}(v)=(\# \text { edges in } A \text { entering } v)
\end{aligned}
$$

Example

Question
Given $m_{i}, m_{o} \in \mathbb{Z}^{V}$, does there exist a digraph D fitting $\left(m_{o}, m_{i}\right)$ (that is, $d_{D}^{+}=m_{o}$ and $d_{D}^{-}=m_{i}$) (such that...)?

Previous work

Undirected
Simple bipartite (Gale-Ryser, '57)
Simple (Erdős-Gallai, '60)
Simple k-edge-connected
(Edmonds, '64)
Simple k-node-connected (Wang-Kleitman, '72)
(split graphs, C_{4}-minor-free graphs, Unicyclic graphs, Cati graphs, Halin graphs,)

Directed

No parallel arcs (Gale-Ryser, '57)
Simple (Fulkerson-Chen-Anstee, '60)
k-edge-connected (Frank, '92)
k-node-connected
(Frank-Jordán, '95)

Previous work

Undirected
Simple bipartite (Gale-Ryser, '57)
Simple (Erdǒs-Gallai, '60)
Simple k-edge-connected (Edmonds, '64)
Simple k-node-connected (Wang-Kleitman, '72)
(Split graphs, C_{4}-minor-free graphs, Unicyclic graphs, Cacti graphs, Halin graphs, . . .)

Directed

No parallel arcs (Gale-Ryser, '57)
Simple (Fulkerson-Chen-Anstee, '60)
k-edge-connected (Frank, '92)
k-node-connected
(Frank-Jordán, '95)
(Hong-Liu-Lai, '16)

Previous work

Undirected
Simple bipartite (Gale-Ryser, '57)
Simple (Erdős-Gallai, '60)
Simple k-edge-connected
(Edmonds, '64)
Simple k-node-connected (Wang-Kleitman, '72)
(split graphs, C_{4}-minor-free graphs, Unicyclic graphs, Cati graphs, Halin graphs,)

Bi-sets

Definition

Given a set V, a bi-set is a pair $\left(X_{O}, X_{l}\right)$ where $X_{I} \subseteq X_{O} \subseteq V$.

- X_{O} is the outer, X_{I} is the inner member
- intersection, union
- $u v \in A$ enters $\left(X_{O}, X_{l}\right)$ if $u \notin X_{O}, v \in X_{I}$

A digraph covers bi-set function p if $\varrho(X) \geq p(X)$ for every bi-set X.
Two bi-sets are independent if they cannot be covered by a single arc, that is, $X_{I} \cap Y_{I}=\emptyset$ or $X_{O} \cup Y_{O}=V$.

Bi-sets

Definition

Given a set V, a bi-set is a pair $\left(X_{O}, X_{l}\right)$ where $X_{I} \subseteq X_{O} \subseteq V$.

- X_{O} is the outer, X_{I} is the inner member
- intersection, union
- $u v \in A$ enters $\left(X_{O}, X_{l}\right)$ if $u \notin X_{O}, v \in X_{I}$

A digraph covers bi-set function p if $\varrho(X) \geq p(X)$ for every bi-set X.
Two bi-sets are independent if they cannot be covered by a single arc, that is, $X_{I} \cap Y_{I}=\emptyset$ or $X_{O} \cup Y_{O}=V$.

Bi-sets

Definition

Given a set V, a bi-set is a pair $\left(X_{O}, X_{l}\right)$ where $X_{I} \subseteq X_{O} \subseteq V$.

- X_{O} is the outer, X_{I} is the inner member
- intersection, union
- $u v \in A$ enters $\left(X_{O}, X_{l}\right)$ if $u \notin X_{O}, v \in X_{I}$

A digraph covers bi-set function p if $\varrho(X) \geq p(X)$ for every bi-set X.
Two bi-sets are independent if they cannot be covered by a single arc, that is, $X_{I} \cap Y_{I}=\emptyset$ or $X_{O} \cup Y_{O}=V$.

Bi-sets

Definition

Given a set V, a bi-set is a pair $\left(X_{O}, X_{l}\right)$ where $X_{I} \subseteq X_{O} \subseteq V$.

- X_{O} is the outer, X_{I} is the inner member
- intersection, union
- $u v \in A$ enters $\left(X_{O}, X_{l}\right)$ if $u \notin X_{O}, v \in X_{I}$

A digraph covers bi-set function p if $\varrho(X) \geq p(X)$ for every bi-set X.
Two bi-sets are independent if they cannot be covered by a single arc, that is, $X_{I} \cap Y_{I}=\emptyset$ or $X_{O} \cup Y_{O}=V$.

Bi-sets

Definition

Given a set V, a bi-set is a pair $\left(X_{O}, X_{l}\right)$ where $X_{I} \subseteq X_{O} \subseteq V$.

- X_{O} is the outer, X_{I} is the inner member
- intersection, union
- $u v \in A$ enters $\left(X_{O}, X_{l}\right)$ if $u \notin X_{O}, v \in X_{I}$

A digraph covers bi-set function p if $\varrho(X) \geq p(X)$ for every bi-set X.
Two bi-sets are independent if they cannot be covered by a single arc, that is, $X_{I} \cap Y_{I}=\emptyset$ or $X_{O} \cup Y_{O}=V$.

Bi-sets

Definition

Given a set V, a bi-set is a pair $\left(X_{O}, X_{l}\right)$ where $X_{I} \subseteq X_{O} \subseteq V$.

- X_{O} is the outer, X_{I} is the inner member
- intersection, union
- $u v \in A$ enters $\left(X_{O}, X_{l}\right)$ if $u \notin X_{O}, v \in X_{I}$

A digraph covers bi-set function p if $\varrho(X) \geq p(X)$ for every bi-set X.
Two bi-sets are independent if they cannot be covered by a single arc, that is, $X_{I} \cap Y_{I}=\emptyset$ or $X_{O} \cup Y_{O}=V$.

Supermodular arc-covering

Definition

A bi-set function p is positively crossing supermodular if

$$
p(X)+p(Y) \leq p(X \cap Y)+p(X \cup Y)
$$

whenever $p(X), p(Y)>0, X_{I} \cap Y_{I} \neq \emptyset$ and $X_{O} \cup Y_{O} \neq V$.
Theorem (Frank-Jordán, '95)
The minimum number of arcs needed to cover p is equal to the maximum total p-value of an independent family of bi-sets.

Remark

When simplicity is required, the problem becomes NP-hard.

Strongly connected simple digraphs

Theorem (Hong, Liu and Lai, '16)
Suppose that there is a simple digraph fitting $\left(m_{o}, m_{i}\right)$. There is a strongly connected simple digraph fitting $\left(m_{o}, m_{i}\right)$ if and only if

$$
m_{o}(Z)+m_{i}(X)-|X||Z|+1 \leq \gamma
$$

holds for every pair of disjoint subsets $X, Z \subset V$ with $X \cup Z \neq \emptyset$, where $\gamma=m_{o}(V)=m_{i}(V)$.

Necessity

Strongly connected simple digraphs

Aim

Encode connectivity, m_{0}, m_{i} and simplicity in the same positively crossing supermodular bi-set function p.

Type 1	Type 2	Type 3
$1<\|K\|<n-1$		
$p(K, K)=1$		

Strongly connected simple digraphs

Aim

Encode connectivity, m_{0}, m_{i} and simplicity in the same positively crossing supermodular bi-set function p.

Type 1	Type 2	Type 3
$1<\|K\|<n-1$		
$p(K, K)=1$		

Case 1
There is a digraph $D=(V, A)$ with γ arcs covering p.

- $\delta(v)=m_{o}(v)$ and $\varrho(v)=m_{i}(v)$ for $v \in V$
- D is simple
u

Strongly connected simple digraphs

Aim

Encode connectivity, m_{o}, m_{i} and simplicity in the same positively crossing supermodular bi-set function p.

Type 1	Type 2	Type 3
$1<\|K\|<n-1$		

Case 1
There is a digraph $D=(V, A)$ with γ arcs covering p.

- $\delta(v)=m_{o}(v)$ and $\varrho(v)=m_{i}(v)$ for $v \in V$
- D is simple

Strongly connected simple digraphs

Type 1	Type 2	Type 3
$1<\|K\|<n-1$		v

Case 2

The minimum number of arcs needed to cover p is larger than γ.
Frank-Jordán: \exists independent family \mathcal{I} with $p(\mathcal{I})>\gamma$.

Strongly connected simple digraphs

Type 1	Type 2	Type 3
$1<\|K\|<n-1$		
\mathcal{F}		

Case 2

The minimum number of arcs needed to cover p is larger than γ.
Frank-Jordán: \exists independent family \mathcal{I} with $p(\mathcal{I})>\gamma$.

$$
|\mathcal{F}|+m_{o}(Z)+\sum\left[m_{i}(v)-(|Y|-1):(Y, v) \in \mathcal{B}\right]>\gamma
$$

Strongly connected simple digraphs

Type 1	Type 2	Type 3
$1<\|K\|<n-1$		
$p(K, K)=1$	$p(V-u, V-u)=m_{o}(u)$	$p(Y, v)=m_{i}(v)-(\|Y\|-1)$
\mathcal{F}	\mathcal{Z}	\mathcal{B}

Case 2

The minimum number of arcs needed to cover p is larger than γ.
Frank-Jordán: \exists independent family \mathcal{I} with $p(\mathcal{I})>\gamma$.

$$
|\mathcal{F}|+m_{o}(Z)+\sum\left[m_{i}(v)-(|Y|-1):(Y, v) \in \mathcal{B}\right]>\gamma
$$

$$
m_{o}(Z)+m_{i}(X)-|X \| Z|>\gamma \quad \text { or } \quad m_{\circ}(Z)+m_{i}(X)-|X \| Z|+1>\gamma
$$

Edge-connectivity augmentation

Question

Let D_{0} be a digraph. Find a simple digraph $H=(V, A)$ fitting (m_{0}, m_{i}) such that $D_{0}+H$ is k-edge-connected. Conjecture?

Edge-connectivity augmentation

Question

Let D_{0} be a $(k-1)$-edge-connected digraph. Find a simple digraph $H=(V, A)$ fitting $\left(m_{0}, m_{i}\right)$ such that $D_{0}+H$ is k-edge-connected.
$\mathcal{K}:=\left\{\emptyset \neq X \subset V: \varrho_{D_{0}}(X)=k-1\right\}$ is a crossing family.

Type 1	Type 2	Type 3
$1<\|K\|<n-1, K \in \mathcal{K}$		
$p(K, K)=1$		

Theorem
...if and only if there is a simple digraph fitting $\left(m_{0}, m_{i}\right)$ and

$$
m_{o}(Z)+m_{i}(X)-|X||Z|+1 \leq \gamma
$$

holds for every pair of disjoint subsets $X, Z \subset V$ for which there exists $K \in \mathcal{K}$ with $Z \subseteq K \subseteq V-X$.

Further remarks

Question
Let $D_{0}=\left(V, A_{0}\right)$ be a $(k-1)$-edge-connected digraph and $F \subseteq A_{0}$.
Find a digraph $H=(V, A)$ fitting $\left(m_{0}, m_{i}\right)$ such that $D_{0}+H$ is k-edge-connected and $A_{0} \cap A \subseteq F$.

- Can be solved by modifying p.

An "easy" special case

$H=(V, F)$ is a digraph s.t.

- $z v \in F$ for all $z \in Z, v \in V$,
- $u x \in F$ for all $u \in V, x \in X$.

Question

What is the minimum number of arcs needed to make H k-connected?

Finding the right condition...

Finding the right condition...

- If $\emptyset \neq Z-X \neq V$, then $\varrho(Z-X) \geq k-|X \cap Z|$.
$\Rightarrow\left(m_{o}(Z)+m_{i}(X)-|X||Z|+|X \cap Z|\right)+(k-|X \cap Z|) \leq \gamma$

Finding the right condition...

- If $\emptyset \neq Z-X \neq V$, then $\varrho(Z-X) \geq k-|X \cap Z|$.
$\Rightarrow\left(m_{o}(Z)+m_{i}(X)-|X||Z|+|X \cap Z|\right)+(k-|X \cap Z|) \leq \gamma$
Theorem
Suppose that there is a simple digraph fitting $\left(m_{o}, m_{i}\right)$. There is a k-connected simple digraph fitting $\left(m_{0}, m_{i}\right)$ if and only if

$$
m_{o}(Z)+m_{i}(X)-|X||Z|+k \leq \gamma
$$

holds for distinct $X, Z \subset V$.

Definition of p

Lemma

$D=(V, A)$ is k-connected if and only if $\varrho(B) \geq k-\left|B_{O}-B_{l}\right|$ whenever $\emptyset \neq B_{I} \subseteq B_{O} \subset V$.

Type 1	Type 2	Type 3

Definition of p

Lemma

$D=(V, A)$ is k-connected if and only if $\varrho(B) \geq k-\left|B_{O}-B_{l}\right|$ whenever $\emptyset \neq B_{I} \subseteq B_{O} \subset V$.

Type 1	Type 2	Type 3

Case 1

p can be covered by γ arcs \Rightarrow Hurray!
Case 2
Independent family \mathcal{I} with $p(\mathcal{I})>\gamma \Rightarrow$ violating pair X, Z.

Further remarks

Question

Let $D_{0}=\left(V, A_{0}\right)$ be a digraph and $F \subseteq A_{0}$. Find a digraph $H=(V, A)$ fitting $\left(m_{0}, m_{i}\right)$ such that $D_{0}+H$ is k-connected and $A_{0} \cap A \subseteq F$.

Further remarks

Question

Let $D_{0}=\left(V, A_{0}\right)$ be a digraph and $F \subseteq A_{0}$. Find a digraph $H=(V, A)$ fitting $\left(m_{0}, m_{i}\right)$ such that $D_{0}+H$ is k-connected and $A_{0} \cap A \subseteq F$.

- Can be solved by modifying p. ;)
- Characterization uses independent bi-sets. $)$

Open problems

Question

Characterize the degree-sequences of simple k-edge-connected digraphs.
Question
Characterize the degree-sequences of simple k-connected digraphs without using independent bi-sets.

Question Direct algorithms...

Conjecture

The minimum number of new arcs needed to make an acyclic graph k-connected is equal to the maximum of the in- and out-degree deficiencies.

