Degree-sequences of highly-connected simple digraphs

Kristóf Bérczi and András Frank

MTA-ELTE Egerváry Research Group

NII Shonan meeting on Current Trends in Combinatorial Optimization

April 2016

Degree sequences

Definition The degree sequence of an undirected graph G = (V, E) is a vector $d_G \in \mathbb{Z}^V$ where $d_G(v) = (\# \text{ edges in } E \text{ incident to } v)$.

Example

Question

Given $m \in \mathbb{Z}^V$, does there exist a graph G with $d_G = m$ (such that...)?

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Degree sequences

Definition The out- and in-degree sequences of an digraph D = (V, A) are vectors $d_D^+, d_D^- \in \mathbb{Z}^V$ where

 $d_D^+(v) = (\# \text{ edges in } A \text{ leaving } v), \text{ and}$ $d_D^-(v) = (\# \text{ edges in } A \text{ entering } v).$

Example

Question

Given $m_i, m_o \in \mathbb{Z}^V$, does there exist a digraph D fitting (m_o, m_i) (that is, $d_D^+ = m_o$ and $d_D^- = m_i$) (such that...)?

・ロト・4日・4日・4日・4日・

Previous work

Undirected

```
Simple bipartite (Gale-Ryser, '57)
```

Simple (Erdős-Gallai, '60)

Simple *k*-edge-connected (Edmonds, '64)

Simple *k*-node-connected (Wang-Kleitman, '72)

(Split graphs, C4-minor-free graphs, Unicyclic graphs, Cacti graphs, Halin graphs, . . .)

Directed

```
No parallel arcs (Gale-Ryser, '57)
Simple (Fulkerson-Chen-Anstee, '60)
k-edge-connected (Frank, '92)
k-node-connected
(Frank-Jordán, '95)
```

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Previous work

Undirected

```
Simple bipartite (Gale-Ryser, '57)
```

Simple (Erdős-Gallai, '60)

Simple *k*-edge-connected (Edmonds, '64)

Simple *k*-node-connected (Wang-Kleitman, '72)

(Split graphs, C4-minor-free graphs, Unicyclic graphs, Cacti graphs, Halin graphs, . . .)

Directed

No parallel arcs (Gale-Ryser, '57) Simple (Fulkerson-Chen-Anstee, '60) k-edge-connected (Frank, '92) k-node-connected (Frank-Jordán, '95)

Simple strongly connected (Hong-Liu-Lai, '16)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Previous work

Undirected

```
Simple bipartite (Gale-Ryser, '57)
```

Simple (Erdős-Gallai, '60)

Simple *k*-edge-connected (Edmonds, '64)

Simple k-node-connected (Wang-Kleitman, '72)

(Split graphs, C4-minor-free graphs, Unicyclic graphs, Cacti graphs, Halin graphs, ...)

Directed

No parallel arcs (Gale-Ryser, '57)

Simple (Fulkerson-Chen-Anstee, '60)

k-edge-connected (Frank, '92)

k-node-connected (Frank-Jordán, '95)

Simple strongly connected (Hong-Liu-Lai, '16)

Simple degree-prescribed edgeconnectivity augmentation Simple k-node-connected

Definition

Given a set V, a bi-set is a pair (X_O, X_I) where $X_I \subseteq X_O \subseteq V$.

- X₀ is the outer, X₁ is the inner member
- intersection, union
- $uv \in A$ enters (X_O, X_I) if $u \notin X_O, v \in X_I$

A digraph covers bi-set function p if $\rho(X) \ge p(X)$ for every bi-set X.

Definition

Given a set V, a bi-set is a pair (X_O, X_I) where $X_I \subseteq X_O \subseteq V$.

- X₀ is the outer, X₁ is the inner member
- intersection, union
- $uv \in A$ enters (X_O, X_I) if $u \notin X_O, v \in X_I$

A digraph covers bi-set function p if $\rho(X) \ge p(X)$ for every bi-set X.

Definition

Given a set V, a bi-set is a pair (X_O, X_I) where $X_I \subseteq X_O \subseteq V$.

- X₀ is the outer, X₁ is the inner member
- intersection, union
- $uv \in A$ enters (X_O, X_I) if $u \notin X_O, v \in X_I$

A digraph covers bi-set function p if $\rho(X) \ge p(X)$ for every bi-set X.

Definition

Given a set V, a bi-set is a pair (X_O, X_I) where $X_I \subseteq X_O \subseteq V$.

- X₀ is the outer, X₁ is the inner member
- intersection, union
- $uv \in A$ enters (X_O, X_I) if $u \notin X_O, v \in X_I$

A digraph covers bi-set function p if $\rho(X) \ge p(X)$ for every bi-set X.

Definition

Given a set V, a bi-set is a pair (X_O, X_I) where $X_I \subseteq X_O \subseteq V$.

- X₀ is the outer, X₁ is the inner member
- intersection, union
- $uv \in A$ enters (X_O, X_I) if $u \notin X_O, v \in X_I$

A digraph covers bi-set function p if $\varrho(X) \ge p(X)$ for every bi-set X.

Definition

Given a set V, a bi-set is a pair (X_O, X_I) where $X_I \subseteq X_O \subseteq V$.

- X₀ is the outer, X₁ is the inner member
- intersection, union
- $uv \in A$ enters (X_O, X_I) if $u \notin X_O, v \in X_I$

A digraph covers bi-set function p if $\rho(X) \ge p(X)$ for every bi-set X.

Supermodular arc-covering

Definition

A bi-set function p is positively crossing supermodular if

$$p(X) + p(Y) \leq p(X \cap Y) + p(X \cup Y)$$

whenever p(X), p(Y) > 0, $X_I \cap Y_I \neq \emptyset$ and $X_O \cup Y_O \neq V$.

Theorem (Frank-Jordán, '95)

The minimum number of arcs needed to cover p is equal to the maximum total p-value of an independent family of bi-sets.

Remark

When simplicity is required, the problem becomes NP-hard.

Theorem (Hong, Liu and Lai, '16)

Suppose that there is a simple digraph fitting (m_o, m_i) . There is a strongly connected simple digraph fitting (m_o, m_i) if and only if

 $m_o(Z) + m_i(X) - |X||Z| + 1 \leq \gamma$

holds for every pair of disjoint subsets $X, Z \subset V$ with $X \cup Z \neq \emptyset$, where $\gamma = m_o(V) = m_i(V)$.

Necessity

Aim

Encode connectivity, m_o , m_i and simplicity in the same positively crossing supermodular bi-set function p.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Aim

Encode connectivity, m_o , m_i and simplicity in the same positively crossing supermodular bi-set function p.

Case 1

There is a digraph D = (V, A) with γ arcs covering p.

- $\delta(v)=m_o(v)$ and $arrho(v)=m_i(v)$ for $v\in V$
- D is simple

Aim

Encode connectivity, m_o , m_i and simplicity in the same positively crossing supermodular bi-set function p.

Case 1

There is a digraph D = (V, A) with γ arcs covering p.

- $\delta(v)=m_o(v)$ and $arrho(v)=m_i(v)$ for $v\in V$
- D is simple

3 N 3

イロト イヨト イヨト

Case 2 The minimum number of arcs needed to cover p is larger than γ . <u>Frank-Jordán</u>: \exists independent family \mathcal{I} with $p(\mathcal{I}) > \gamma$.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Case 2

The minimum number of arcs needed to cover p is larger than γ . <u>Frank-Jordán</u>: \exists independent family \mathcal{I} with $p(\mathcal{I}) > \gamma$.

 $|\mathcal{F}| + \underline{m_o(Z)} + \sum [m_i(v) - (|Y| - 1): (Y, v) \in \mathcal{B}] > \gamma$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Case 2

The minimum number of arcs needed to cover p is larger than γ . Frank-Jordán: \exists independent family \mathcal{I} with $p(\mathcal{I}) > \gamma$.

$$|\mathcal{F}| + m_{o}(Z) + \sum_{i} [m_{i}(v) - (|Y| - 1): (Y, v) \in \mathcal{B}] > \gamma$$

 $m_o(Z) + m_i(X) - |X||Z| > \gamma$ or $m_o(Z) + m_i(X) - |X||Z| + 1 > \gamma$

Edge-connectivity augmentation

Question

Let D_0 be a digraph. Find a simple digraph H = (V, A) fitting (m_o, m_i) such that $D_0 + H$ is k-edge-connected. Conjecture?

Edge-connectivity augmentation

Question

Let D_0 be a (k-1)-edge-connected digraph. Find a simple digraph H = (V, A) fitting (m_o, m_i) such that $D_0 + H$ is k-edge-connected.

 $\mathcal{K}:=\{\emptyset
eq X\subset V:\ arrho_{\mathcal{D}\mathbf{0}}(X)=k-1\}$ is a crossing family.

Type 1	Type 2	Type 3
$1 < K < n - 1, K \in \mathcal{K}$		v v y
p(K,K) = 1	$p(V-u, V-u) = m_o(u)$	$p(Y, v) = m_i(v) - (Y - 1)$

Theorem

... if and only if there is a simple digraph fitting (m_o, m_i) and

$$m_o(Z) + m_i(X) - |X||Z| + 1 \leq \gamma$$

holds for every pair of disjoint subsets $X, Z \subset V$ for which there exists $K \in \mathcal{K}$ with $Z \subseteq K \subseteq V - X$.

Further remarks

Question

Let $D_0 = (V, A_0)$ be a (k - 1)-edge-connected digraph and $F \subseteq A_0$. Find a digraph H = (V, A) fitting (m_o, m_i) such that $D_0 + H$ is *k*-edge-connected and $A_0 \cap A \subseteq F$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Can be solved by modifying *p*.

An "easy" special case

- H = (V, F) is a digraph s.t.
 - $zv \in F$ for all $z \in Z, v \in V$,
 - $ux \in F$ for all $u \in V, x \in X$.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Question

What is the minimum number of arcs needed to make H k-connected?

Finding the right condition...

$$\begin{array}{l} \texttt{\# of} & \longrightarrow & = m_o(Z) \\ \texttt{\# of} & \longrightarrow & = m_i(X) \\ \texttt{\# of} & \longrightarrow & \leq |X||Z| - |X \cap Z| \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Finding the right condition...

• If $\emptyset \neq Z - X \neq V$, then $\varrho(Z - X) \ge k - |X \cap Z|$. $\Rightarrow (m_o(Z) + m_i(X) - |X||Z| + |X \cap Z|) + (k - |X \cap Z|) \le \gamma$

Finding the right condition...

• If
$$\emptyset \neq Z - X \neq V$$
, then $\varrho(Z - X) \ge k - |X \cap Z|$.

 $\Rightarrow (m_o(Z) + m_i(X) - |X||Z| + |X \cap Z|) + (k - |X \cap Z|) \leq \gamma$

Theorem

Suppose that there is a simple digraph fitting (m_o, m_i) . There is a k-connected simple digraph fitting (m_o, m_i) if and only if

$$m_o(Z) + m_i(X) - |X||Z| + k \leq \gamma$$

holds for distinct $X, Z \subset V$.

Definition of p

Lemma

D = (V, A) is k-connected if and only if $\varrho(B) \ge k - |B_O - B_I|$ whenever $\emptyset \neq B_I \subseteq B_O \subset V$.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Definition of *p*

Lemma

D = (V, A) is k-connected if and only if $\varrho(B) \ge k - |B_O - B_I|$ whenever $\emptyset \neq B_I \subseteq B_O \subset V$.

Case 1

p can be covered by γ arcs \Rightarrow Hurray!

Case 2

Independent family \mathcal{I} with $p(\mathcal{I}) > \gamma \Rightarrow$ violating pair X, Z.

Further remarks

Question Let $D_0 = (V, A_0)$ be a digraph and $F \subseteq A_0$. Find a digraph H = (V, A)fitting (m_o, m_i) such that $D_0 + H$ is *k*-connected and $A_0 \cap A \subseteq F$.

Question

Let $D_0 = (V, A_0)$ be a digraph and $F \subseteq A_0$. Find a digraph H = (V, A)fitting (m_o, m_i) such that $D_0 + H$ is *k*-connected and $A_0 \cap A \subseteq F$.

- Can be solved by modifying p. 🙂
- Characterization uses independent bi-sets. 😊

Open problems

Question

Characterize the degree-sequences of simple k-edge-connected digraphs.

Question

Characterize the degree-sequences of simple *k*-connected digraphs without using independent bi-sets.

Question

Direct algorithms...

Conjecture

The minimum number of new arcs needed to make an acyclic graph *k*-connected is equal to the maximum of the in- and out-degree deficiencies.