Minimizing total Completion Time on Unrelated Machines

w/ Aravind Srinivasan (Maryland)
Ola Svensson (EPFL)

Unrelated machine setting

n jobs: indexed by j
m machines: indexed by i

$\mathrm{n}=5$ Jobs
$\mathrm{m}=3$ machines

Job j has size $p_{i j}$ on machine i
Unrelated setting: $p_{i j}$ are arbitrary

Classic variants

> Makespan: Minimize max. load $\operatorname{Min} \operatorname{Max}_{i}\left(\sum_{j} p_{i j} x_{i j}\right)$
> $x_{i j}: 1$ if job jassigned to machine i
> Load on i

2-approx (Lenstra,Shmoys, Tardos)
NP-Hard to beat 1.5

Lots of work, several variants

Total Weighted Completion Time

$\operatorname{Min} \sum_{j} w_{j} C_{j}$
C_{j} : Completion time of j

Total completion time of these jobs

$$
w_{1} p_{1}+w_{2}\left(p_{1}+p_{2}\right)+w_{3}\left(p_{1}+p_{2}+p_{3}\right)
$$

On any machine i, Smith rule: Decreasing order of $\frac{w_{j}}{p_{i j}}$
Only issue: Which machine to assign jobs

Objective: $\sum_{i} \sum_{j} w_{j}\left(\sum_{j^{\prime} \leqslant i j} p_{i j \prime} x_{i j \prime} x_{i j}\right)$
Smith ordering $<_{i}: \quad j^{\prime}<_{i} j$ if $w_{j \prime} / p_{i j \prime} \geq w_{j} / p_{i j}$ Break ties arbitrarily to get total ordering

3/2: Convex programming
[skutella, Sethuraman Squillante, Chudak late 90 's]

Thm: 3/2-10 ${ }^{-7}$ approximation

Convex Program: Integrality gap of 3/2
New SDP formulation

Independent Randomized Rounding
New dependent rounding w/ strict negative correlation

Convex Programming

Objective (machine i): $\sum_{j} w_{j}\left(\sum_{j^{\prime} \leqslant i j} p_{i j,} x_{i j} x_{i j}\right)$
Suppose $w_{i}=p_{i j} \quad$ (same Smith ratio): $p_{i 1} x_{i 1}\left(p_{i 1} x_{i 1}\right)+$ $p_{i 2} x_{i 2}\left(p_{i 1} x_{i 1}+p_{i 2} x_{i 2}\right)+p_{i 3} x_{i 3}\left(p_{i 1} x_{i 1}+p_{i 2} x_{i 2}+p_{i 3} x_{i 3}\right)+$
$=\frac{1}{2} p_{i j}^{2} x_{i j}^{2}+\frac{1}{2}\left(\sum_{j} p_{i j} x_{i j}\right)^{2}$
Convex Program: Min \sum_{i} (Expression $\left.i\right)$
s.t. $\sum_{i} x_{i j}=1$ for all j .

Bad example: 1 job of size $1, \mathrm{~m}$ machines
Convex Program: Sets $x_{i 1}=1 / m \quad\left(m \cdot \frac{1}{m^{2}}=\frac{1}{m}\right)$

Convex Programming: Fix 1

$\frac{1}{2} p_{i j}^{2} x_{j}^{2}+\frac{1}{2}\left(\sum_{j} p_{i j} x_{j}\right)^{2}$

Expression' $\mathrm{i}:=\frac{1}{2} p_{i j}^{2} x_{i j}+\frac{1}{2}\left(\sum_{j} p_{i j} x_{i j}\right)^{2} \quad\left[x_{i j}^{2}=x_{i j}\right.$ valid $]$

Convex Program: Min $\sum_{i}\left(\right.$ Expression $\left.^{\prime} i\right)$
s.t. $\sum_{i} x_{i j}=1$ for all j.

Bad example: 1 job of size $1, \mathrm{~m}$ machines
Convex Program: puts $x_{i 1}=1 / \mathrm{m}$
Objective $=1 / 2+1 /(2 m)$
[Still integrality gap of 2]

Fix 2: Reducing gap to $3 / 2$

Expression' $\mathrm{i}:=\frac{1}{2} p_{i j}^{2} x_{i j}+\frac{1}{2}\left(\sum_{j} p_{i j} x_{i j}\right)^{2} \quad\left[x_{i j}^{2}=x_{i j}\right.$ valid $]$
Convex Program: Min \sum_{i} Expression' $^{\prime}$)
s.t. $\sum_{i} x_{i j}=1$ for all j .

Add constraint: $O P T \geq \sum_{i} \sum_{j} p_{i j}^{2} x_{i j} \quad$ (i.e. $\sum_{i} \sum_{j} w_{i j} p_{i j} x_{i j}$)

Somewhat adhoc fix
Surprisingly, integrality gap becomes $3 / 2$

Another integrality gap example

k jobs: Size 1 each, only on machine 1
1 job: Size k^{2} on any machine $2, \ldots, k+1$

Optimum: $\frac{k(k+1)}{2}+k^{2} \approx \frac{3}{2} k^{2}$

Convex Program: $\left(O P T>\frac{L}{2}+\frac{Q}{2}, \quad O P T \geq L\right)$
Quadratic term $(\mathrm{Q}): \approx \frac{k^{2}}{2}+\frac{1}{2} k^{2}$
Linear term (L) : $k+k^{2}$

New SDP

Write natural SDP (vectors $v_{i j}, \quad x_{i j}=\left|v_{i j}\right|^{2}$)
Captures correlations and integrality more effectively

Add $v_{i j} \cdot v_{i j}=v_{0} \cdot v_{i j} \quad\left(\right.$ like $\left.x_{i j}=x_{i j}^{2}\right)$
$\left(v_{i j} \cdot v_{i j}^{\prime}\right.$ gives joint probability of j and j^{\prime} on i$)$

Key: Linear and quadratic terms combined more systematically
E.g. For any subset of jobs $S \subset J$

OPT $\geq L(S)+1 / 2 L\left(S^{c}\right)+1 / 2 Q\left(S^{c}\right)$

Previously: $O P T \geq L(J) \quad$ and $\quad O P T \geq 1 / 2 L(J)+1 / 2 Q(J)$

The Rounding Issue

Given the $x_{i j}$, how to use these?
Randomized rounding stuck at 3/2.
kidentical jobs (size 1) on k machines. Clearly, OPT = 1

Suppose $x_{i j}=1 / k$
Randomized rounding may assign > 1 jobs to machine
$\operatorname{Pr}[\mathrm{c}$ jobs on a machine $]:=p_{c} \approx \frac{1}{e}\left(\frac{1}{c!}\right)$
$E\left[\begin{array}{ll}\frac{c(c+1)}{2} & \left.p_{c}\right]=\frac{3}{2}\end{array}\right.$

Suggests the following

1) If few jobs, do matching type rounding
2) If many jobs, randomized rounding ok.

Need a refinement of this (do matching for each job "class")

Consider machine 1
Class 1: size 1, weight 1
Class 2: size M, wt $1 / \mathrm{M}$
Class 3: ...

If k jobs fractionally to extent $1 / \mathrm{k}$ each.
Need to do matching in each class
And show this basically works.

Dependent rounding theorems

Gandhi et al. (Randomized pipage): Can find assignment so that get nice negative correlation at nodes
(e.g. $\operatorname{Pr}\left[x_{i j} x_{i j}{ }^{\prime}\right] \leq \operatorname{Pr}\left[x_{i j}\right] \operatorname{Pr}\left[x_{i j}{ }^{\prime}\right]$)

Only $\left\lceil f_{v}\right\rceil$ or $\left\lfloor f_{v}\right\rfloor$ edges at v

Our theorem: Machine -> Groups
(i) Strict negative correlation within groups, and
(ii) Negative correlation across groups.
[Randomized Pipage on paths of length 4, carefully chosen]

Questions!

