Minimizing total Completion Time on Unrelated Machines

w/ Aravind Srinivasan (Maryland) Ola Svensson (EPFL)

Unrelated machine setting

n jobs: indexed by j m machines: indexed by i

n=5 Jobs

m=3 machines

Job j has size p_{ij} on machine i Unrelated setting: p_{ij} are arbitrary

Classic variants

Makespan: Minimize max. load Min Max_i $(\sum_{j} p_{ij} x_{ij})$

 x_{ij} : 1 if job j assigned to machine i

2-approx (Lenstra,Shmoys, Tardos) NP-Hard to beat 1.5

Lots of work, several variants

Load on i

Total Weighted Completion Time

Min $\sum_j w_j C_j$

 C_j : Completion time of j

Total completion time of these jobs $w_1p_1 + w_2(p_1 + p_2) + w_3(p_1 + p_2 + p_3)$

On any machine i, Smith rule: Decreasing order of $\frac{w_j}{p_{ij}}$ Only issue: Which machine to assign jobs

Objective: $\sum_{i} \sum_{j} w_{j} \left(\sum_{j' \leq ij} p_{ij'} x_{ij'} x_{ij} \right)$

Smith ordering \prec_i : $j' \prec_i j$ if $w_{j'}/p_{ij'} \ge w_j/p_{ij}$ Break ties arbitrarily to get total ordering

3/2: Convex programming [Skutella, Sethuraman Squillante, Chudak late 90's]

Thm: $3/2 - 10^{-7}$ approximation

Convex Program: Integrality gap of 3/2 New SDP formulation

Independent Randomized Rounding New dependent rounding w/ strict negative correlation

Convex Programming

Objective (machine i): $\sum_{j} w_{j} (\sum_{j' \leq ij} p_{ij'} x_{ij'} x_{ij})$

Suppose $w_i = p_{ij}$ (same Smith ratio): $p_{i1}x_{i1} (p_{i1}x_{i1}) + p_{i2}x_{i2} (p_{i1}x_{i1} + p_{i2}x_{i2}) + p_{i3}x_{i3} (p_{i1}x_{i1} + p_{i2}x_{i2} + p_{i3}x_{i3}) + \dots$

$$= \frac{1}{2} p_{ij}^2 x_{ij}^2 + \frac{1}{2} \left(\sum_j p_{ij} x_{ij} \right)^2$$

Convex Program: Min $\sum_i (Expression i)$ s.t. $\sum_i x_{ij} = 1$ for all j.

Bad example: 1 job of size 1, m machines

Convex Program: Sets $x_{i1} = 1/m$ $\left(m \cdot \frac{1}{m^2} = \frac{1}{m}\right)$ $\frac{1}{1}$ $\frac{2}{3}$

Convex Programming: Fix 1

$$\frac{1}{2} p_{ij}^2 x_j^2 + \frac{1}{2} \left(\sum_j p_{ij} x_j \right)^2$$

Expression' i:
$$=\frac{1}{2} p_{ij}^2 x_{ij} + \frac{1}{2} (\sum_j p_{ij} x_{ij})^2 [x_{ij}^2 = x_{ij} \text{ valid}]$$

Convex Program: Min $\sum_i (Expression' i)$ s.t. $\sum_i x_{ij} = 1$ for all j.

Bad example: 1 job of size 1, m machines Convex Program: puts $x_{i1} = 1/m$ Objective = 1/2 + 1/(2m) [Still integrality gap of 2]

Fix 2: Reducing gap to 3/2

Expression' i:
$$=\frac{1}{2} p_{ij}^2 x_{ij} + \frac{1}{2} (\sum_j p_{ij} x_{ij})^2 [x_{ij}^2 = x_{ij} \text{ valid}]$$

Convex Program: Min $\sum_i (Expression' i)$ s.t. $\sum_i x_{ij} = 1$ for all j.

Add constraint: $OPT \ge \sum_{i} \sum_{j} p_{ij}^2 x_{ij}$ (i.e. $\sum_{i} \sum_{j} w_{ij} p_{ij} x_{ij}$)

Somewhat adhoc fix Surprisingly, integrality gap becomes 3/2

Another integrality gap example

k jobs: Size 1 each, only on machine 1 1 job: Size k^2 on any machine 2,...,k+1

Optimum:
$$\frac{k(k+1)}{2} + k^2 \approx \frac{3}{2}k^2$$

Convex Program: $(OPT > \frac{L}{2} + \frac{Q}{2}, OPT \ge L)$ Quadratic term (Q): $\approx \frac{k^2}{2} + \frac{1}{2}k^2$ Linear term (L): $k + k^2$

New SDP

Write natural SDP (vectors v_{ij} , $x_{ij} = |v_{ij}|^2$) Captures correlations and integrality more effectively

Add $v_{ij} \cdot v_{ij} = v_0 \cdot v_{ij}$ (like $x_{ij} = x_{ij}^2$) ($v_{ij} \cdot v_{ij}$ ' gives joint probability of j and j' on i)

Key: Linear and quadratic terms combined more systematically

E.g. For any subset of jobs $S \subset J$ OPT $\geq L(S) + \frac{1}{2}L(S^c) + \frac{1}{2}Q(S^c)$

Previously: $OPT \ge L(J)$ and $OPT \ge \frac{1}{2}L(J) + \frac{1}{2}Q(J)$

The Rounding Issue

Given the x_{ij} , how to use these?

Randomized rounding stuck at 3/2.

k identical jobs (size 1) on k machines. Clearly, OPT = 1

Suppose $x_{ij} = 1/k$ Randomized rounding may assign > 1 jobs to machine

$$\Pr[c \text{ jobs on a machine}] := p_c \approx \frac{1}{e} \left(\frac{1}{c!}\right)$$

$$E\left[\frac{c(c+1)}{2} \quad p_c\right] = \frac{3}{2}$$

Suggests the following

- 1) If few jobs, do matching type rounding
- 2) If many jobs, randomized rounding ok.

Need a refinement of this (do matching for each job "class")

```
Consider machine 1
Class 1: size 1, weight 1
Class 2: size M, wt 1/M
Class 3: ...
```

If k jobs fractionally to extent 1/k each. Need to do matching in each class

And show this basically works.

Dependent rounding theorems

Gandhi et al. (Randomized pipage): Can find assignment so that get nice negative correlation at nodes

(e.g.
$$\Pr[x_{ij}x_{ij}'] \leq \Pr[x_{ij}]\Pr[x_{ij}']$$
)
Only $[f_v]$ or $[f_v]$ edges at v

Our theorem: Machine -> Groups

- (i) Strict negative correlation within groups, and
- (ii) Negative correlation across groups.

[Randomized Pipage on paths of length 4, carefully chosen]

Questions!