
Compositional
Reachability in Petri Nets

Julian Rathke,
Pawel Sobocinski,
Owen Stephens

University of Southampton

NII Shonan
Sept 2015

Interaction is key
• Interaction between entities is fundamental to

understanding their semantics.

• Labelled transitions are usefully understood as
descriptions of a contribution to an interaction rather
than as structural properties of a term

• We can use these to study algebraic properties of
systems

• This principle underpins all manner of computation …

… even for Petri nets

t0 t1 t2 t3 t4 t0 t1 t2

N0

t2 t3 t4

N1B4

proved equivalent, are c2 and c1 from Example 1 (modulo the
notation adopted for -1 since Section 3).

A similar procedure can be used to check the observational
equivalence of directed signal flow graphs. For instance, take:

x
2

x -1 xx (15)

First, we forget the direction of the flow and we obtain the circuits
c3 and c4 depicted below, on the left and on the right.

x
2

x
x x

Then, by virtue of Proposition 4 and full abstraction, we can safely
use IH

= to check hc3i = hc4i. Observe that c3 is like in Example 1
and c4 is just the sequential composition c2 ; c2. We can thus reuse
(14) to see that

c4 = c2 ; c2
IH
= 1�x ; 1�x

IH
= (1�x)2

To conclude, we only have to check that c3 is equal in IH to the
righmost circuit above. This is shown as follows, along the same
lines of derivation (14):

x
2

2

x
xx

2

x
x

2

x
x2

x
xx2�x

(1�x)2

The circuits in (15) can also be thought of as two different
implementations of (1�x)2 . Indeed, 1

(1�x)2
is the generating

function of the sequence 1, 2, 3, 4,

7. Conclusions
The network theoretic approach combines algebra and topology–
the circuits of the theory that we presented have an algebraic na-
ture, as demonstrated by the axiomatisations, as well as a topo-
logical nature, when viewed as string diagrams. Our contribution
adds an operational understanding to the previously discovered de-
notational insights. Throughout the paper we have tried to illustrate
the fruitful interplay between algebra, topology, the operational and
denotational approaches.

Although our attention in this work was restricted to signal flow
graphs, the same methodology could be beneficial in other areas
where diagrammatic notation is employed: in addition to the ex-
amples we mentioned in the introduction there are Kahn process
networks, Bayesian networks and automata, amongst many others.
Typically, such diagrammatic formalisms are translated to more
traditional mathematics, but seldom reasoned about directly. The
broad picture of the work in this paper is a deep connection between
a denotational view and a fully-fledged operational approach that is
intimately related to the hallmark of network theory: the interplay
between algebra and topology. Our vision is close to that advocated
by Abramsky for concurrency theory [1]: we believe that this ap-
proach will eventually lead to less a specialised, fragmented and
sometimes overly syntax-focussed landscape.

References
[1] S. Abramsky. What are the fundamental structures of concurrency?

we still don’t know! CoRR, abs/1401.4973, 2014.
[2] J. C. Baez. Network theory. http://math.ucr.edu/home/baez/

networks/, 2014.

[3] J. C. Baez and J. Erbele. Categories in control. CoRR, abs/1405.6881,
2014. http://arxiv.org/abs/1405.6881.

[4] H. Basold, M. Bonsangue, H. H. Hansen, and J. Rutten. (co)algebraic
characterizations of signal flow graphs. In To appear in LNCS, 2014.

[5] F. Bonchi, P. Sobociński, and F. Zanasi. A categorical semantics of
signal flow graphs. In CONCUR, 2014.

[6] F. Bonchi, P. Sobociński, and F. Zanasi. Interacting bialgebras are
Frobenius. In FoSSaCS ‘14, volume 8412 of LNCS, pages 351–365.
Springer, 2014.

[7] F. Bonchi, P. Sobociński, and F. Zanasi. Interacting Hopf algebras.
CoRR, abs/1403.7048, 2014. http://arxiv.org/abs/1403.7048.

[8] R. Bruni, U. Montanari, G. Plotkin, and D. Terreni. On hierarchical
graphs: reconciling bigraphs, gs-monoidal theories and gs-graphsâ.

[9] R. Bruni, I. Lanese, and U. Montanari. A basic algebra of stateless
connectors. Theor Comput Sci, 366:98–120, 2006.

[10] A. Carboni and R. F. C. Walters. Cartesian bicategories I. J Pure Appl
Algebra, 49:11–32, 1987.

[11] B. Coecke and R. Duncan. Interacting quantum observables. In
ICALP‘08, pages 298–310, 2008.

[12] B. Coecke, R. Duncan, A. Kissinger, and Q. Wang. Strong com-
plementarity and non-locality in categorical quantum mechanics. In
LiCS‘12, pages 245–254, 2012.

[13] M. P. Fiore and M. D. Campos. The algebra of directed acyclic graphs.
In Abramsky Festschrift, volume 7860 of LNCS, 2013.

[14] B. Fong. A compositional approach to control theory.
http://math.ucr.edu/home/baez/Brendan Fong Transfer Report.pdf,
2013.

[15] D. R. Ghica. Diagrammatic reasoning for delay-insensitive asyn-
chronous circuits. In Computation, Logic, Games, and Quantum Foun-
dations, pages 52–68, 2013.

[16] A. Joyal and R. Street. The geometry of tensor calculus, I. Adv. Math.,
88:55–112, 1991.

[17] P. Katis, N. Sabadini, and R. F. C. Walters. Span(Graph): an algebra
of transition systems. In AMAST ’97, pages 322–336. Springer, 1997.

[18] G. M. Kelly and M. L. Laplaza. Coherence for compact closed
categories. J. Pure Appl. Algebra, 19:193–213, 1980.

[19] S. Lack. Composing PROPs. Theor App Categories, 13(9):147–163,
2004.

[20] Y. Lafont. Towards an algebraic theory of boolean circuits. J Pure
Appl Alg, 184:257–310, 2003.

[21] B. Lahti. Signal Processing and Linear Systems. Oxford University
Press, 1998.

[22] S. Mac Lane. Categorical algebra. Bull Amer Math Soc, 71:40–106,
1965.

[23] S. J. Mason. Feedback Theory: I. Some Properties of Signal Flow
Graphs. Massachusetts Institute of Technology, Research Laboratory
of Electronics, 1953.

[24] D. Pavlovic. Monoidal computer i: Basic computability by string
diagrams. Inf. Comput., 226:94–116, 2013.

[25] D. Pavlovic. Monoidal computer ii: Normal complexity by string
diagrams. CoRR, abs/1402.5687, 2014.

[26] J. J. M. M. Rutten. A tutorial on coinductive stream calculus and signal
flow graphs. Theor. Comput. Sci., 343(3):443–481, 2005.

[27] P. Selinger. A survey of graphical languages for monoidal categories.
arXiv:0908.3347v1 [math.CT], 2009.

[28] P. Sobociński. Nets, relations and linking diagrams. In CALCO ‘13,
2013.

[29] H. Wilf. Generatingfunctionology. A. K. Peters, 3rd edition edition,
2006.

[30] J. C. Willems. The behavioural approach to open and interconnected
systems. IEEE Contr. Syst. Mag., 27:46–99, 2007.

[31] W. J. Zeng and J. Vicary. Abstract structure of unitary oracles for
quantum algorithms. CoRR, abs/1406.1278, 2014. http://arxiv.

org/abs/1406.1278.

… even for Petri nets

t0 t1 t2 t3 t4 t0 t1 t2

N0

t2 t3 t4

N1B4

proved equivalent, are c2 and c1 from Example 1 (modulo the
notation adopted for -1 since Section 3).

A similar procedure can be used to check the observational
equivalence of directed signal flow graphs. For instance, take:

x
2

x -1 xx (15)

First, we forget the direction of the flow and we obtain the circuits
c3 and c4 depicted below, on the left and on the right.

x
2

x
x x

Then, by virtue of Proposition 4 and full abstraction, we can safely
use IH

= to check hc3i = hc4i. Observe that c3 is like in Example 1
and c4 is just the sequential composition c2 ; c2. We can thus reuse
(14) to see that

c4 = c2 ; c2
IH
= 1�x ; 1�x

IH
= (1�x)2

To conclude, we only have to check that c3 is equal in IH to the
righmost circuit above. This is shown as follows, along the same
lines of derivation (14):

x
2

2

x
xx

2

x
x

2

x
x2

x
xx2�x

(1�x)2

The circuits in (15) can also be thought of as two different
implementations of (1�x)2 . Indeed, 1

(1�x)2
is the generating

function of the sequence 1, 2, 3, 4,

7. Conclusions
The network theoretic approach combines algebra and topology–
the circuits of the theory that we presented have an algebraic na-
ture, as demonstrated by the axiomatisations, as well as a topo-
logical nature, when viewed as string diagrams. Our contribution
adds an operational understanding to the previously discovered de-
notational insights. Throughout the paper we have tried to illustrate
the fruitful interplay between algebra, topology, the operational and
denotational approaches.

Although our attention in this work was restricted to signal flow
graphs, the same methodology could be beneficial in other areas
where diagrammatic notation is employed: in addition to the ex-
amples we mentioned in the introduction there are Kahn process
networks, Bayesian networks and automata, amongst many others.
Typically, such diagrammatic formalisms are translated to more
traditional mathematics, but seldom reasoned about directly. The
broad picture of the work in this paper is a deep connection between
a denotational view and a fully-fledged operational approach that is
intimately related to the hallmark of network theory: the interplay
between algebra and topology. Our vision is close to that advocated
by Abramsky for concurrency theory [1]: we believe that this ap-
proach will eventually lead to less a specialised, fragmented and
sometimes overly syntax-focussed landscape.

References
[1] S. Abramsky. What are the fundamental structures of concurrency?

we still don’t know! CoRR, abs/1401.4973, 2014.
[2] J. C. Baez. Network theory. http://math.ucr.edu/home/baez/

networks/, 2014.

[3] J. C. Baez and J. Erbele. Categories in control. CoRR, abs/1405.6881,
2014. http://arxiv.org/abs/1405.6881.

[4] H. Basold, M. Bonsangue, H. H. Hansen, and J. Rutten. (co)algebraic
characterizations of signal flow graphs. In To appear in LNCS, 2014.

[5] F. Bonchi, P. Sobociński, and F. Zanasi. A categorical semantics of
signal flow graphs. In CONCUR, 2014.

[6] F. Bonchi, P. Sobociński, and F. Zanasi. Interacting bialgebras are
Frobenius. In FoSSaCS ‘14, volume 8412 of LNCS, pages 351–365.
Springer, 2014.

[7] F. Bonchi, P. Sobociński, and F. Zanasi. Interacting Hopf algebras.
CoRR, abs/1403.7048, 2014. http://arxiv.org/abs/1403.7048.

[8] R. Bruni, U. Montanari, G. Plotkin, and D. Terreni. On hierarchical
graphs: reconciling bigraphs, gs-monoidal theories and gs-graphsâ.

[9] R. Bruni, I. Lanese, and U. Montanari. A basic algebra of stateless
connectors. Theor Comput Sci, 366:98–120, 2006.

[10] A. Carboni and R. F. C. Walters. Cartesian bicategories I. J Pure Appl
Algebra, 49:11–32, 1987.

[11] B. Coecke and R. Duncan. Interacting quantum observables. In
ICALP‘08, pages 298–310, 2008.

[12] B. Coecke, R. Duncan, A. Kissinger, and Q. Wang. Strong com-
plementarity and non-locality in categorical quantum mechanics. In
LiCS‘12, pages 245–254, 2012.

[13] M. P. Fiore and M. D. Campos. The algebra of directed acyclic graphs.
In Abramsky Festschrift, volume 7860 of LNCS, 2013.

[14] B. Fong. A compositional approach to control theory.
http://math.ucr.edu/home/baez/Brendan Fong Transfer Report.pdf,
2013.

[15] D. R. Ghica. Diagrammatic reasoning for delay-insensitive asyn-
chronous circuits. In Computation, Logic, Games, and Quantum Foun-
dations, pages 52–68, 2013.

[16] A. Joyal and R. Street. The geometry of tensor calculus, I. Adv. Math.,
88:55–112, 1991.

[17] P. Katis, N. Sabadini, and R. F. C. Walters. Span(Graph): an algebra
of transition systems. In AMAST ’97, pages 322–336. Springer, 1997.

[18] G. M. Kelly and M. L. Laplaza. Coherence for compact closed
categories. J. Pure Appl. Algebra, 19:193–213, 1980.

[19] S. Lack. Composing PROPs. Theor App Categories, 13(9):147–163,
2004.

[20] Y. Lafont. Towards an algebraic theory of boolean circuits. J Pure
Appl Alg, 184:257–310, 2003.

[21] B. Lahti. Signal Processing and Linear Systems. Oxford University
Press, 1998.

[22] S. Mac Lane. Categorical algebra. Bull Amer Math Soc, 71:40–106,
1965.

[23] S. J. Mason. Feedback Theory: I. Some Properties of Signal Flow
Graphs. Massachusetts Institute of Technology, Research Laboratory
of Electronics, 1953.

[24] D. Pavlovic. Monoidal computer i: Basic computability by string
diagrams. Inf. Comput., 226:94–116, 2013.

[25] D. Pavlovic. Monoidal computer ii: Normal complexity by string
diagrams. CoRR, abs/1402.5687, 2014.

[26] J. J. M. M. Rutten. A tutorial on coinductive stream calculus and signal
flow graphs. Theor. Comput. Sci., 343(3):443–481, 2005.

[27] P. Selinger. A survey of graphical languages for monoidal categories.
arXiv:0908.3347v1 [math.CT], 2009.

[28] P. Sobociński. Nets, relations and linking diagrams. In CALCO ‘13,
2013.

[29] H. Wilf. Generatingfunctionology. A. K. Peters, 3rd edition edition,
2006.

[30] J. C. Willems. The behavioural approach to open and interconnected
systems. IEEE Contr. Syst. Mag., 27:46–99, 2007.

[31] W. J. Zeng and J. Vicary. Abstract structure of unitary oracles for
quantum algorithms. CoRR, abs/1406.1278, 2014. http://arxiv.

org/abs/1406.1278.

… even for Petri nets
• We look for compositional algebras of systems

• Once we have a compositional model, we can use it for

• parametric verification

• algorithmic improvements in reachability / coverability checking
through divide and conquer

• This talk: we focus on Elementary Net Systems (1-bounded nets)

t0 t1 t2 t3 t4 t0 t1 t2

N0

t2 t3 t4

N1B4

proved equivalent, are c2 and c1 from Example 1 (modulo the
notation adopted for -1 since Section 3).

A similar procedure can be used to check the observational
equivalence of directed signal flow graphs. For instance, take:

x
2

x -1 xx (15)

First, we forget the direction of the flow and we obtain the circuits
c3 and c4 depicted below, on the left and on the right.

x
2

x
x x

Then, by virtue of Proposition 4 and full abstraction, we can safely
use IH

= to check hc3i = hc4i. Observe that c3 is like in Example 1
and c4 is just the sequential composition c2 ; c2. We can thus reuse
(14) to see that

c4 = c2 ; c2
IH
= 1�x ; 1�x

IH
= (1�x)2

To conclude, we only have to check that c3 is equal in IH to the
righmost circuit above. This is shown as follows, along the same
lines of derivation (14):

x
2

2

x
xx

2

x
x

2

x
x2

x
xx2�x

(1�x)2

The circuits in (15) can also be thought of as two different
implementations of (1�x)2 . Indeed, 1

(1�x)2
is the generating

function of the sequence 1, 2, 3, 4,

7. Conclusions
The network theoretic approach combines algebra and topology–
the circuits of the theory that we presented have an algebraic na-
ture, as demonstrated by the axiomatisations, as well as a topo-
logical nature, when viewed as string diagrams. Our contribution
adds an operational understanding to the previously discovered de-
notational insights. Throughout the paper we have tried to illustrate
the fruitful interplay between algebra, topology, the operational and
denotational approaches.

Although our attention in this work was restricted to signal flow
graphs, the same methodology could be beneficial in other areas
where diagrammatic notation is employed: in addition to the ex-
amples we mentioned in the introduction there are Kahn process
networks, Bayesian networks and automata, amongst many others.
Typically, such diagrammatic formalisms are translated to more
traditional mathematics, but seldom reasoned about directly. The
broad picture of the work in this paper is a deep connection between
a denotational view and a fully-fledged operational approach that is
intimately related to the hallmark of network theory: the interplay
between algebra and topology. Our vision is close to that advocated
by Abramsky for concurrency theory [1]: we believe that this ap-
proach will eventually lead to less a specialised, fragmented and
sometimes overly syntax-focussed landscape.

References
[1] S. Abramsky. What are the fundamental structures of concurrency?

we still don’t know! CoRR, abs/1401.4973, 2014.
[2] J. C. Baez. Network theory. http://math.ucr.edu/home/baez/

networks/, 2014.

[3] J. C. Baez and J. Erbele. Categories in control. CoRR, abs/1405.6881,
2014. http://arxiv.org/abs/1405.6881.

[4] H. Basold, M. Bonsangue, H. H. Hansen, and J. Rutten. (co)algebraic
characterizations of signal flow graphs. In To appear in LNCS, 2014.

[5] F. Bonchi, P. Sobociński, and F. Zanasi. A categorical semantics of
signal flow graphs. In CONCUR, 2014.

[6] F. Bonchi, P. Sobociński, and F. Zanasi. Interacting bialgebras are
Frobenius. In FoSSaCS ‘14, volume 8412 of LNCS, pages 351–365.
Springer, 2014.

[7] F. Bonchi, P. Sobociński, and F. Zanasi. Interacting Hopf algebras.
CoRR, abs/1403.7048, 2014. http://arxiv.org/abs/1403.7048.

[8] R. Bruni, U. Montanari, G. Plotkin, and D. Terreni. On hierarchical
graphs: reconciling bigraphs, gs-monoidal theories and gs-graphsâ.

[9] R. Bruni, I. Lanese, and U. Montanari. A basic algebra of stateless
connectors. Theor Comput Sci, 366:98–120, 2006.

[10] A. Carboni and R. F. C. Walters. Cartesian bicategories I. J Pure Appl
Algebra, 49:11–32, 1987.

[11] B. Coecke and R. Duncan. Interacting quantum observables. In
ICALP‘08, pages 298–310, 2008.

[12] B. Coecke, R. Duncan, A. Kissinger, and Q. Wang. Strong com-
plementarity and non-locality in categorical quantum mechanics. In
LiCS‘12, pages 245–254, 2012.

[13] M. P. Fiore and M. D. Campos. The algebra of directed acyclic graphs.
In Abramsky Festschrift, volume 7860 of LNCS, 2013.

[14] B. Fong. A compositional approach to control theory.
http://math.ucr.edu/home/baez/Brendan Fong Transfer Report.pdf,
2013.

[15] D. R. Ghica. Diagrammatic reasoning for delay-insensitive asyn-
chronous circuits. In Computation, Logic, Games, and Quantum Foun-
dations, pages 52–68, 2013.

[16] A. Joyal and R. Street. The geometry of tensor calculus, I. Adv. Math.,
88:55–112, 1991.

[17] P. Katis, N. Sabadini, and R. F. C. Walters. Span(Graph): an algebra
of transition systems. In AMAST ’97, pages 322–336. Springer, 1997.

[18] G. M. Kelly and M. L. Laplaza. Coherence for compact closed
categories. J. Pure Appl. Algebra, 19:193–213, 1980.

[19] S. Lack. Composing PROPs. Theor App Categories, 13(9):147–163,
2004.

[20] Y. Lafont. Towards an algebraic theory of boolean circuits. J Pure
Appl Alg, 184:257–310, 2003.

[21] B. Lahti. Signal Processing and Linear Systems. Oxford University
Press, 1998.

[22] S. Mac Lane. Categorical algebra. Bull Amer Math Soc, 71:40–106,
1965.

[23] S. J. Mason. Feedback Theory: I. Some Properties of Signal Flow
Graphs. Massachusetts Institute of Technology, Research Laboratory
of Electronics, 1953.

[24] D. Pavlovic. Monoidal computer i: Basic computability by string
diagrams. Inf. Comput., 226:94–116, 2013.

[25] D. Pavlovic. Monoidal computer ii: Normal complexity by string
diagrams. CoRR, abs/1402.5687, 2014.

[26] J. J. M. M. Rutten. A tutorial on coinductive stream calculus and signal
flow graphs. Theor. Comput. Sci., 343(3):443–481, 2005.

[27] P. Selinger. A survey of graphical languages for monoidal categories.
arXiv:0908.3347v1 [math.CT], 2009.

[28] P. Sobociński. Nets, relations and linking diagrams. In CALCO ‘13,
2013.

[29] H. Wilf. Generatingfunctionology. A. K. Peters, 3rd edition edition,
2006.

[30] J. C. Willems. The behavioural approach to open and interconnected
systems. IEEE Contr. Syst. Mag., 27:46–99, 2007.

[31] W. J. Zeng and J. Vicary. Abstract structure of unitary oracles for
quantum algorithms. CoRR, abs/1406.1278, 2014. http://arxiv.

org/abs/1406.1278.

t0 t1 t2 t3 t4

Reachability
Given a (1-bounded) Petri Net with a particular marking,
Is there an execution sequence that will leave the net in

some other specified marking?

t0 t1 t2 t3 t4

Reachability
Given a (1-bounded) Petri Net with a particular marking,
Is there an execution sequence that will leave the net in

some other specified marking?

t0 t1 t2 t3 t4

Reachability
Given a (1-bounded) Petri Net with a particular marking,
Is there an execution sequence that will leave the net in

some other specified marking?

t0 t1 t2 t3 t4

Reachability
Given a (1-bounded) Petri Net with a particular marking,
Is there an execution sequence that will leave the net in

some other specified marking?

t0 t1 t2 t3 t4

Reachability
Given a (1-bounded) Petri Net with a particular marking,
Is there an execution sequence that will leave the net in

some other specified marking?

t0 t1 t2 t3 t4

Reachability
Given a (1-bounded) Petri Net with a particular marking,
Is there an execution sequence that will leave the net in

some other specified marking?

t0 t1 t2 t3 t4

Reachability
Given a (1-bounded) Petri Net with a particular marking,
Is there an execution sequence that will leave the net in

some other specified marking?

t0 t1 t2 t3 t4

Reachability
Given a (1-bounded) Petri Net with a particular marking,
Is there an execution sequence that will leave the net in

some other specified marking?

t0 t1 t2 t3 t4

Reachability
Given a (1-bounded) Petri Net with a particular marking,
Is there an execution sequence that will leave the net in

some other specified marking?

t0 t1 t2 t3 t4

Reachability
Given a (1-bounded) Petri Net with a particular marking,
Is there an execution sequence that will leave the net in

some other specified marking?

t0 t1 t2 t3 t4

Reachability
Given a (1-bounded) Petri Net with a particular marking,
Is there an execution sequence that will leave the net in

some other specified marking?

Petri nets with Boundaries
(PNB)

B4 = > ; b1 ; b1 ; b1 ; b1 ; ? > b1 ?

Fig. 5: The net B4 as a composition of nets >, b1 and ?.

Example 4. Consider the marked PNB, B4, shown in Fig. 5 that models a 4 place
bu↵er [9]. It enjoys a simple, regular structure, yet the number of transitions that
need to be fired in order to reach the target marking is quadratic in the size of
the bu↵er1. Using marked PNBs, we can express B4 as:

> ; (b1 ; (b1 ; (b1 ; (b1 ; ?)))) (1)

3.1 Wiring Expressions

Our procedure takes a decomposition of a net as an input: roughly an expression
akin to (1) that expresses a net as a composition of simple components. To use
decompositions within our algorithm, we first need to introduce the related data
structure, that we call wiring expressions.

A wiring expression is simply the abstract syntax tree t of a PNB expression,
where internal nodes are labelled with either ; or ⌦ and leaves are variables. Now
a wiring expression together with an assignment map V, that takes variables to
marked PNBs, can be evaluated to obtain a marked PNB JtKV . Given a net
N : (k, l), we say that (t,V) is a wiring decomposition of N if JtKV ⇠= N . Wiring
expressions are described in more detail in Appendix A.

Consider any net N , together with corresponding initial and target markings.
Given any ordinary PNB expression for N , notice that we can extend it into a
wiring decomposition: first by translating the expression into a formal syntax
tree generated by the grammar (2), second by translating the initial and target
markings of N component-wise into marked PNBs, that we bind to the variables
that appear in the tree. The specification of the reachability problem is thus
naturally compositional; the fact that PNBs enjoy a compositional semantics
allows us, moreover, to perform the computation in divide-and-conquer fashion.

3.2 Description of the Algorithm

The core idea is to convert a wiring decomposition (t,V) of a net N to an NFAB
that represents the “protocol” that N must adhere to w.r.t. its context (i.e. the
nets connected to its boundaries), in order to reach its local target marking. By

1 Precisely, the length of the minimal firing sequence of Bi is the ith triangle number.

6

B4 = > ; b1 ; b1 ; b1 ; b1 ; ? > b1 ?

Fig. 5: The net B4 as a composition of nets >, b1 and ?.

Example 4. Consider the marked PNB, B4, shown in Fig. 5 that models a 4 place
bu↵er [9]. It enjoys a simple, regular structure, yet the number of transitions that
need to be fired in order to reach the target marking is quadratic in the size of
the bu↵er1. Using marked PNBs, we can express B4 as:

> ; (b1 ; (b1 ; (b1 ; (b1 ; ?)))) (1)

3.1 Wiring Expressions

Our procedure takes a decomposition of a net as an input: roughly an expression
akin to (1) that expresses a net as a composition of simple components. To use
decompositions within our algorithm, we first need to introduce the related data
structure, that we call wiring expressions.

A wiring expression is simply the abstract syntax tree t of a PNB expression,
where internal nodes are labelled with either ; or ⌦ and leaves are variables. Now
a wiring expression together with an assignment map V, that takes variables to
marked PNBs, can be evaluated to obtain a marked PNB JtKV . Given a net
N : (k, l), we say that (t,V) is a wiring decomposition of N if JtKV ⇠= N . Wiring
expressions are described in more detail in Appendix A.

Consider any net N , together with corresponding initial and target markings.
Given any ordinary PNB expression for N , notice that we can extend it into a
wiring decomposition: first by translating the expression into a formal syntax
tree generated by the grammar (2), second by translating the initial and target
markings of N component-wise into marked PNBs, that we bind to the variables
that appear in the tree. The specification of the reachability problem is thus
naturally compositional; the fact that PNBs enjoy a compositional semantics
allows us, moreover, to perform the computation in divide-and-conquer fashion.

3.2 Description of the Algorithm

The core idea is to convert a wiring decomposition (t,V) of a net N to an NFAB
that represents the “protocol” that N must adhere to w.r.t. its context (i.e. the
nets connected to its boundaries), in order to reach its local target marking. By

1 Precisely, the length of the minimal firing sequence of Bi is the ith triangle number.

6

B4 = > ; b1 ; b1 ; b1 ; b1 ; ? > b1 ?

Fig. 5: The net B4 as a composition of nets >, b1 and ?.

Example 4. Consider the marked PNB, B4, shown in Fig. 5 that models a 4 place
bu↵er [9]. It enjoys a simple, regular structure, yet the number of transitions that
need to be fired in order to reach the target marking is quadratic in the size of
the bu↵er1. Using marked PNBs, we can express B4 as:

> ; (b1 ; (b1 ; (b1 ; (b1 ; ?)))) (1)

3.1 Wiring Expressions

Our procedure takes a decomposition of a net as an input: roughly an expression
akin to (1) that expresses a net as a composition of simple components. To use
decompositions within our algorithm, we first need to introduce the related data
structure, that we call wiring expressions.

A wiring expression is simply the abstract syntax tree t of a PNB expression,
where internal nodes are labelled with either ; or ⌦ and leaves are variables. Now
a wiring expression together with an assignment map V, that takes variables to
marked PNBs, can be evaluated to obtain a marked PNB JtKV . Given a net
N : (k, l), we say that (t,V) is a wiring decomposition of N if JtKV ⇠= N . Wiring
expressions are described in more detail in Appendix A.

Consider any net N , together with corresponding initial and target markings.
Given any ordinary PNB expression for N , notice that we can extend it into a
wiring decomposition: first by translating the expression into a formal syntax
tree generated by the grammar (2), second by translating the initial and target
markings of N component-wise into marked PNBs, that we bind to the variables
that appear in the tree. The specification of the reachability problem is thus
naturally compositional; the fact that PNBs enjoy a compositional semantics
allows us, moreover, to perform the computation in divide-and-conquer fashion.

3.2 Description of the Algorithm

The core idea is to convert a wiring decomposition (t,V) of a net N to an NFAB
that represents the “protocol” that N must adhere to w.r.t. its context (i.e. the
nets connected to its boundaries), in order to reach its local target marking. By

1 Precisely, the length of the minimal firing sequence of Bi is the ith triangle number.

6

D ; ((S ; T ; T)⌦ I) ; E (†)

Fig. 6: A token ring network as a PNB expression

are often cited by researchers and practitioners in support of working with Petri
nets, rather than, for example, products of automata. One is qualitative: the
graphical syntax results in vivid, intuitive and informative models of real con-
current and distributed systems. A more empirical, quantitative reason is that
transition systems have a monolithic statespace that does not contain inherent
information about concurrency. Instead, a state of a Petri net, i.e. a marking,
has structure from which one can extract useful information. This leads to prac-
tical techniques for mitigating state explosion when model checking, e.g. partial
order reduction [19] and symmetry-reduction [25], that would not be possible if
working with mere transitions systems.

Transition system
State graph

 ������� Petri net
Composition

 �������� PNB expression (‡)

Just as Petri nets can be evaluated into a transition system, forgetting the con-
currency, a PNB expression can be composed into a Petri net, forgetting the
spatial distribution. As we have shown, the close connection between the alge-
bra and net geometry is a qualitative reason for working with PNB expressions.
The information can also be exploited quantitatively [27] in order to improve the
performance of model checking in suitable examples – the statespace of a PNB
expression contains information both about concurrency (because the compo-
nents are Petri nets) as well as spatial distribution.

2 A Language for Net Composition

In the previous section we demonstrated the algebraic description of Petri Net
systems in terms of their component nets with boundaries. We now motivate us-
ing a Domain Specific Language (DSL), PNBml, that evaluates to the algebra of
PNB, but adds expressive high-level functional programming language features.

9

substituted for each other in any context. This powerful principle of process al-
gebra is useful when reasoning about the behaviour of complex systems.

1.1 Specifying systems algebraically

Fig. 5: Token ring network

The examples we have considered thus far have not been of practical interest,
having been chosen for their simplicity in order to illustrate the basic operations
of PNBs. We now show how a more interesting system can be expressed with
the algebra. We will consider other realistic examples in §3.

Consider a model of simple token ring network, taken from [1], and illustrated
in Fig. 5. Note that the (1-safe) net contains three identical components that
di↵er only in their “internal state” (the local marking). Initially, only the leftmost
component can proceed: after it finishes its internal computation it relinquishes
its token, meaning that the next component can proceed. The modular structure
of the system is made explicit with the algebra of PNBs, illustrated in Fig. 6,
where we show how the system can be expressed formally as a collection of
component PNBs, wired together appropriately with simple connector PNBs.
Indeed, when the expression (†) is evaluated by composing nets with boundaries,
the resulting Petri net is isomorphic to the net in Fig. 5.

The example is an evocative illustration of the fact that the operations for
composing PNBs are very closely linked to the underlying geometry of nets –
the logical structure of the system can be seen by examining the structure of the
algebraic expression.

1.2 Explicit spatial distribution

Using transition systems as a model of concurrency has a long history (see e.g. [3]).
Indeed, the semantics of a Petri net is usually a transition system. Two reasons

8

D ; ((S ; T ; T)⌦ I) ; E (†)

Fig. 6: A token ring network as a PNB expression

are often cited by researchers and practitioners in support of working with Petri
nets, rather than, for example, products of automata. One is qualitative: the
graphical syntax results in vivid, intuitive and informative models of real con-
current and distributed systems. A more empirical, quantitative reason is that
transition systems have a monolithic statespace that does not contain inherent
information about concurrency. Instead, a state of a Petri net, i.e. a marking,
has structure from which one can extract useful information. This leads to prac-
tical techniques for mitigating state explosion when model checking, e.g. partial
order reduction [19] and symmetry-reduction [25], that would not be possible if
working with mere transitions systems.

Transition system
State graph

 ������� Petri net
Composition

 �������� PNB expression (‡)

Just as Petri nets can be evaluated into a transition system, forgetting the con-
currency, a PNB expression can be composed into a Petri net, forgetting the
spatial distribution. As we have shown, the close connection between the alge-
bra and net geometry is a qualitative reason for working with PNB expressions.
The information can also be exploited quantitatively [27] in order to improve the
performance of model checking in suitable examples – the statespace of a PNB
expression contains information both about concurrency (because the compo-
nents are Petri nets) as well as spatial distribution.

2 A Language for Net Composition

In the previous section we demonstrated the algebraic description of Petri Net
systems in terms of their component nets with boundaries. We now motivate us-
ing a Domain Specific Language (DSL), PNBml, that evaluates to the algebra of
PNB, but adds expressive high-level functional programming language features.

9

substituted for each other in any context. This powerful principle of process al-
gebra is useful when reasoning about the behaviour of complex systems.

1.1 Specifying systems algebraically

Fig. 5: Token ring network

The examples we have considered thus far have not been of practical interest,
having been chosen for their simplicity in order to illustrate the basic operations
of PNBs. We now show how a more interesting system can be expressed with
the algebra. We will consider other realistic examples in §3.

Consider a model of simple token ring network, taken from [1], and illustrated
in Fig. 5. Note that the (1-safe) net contains three identical components that
di↵er only in their “internal state” (the local marking). Initially, only the leftmost
component can proceed: after it finishes its internal computation it relinquishes
its token, meaning that the next component can proceed. The modular structure
of the system is made explicit with the algebra of PNBs, illustrated in Fig. 6,
where we show how the system can be expressed formally as a collection of
component PNBs, wired together appropriately with simple connector PNBs.
Indeed, when the expression (†) is evaluated by composing nets with boundaries,
the resulting Petri net is isomorphic to the net in Fig. 5.

The example is an evocative illustration of the fact that the operations for
composing PNBs are very closely linked to the underlying geometry of nets –
the logical structure of the system can be seen by examining the structure of the
algebraic expression.

1.2 Explicit spatial distribution

Using transition systems as a model of concurrency has a long history (see e.g. [3]).
Indeed, the semantics of a Petri net is usually a transition system. Two reasons

8

The algebraic expression reflects the system communication topology

(we can see how the net is wired up from looking at the term!)

Describing interaction
• LTS labels indicate when a transition that is

connected to a boundary port has been fired

{p} {q}

0/0 0/0

0/1

1/0

{p} {q}

0/0 0/0

0/1

1/0

Fig. 4: LTS/NFA semantics of the PNB and marked PNB of Fig. 2

Definition 1. A non-deterministic finite automaton with boundaries (NFAB)

A : (k, l) is a non-deterministic finite automaton A with alphabet Bk
⇥ Bl

. Let

L(A) ✓ (Bk
⇥ Bl)⇤ denote the language of A.

Given a PNB P : (k, l), we denote the resulting NFAB JP K : (k, l). Note
that any ordinary marked net, N , can be regarded as a PNB, N : (0, 0) with
no boundaries. The resulting NFAB JNK has the alphabet B0

⇥ B0, which is
the singleton—this is precisely the state graph of N w.r.t. step semantics. The
following observation, which is central to our approach, is immediate.

Proposition 2. Supposed that N is a marked net. Then the final marking is

reachable from the initial marking i↵ L(JNK) 6= ? ut

Finally, we need to explain how NFABs are composed. If A : (k, l) and B :
(l,m) are NFABs then both A ; B : (k,m) and A ⌦ B : (k + l, l + m) have as
states pairs (a, b) where a is a state of A and b is a state of B. Initial and final
states are simply the product of the initial and final states of the component
NFABs. The only di↵erence is how the transition relations are defined:

a
↵/�
��! a0 b

�/�
��! b0

(;)

(a, b)
↵/�
��! (a0, b0)

a
↵/�
��! a0 b

�/�
��! b0

(⌦)

(a, b)
↵�/��
����! (a0, b0)

The following is straightforward to show and builds on known compositionality
properties of PNBs [2].

Proposition 3 (Compositionality). Given PNBs P : (k, l), Q : (l,m), we

have that JP ; QK ⇠= JP K ; JQK, where ⇠= is isomorphism of automata.

Of particular interest to our approach are NFA transitions witnessing the
firing of net transitions that are not connected to any boundary ports. Thus we

let ⌧k,l
def
= 0k/0l. We will refer to ⌧k,l as a ⌧ -move or silent move.

3 Compositional Reachability

In this section we explain our technique for compositional reachability checking
and present our algorithm. We will use the following running example, which
features a net that is particularly suitable for our approach.

5

A

C

B

D

A

C

B

D

Fig. 1: Two ways of drawing hypergraphs

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. Intuitively, transitions connected
to a boundary port are not yet completely specified. The two sets of ports are
drawn, from top to bottom, on the left and right hand sides of an enclosing box.
An example is in the left side Fig. 2: here both boundaries consist of one port.
We write P : (1, 1) to mean that P is a PNB with both boundaries of size 1.

Di↵erently to [2, 24] we consider “vanilla” PNBs to be unmarked; in §2 we
introduce a marked variant that contains both an initial and a target marking.

p

q

Fig. 2: An example PNB and marked PNB (1, 1)

There are two operations for composing PNBs: synchronisation along a com-
mon boundary (;) and a non-commutative, parallel composition (⌦). The most
interesting operation is synchronisation: we refer to [2] for the formal details,
but the graphical intuition shown in Fig. 3 su�ces for most examples. Note that
the size of the right boundary of P agrees with the size of the left boundary of
Q—this is a general requirement for composition to be defined: nets can be com-
posed i↵ they agree on the size of the intermediate boundary. Given X : (k, l)
and Y : (l,m), the composition is written X ; Y : (k,m). Transitions of the com-
posed net—called minimal synchronisations—are, in general, sets of transitions
of the two components. In Fig. 3, the transition {t, a} results from synchronising
t and a. Transition t can synchronise both with a and b; indeed, both choices
are taken into account (with b further synchronising with u). Transition c has no
complementary transition to synchronise with and thus no composite transition
results. Finally, v does not connect to any places, only to the fourth boundary
port, and is thus synchronised with d.

3

A

C

B

D

A

C

B

D

Fig. 1: Two ways of drawing hypergraphs

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. Intuitively, transitions connected
to a boundary port are not yet completely specified. The two sets of ports are
drawn, from top to bottom, on the left and right hand sides of an enclosing box.
An example is in the left side Fig. 2: here both boundaries consist of one port.
We write P : (1, 1) to mean that P is a PNB with both boundaries of size 1.

Di↵erently to [2, 24] we consider “vanilla” PNBs to be unmarked; in §2 we
introduce a marked variant that contains both an initial and a target marking.

p

q

Fig. 2: An example PNB and marked PNB (1, 1)

There are two operations for composing PNBs: synchronisation along a com-
mon boundary (;) and a non-commutative, parallel composition (⌦). The most
interesting operation is synchronisation: we refer to [2] for the formal details,
but the graphical intuition shown in Fig. 3 su�ces for most examples. Note that
the size of the right boundary of P agrees with the size of the left boundary of
Q—this is a general requirement for composition to be defined: nets can be com-
posed i↵ they agree on the size of the intermediate boundary. Given X : (k, l)
and Y : (l,m), the composition is written X ; Y : (k,m). Transitions of the com-
posed net—called minimal synchronisations—are, in general, sets of transitions
of the two components. In Fig. 3, the transition {t, a} results from synchronising
t and a. Transition t can synchronise both with a and b; indeed, both choices
are taken into account (with b further synchronising with u). Transition c has no
complementary transition to synchronise with and thus no composite transition
results. Finally, v does not connect to any places, only to the fourth boundary
port, and is thus synchronised with d.

3

A

C

B

D

A

C

B

D

Fig. 1: Two ways of drawing hypergraphs

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. Intuitively, transitions connected
to a boundary port are not yet completely specified. The two sets of ports are
drawn, from top to bottom, on the left and right hand sides of an enclosing box.
An example is in the left side Fig. 2: here both boundaries consist of one port.
We write P : (1, 1) to mean that P is a PNB with both boundaries of size 1.

Di↵erently to [2, 24] we consider “vanilla” PNBs to be unmarked; in §2 we
introduce a marked variant that contains both an initial and a target marking.

p

q

Fig. 2: An example PNB and marked PNB (1, 1)

There are two operations for composing PNBs: synchronisation along a com-
mon boundary (;) and a non-commutative, parallel composition (⌦). The most
interesting operation is synchronisation: we refer to [2] for the formal details,
but the graphical intuition shown in Fig. 3 su�ces for most examples. Note that
the size of the right boundary of P agrees with the size of the left boundary of
Q—this is a general requirement for composition to be defined: nets can be com-
posed i↵ they agree on the size of the intermediate boundary. Given X : (k, l)
and Y : (l,m), the composition is written X ; Y : (k,m). Transitions of the com-
posed net—called minimal synchronisations—are, in general, sets of transitions
of the two components. In Fig. 3, the transition {t, a} results from synchronising
t and a. Transition t can synchronise both with a and b; indeed, both choices
are taken into account (with b further synchronising with u). Transition c has no
complementary transition to synchronise with and thus no composite transition
results. Finally, v does not connect to any places, only to the fourth boundary
port, and is thus synchronised with d.

3

This assignment is functorial
(the LTS of a composed net is the
composition of component LTSs)

Describing interaction
• LTS labels indicate when a transition that is

connected to a boundary port has been fired

{p} {q}

0/0 0/0

0/1

1/0

{p} {q}

0/0 0/0

0/1

1/0

Fig. 4: LTS/NFA semantics of the PNB and marked PNB of Fig. 2

Definition 1. A non-deterministic finite automaton with boundaries (NFAB)

A : (k, l) is a non-deterministic finite automaton A with alphabet Bk
⇥ Bl

. Let

L(A) ✓ (Bk
⇥ Bl)⇤ denote the language of A.

Given a PNB P : (k, l), we denote the resulting NFAB JP K : (k, l). Note
that any ordinary marked net, N , can be regarded as a PNB, N : (0, 0) with
no boundaries. The resulting NFAB JNK has the alphabet B0

⇥ B0, which is
the singleton—this is precisely the state graph of N w.r.t. step semantics. The
following observation, which is central to our approach, is immediate.

Proposition 2. Supposed that N is a marked net. Then the final marking is

reachable from the initial marking i↵ L(JNK) 6= ? ut

Finally, we need to explain how NFABs are composed. If A : (k, l) and B :
(l,m) are NFABs then both A ; B : (k,m) and A ⌦ B : (k + l, l + m) have as
states pairs (a, b) where a is a state of A and b is a state of B. Initial and final
states are simply the product of the initial and final states of the component
NFABs. The only di↵erence is how the transition relations are defined:

a
↵/�
��! a0 b

�/�
��! b0

(;)

(a, b)
↵/�
��! (a0, b0)

a
↵/�
��! a0 b

�/�
��! b0

(⌦)

(a, b)
↵�/��
����! (a0, b0)

The following is straightforward to show and builds on known compositionality
properties of PNBs [2].

Proposition 3 (Compositionality). Given PNBs P : (k, l), Q : (l,m), we

have that JP ; QK ⇠= JP K ; JQK, where ⇠= is isomorphism of automata.

Of particular interest to our approach are NFA transitions witnessing the
firing of net transitions that are not connected to any boundary ports. Thus we

let ⌧k,l
def
= 0k/0l. We will refer to ⌧k,l as a ⌧ -move or silent move.

3 Compositional Reachability

In this section we explain our technique for compositional reachability checking
and present our algorithm. We will use the following running example, which
features a net that is particularly suitable for our approach.

5

A

C

B

D

A

C

B

D

Fig. 1: Two ways of drawing hypergraphs

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. Intuitively, transitions connected
to a boundary port are not yet completely specified. The two sets of ports are
drawn, from top to bottom, on the left and right hand sides of an enclosing box.
An example is in the left side Fig. 2: here both boundaries consist of one port.
We write P : (1, 1) to mean that P is a PNB with both boundaries of size 1.

Di↵erently to [2, 24] we consider “vanilla” PNBs to be unmarked; in §2 we
introduce a marked variant that contains both an initial and a target marking.

p

q

Fig. 2: An example PNB and marked PNB (1, 1)

There are two operations for composing PNBs: synchronisation along a com-
mon boundary (;) and a non-commutative, parallel composition (⌦). The most
interesting operation is synchronisation: we refer to [2] for the formal details,
but the graphical intuition shown in Fig. 3 su�ces for most examples. Note that
the size of the right boundary of P agrees with the size of the left boundary of
Q—this is a general requirement for composition to be defined: nets can be com-
posed i↵ they agree on the size of the intermediate boundary. Given X : (k, l)
and Y : (l,m), the composition is written X ; Y : (k,m). Transitions of the com-
posed net—called minimal synchronisations—are, in general, sets of transitions
of the two components. In Fig. 3, the transition {t, a} results from synchronising
t and a. Transition t can synchronise both with a and b; indeed, both choices
are taken into account (with b further synchronising with u). Transition c has no
complementary transition to synchronise with and thus no composite transition
results. Finally, v does not connect to any places, only to the fourth boundary
port, and is thus synchronised with d.

3

A

C

B

D

A

C

B

D

Fig. 1: Two ways of drawing hypergraphs

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. Intuitively, transitions connected
to a boundary port are not yet completely specified. The two sets of ports are
drawn, from top to bottom, on the left and right hand sides of an enclosing box.
An example is in the left side Fig. 2: here both boundaries consist of one port.
We write P : (1, 1) to mean that P is a PNB with both boundaries of size 1.

Di↵erently to [2, 24] we consider “vanilla” PNBs to be unmarked; in §2 we
introduce a marked variant that contains both an initial and a target marking.

p

q

Fig. 2: An example PNB and marked PNB (1, 1)

There are two operations for composing PNBs: synchronisation along a com-
mon boundary (;) and a non-commutative, parallel composition (⌦). The most
interesting operation is synchronisation: we refer to [2] for the formal details,
but the graphical intuition shown in Fig. 3 su�ces for most examples. Note that
the size of the right boundary of P agrees with the size of the left boundary of
Q—this is a general requirement for composition to be defined: nets can be com-
posed i↵ they agree on the size of the intermediate boundary. Given X : (k, l)
and Y : (l,m), the composition is written X ; Y : (k,m). Transitions of the com-
posed net—called minimal synchronisations—are, in general, sets of transitions
of the two components. In Fig. 3, the transition {t, a} results from synchronising
t and a. Transition t can synchronise both with a and b; indeed, both choices
are taken into account (with b further synchronising with u). Transition c has no
complementary transition to synchronise with and thus no composite transition
results. Finally, v does not connect to any places, only to the fourth boundary
port, and is thus synchronised with d.

3

A

C

B

D

A

C

B

D

Fig. 1: Two ways of drawing hypergraphs

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. Intuitively, transitions connected
to a boundary port are not yet completely specified. The two sets of ports are
drawn, from top to bottom, on the left and right hand sides of an enclosing box.
An example is in the left side Fig. 2: here both boundaries consist of one port.
We write P : (1, 1) to mean that P is a PNB with both boundaries of size 1.

Di↵erently to [2, 24] we consider “vanilla” PNBs to be unmarked; in §2 we
introduce a marked variant that contains both an initial and a target marking.

p

q

Fig. 2: An example PNB and marked PNB (1, 1)

There are two operations for composing PNBs: synchronisation along a com-
mon boundary (;) and a non-commutative, parallel composition (⌦). The most
interesting operation is synchronisation: we refer to [2] for the formal details,
but the graphical intuition shown in Fig. 3 su�ces for most examples. Note that
the size of the right boundary of P agrees with the size of the left boundary of
Q—this is a general requirement for composition to be defined: nets can be com-
posed i↵ they agree on the size of the intermediate boundary. Given X : (k, l)
and Y : (l,m), the composition is written X ; Y : (k,m). Transitions of the com-
posed net—called minimal synchronisations—are, in general, sets of transitions
of the two components. In Fig. 3, the transition {t, a} results from synchronising
t and a. Transition t can synchronise both with a and b; indeed, both choices
are taken into account (with b further synchronising with u). Transition c has no
complementary transition to synchronise with and thus no composite transition
results. Finally, v does not connect to any places, only to the fourth boundary
port, and is thus synchronised with d.

3

This assignment is functorial
(the LTS of a composed net is the
composition of component LTSs)

Describing interaction
• LTS labels indicate when a transition that is

connected to a boundary port has been fired

{p} {q}

0/0 0/0

0/1

1/0

{p} {q}

0/0 0/0

0/1

1/0

Fig. 4: LTS/NFA semantics of the PNB and marked PNB of Fig. 2

Definition 1. A non-deterministic finite automaton with boundaries (NFAB)

A : (k, l) is a non-deterministic finite automaton A with alphabet Bk
⇥ Bl

. Let

L(A) ✓ (Bk
⇥ Bl)⇤ denote the language of A.

Given a PNB P : (k, l), we denote the resulting NFAB JP K : (k, l). Note
that any ordinary marked net, N , can be regarded as a PNB, N : (0, 0) with
no boundaries. The resulting NFAB JNK has the alphabet B0

⇥ B0, which is
the singleton—this is precisely the state graph of N w.r.t. step semantics. The
following observation, which is central to our approach, is immediate.

Proposition 2. Supposed that N is a marked net. Then the final marking is

reachable from the initial marking i↵ L(JNK) 6= ? ut

Finally, we need to explain how NFABs are composed. If A : (k, l) and B :
(l,m) are NFABs then both A ; B : (k,m) and A ⌦ B : (k + l, l + m) have as
states pairs (a, b) where a is a state of A and b is a state of B. Initial and final
states are simply the product of the initial and final states of the component
NFABs. The only di↵erence is how the transition relations are defined:

a
↵/�
��! a0 b

�/�
��! b0

(;)

(a, b)
↵/�
��! (a0, b0)

a
↵/�
��! a0 b

�/�
��! b0

(⌦)

(a, b)
↵�/��
����! (a0, b0)

The following is straightforward to show and builds on known compositionality
properties of PNBs [2].

Proposition 3 (Compositionality). Given PNBs P : (k, l), Q : (l,m), we

have that JP ; QK ⇠= JP K ; JQK, where ⇠= is isomorphism of automata.

Of particular interest to our approach are NFA transitions witnessing the
firing of net transitions that are not connected to any boundary ports. Thus we

let ⌧k,l
def
= 0k/0l. We will refer to ⌧k,l as a ⌧ -move or silent move.

3 Compositional Reachability

In this section we explain our technique for compositional reachability checking
and present our algorithm. We will use the following running example, which
features a net that is particularly suitable for our approach.

5

A

C

B

D

A

C

B

D

Fig. 1: Two ways of drawing hypergraphs

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. Intuitively, transitions connected
to a boundary port are not yet completely specified. The two sets of ports are
drawn, from top to bottom, on the left and right hand sides of an enclosing box.
An example is in the left side Fig. 2: here both boundaries consist of one port.
We write P : (1, 1) to mean that P is a PNB with both boundaries of size 1.

Di↵erently to [2, 24] we consider “vanilla” PNBs to be unmarked; in §2 we
introduce a marked variant that contains both an initial and a target marking.

p

q

Fig. 2: An example PNB and marked PNB (1, 1)

There are two operations for composing PNBs: synchronisation along a com-
mon boundary (;) and a non-commutative, parallel composition (⌦). The most
interesting operation is synchronisation: we refer to [2] for the formal details,
but the graphical intuition shown in Fig. 3 su�ces for most examples. Note that
the size of the right boundary of P agrees with the size of the left boundary of
Q—this is a general requirement for composition to be defined: nets can be com-
posed i↵ they agree on the size of the intermediate boundary. Given X : (k, l)
and Y : (l,m), the composition is written X ; Y : (k,m). Transitions of the com-
posed net—called minimal synchronisations—are, in general, sets of transitions
of the two components. In Fig. 3, the transition {t, a} results from synchronising
t and a. Transition t can synchronise both with a and b; indeed, both choices
are taken into account (with b further synchronising with u). Transition c has no
complementary transition to synchronise with and thus no composite transition
results. Finally, v does not connect to any places, only to the fourth boundary
port, and is thus synchronised with d.

3

A

C

B

D

A

C

B

D

Fig. 1: Two ways of drawing hypergraphs

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. Intuitively, transitions connected
to a boundary port are not yet completely specified. The two sets of ports are
drawn, from top to bottom, on the left and right hand sides of an enclosing box.
An example is in the left side Fig. 2: here both boundaries consist of one port.
We write P : (1, 1) to mean that P is a PNB with both boundaries of size 1.

Di↵erently to [2, 24] we consider “vanilla” PNBs to be unmarked; in §2 we
introduce a marked variant that contains both an initial and a target marking.

p

q

Fig. 2: An example PNB and marked PNB (1, 1)

There are two operations for composing PNBs: synchronisation along a com-
mon boundary (;) and a non-commutative, parallel composition (⌦). The most
interesting operation is synchronisation: we refer to [2] for the formal details,
but the graphical intuition shown in Fig. 3 su�ces for most examples. Note that
the size of the right boundary of P agrees with the size of the left boundary of
Q—this is a general requirement for composition to be defined: nets can be com-
posed i↵ they agree on the size of the intermediate boundary. Given X : (k, l)
and Y : (l,m), the composition is written X ; Y : (k,m). Transitions of the com-
posed net—called minimal synchronisations—are, in general, sets of transitions
of the two components. In Fig. 3, the transition {t, a} results from synchronising
t and a. Transition t can synchronise both with a and b; indeed, both choices
are taken into account (with b further synchronising with u). Transition c has no
complementary transition to synchronise with and thus no composite transition
results. Finally, v does not connect to any places, only to the fourth boundary
port, and is thus synchronised with d.

3

A

C

B

D

A

C

B

D

Fig. 1: Two ways of drawing hypergraphs

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. Intuitively, transitions connected
to a boundary port are not yet completely specified. The two sets of ports are
drawn, from top to bottom, on the left and right hand sides of an enclosing box.
An example is in the left side Fig. 2: here both boundaries consist of one port.
We write P : (1, 1) to mean that P is a PNB with both boundaries of size 1.

Di↵erently to [2, 24] we consider “vanilla” PNBs to be unmarked; in §2 we
introduce a marked variant that contains both an initial and a target marking.

p

q

Fig. 2: An example PNB and marked PNB (1, 1)

There are two operations for composing PNBs: synchronisation along a com-
mon boundary (;) and a non-commutative, parallel composition (⌦). The most
interesting operation is synchronisation: we refer to [2] for the formal details,
but the graphical intuition shown in Fig. 3 su�ces for most examples. Note that
the size of the right boundary of P agrees with the size of the left boundary of
Q—this is a general requirement for composition to be defined: nets can be com-
posed i↵ they agree on the size of the intermediate boundary. Given X : (k, l)
and Y : (l,m), the composition is written X ; Y : (k,m). Transitions of the com-
posed net—called minimal synchronisations—are, in general, sets of transitions
of the two components. In Fig. 3, the transition {t, a} results from synchronising
t and a. Transition t can synchronise both with a and b; indeed, both choices
are taken into account (with b further synchronising with u). Transition c has no
complementary transition to synchronise with and thus no composite transition
results. Finally, v does not connect to any places, only to the fourth boundary
port, and is thus synchronised with d.

3

This assignment is functorial
(the LTS of a composed net is the
composition of component LTSs)

Describing interaction
• LTS labels indicate when a transition that is

connected to a boundary port has been fired

{p} {q}

0/0 0/0

0/1

1/0

{p} {q}

0/0 0/0

0/1

1/0

Fig. 4: LTS/NFA semantics of the PNB and marked PNB of Fig. 2

Definition 1. A non-deterministic finite automaton with boundaries (NFAB)

A : (k, l) is a non-deterministic finite automaton A with alphabet Bk
⇥ Bl

. Let

L(A) ✓ (Bk
⇥ Bl)⇤ denote the language of A.

Given a PNB P : (k, l), we denote the resulting NFAB JP K : (k, l). Note
that any ordinary marked net, N , can be regarded as a PNB, N : (0, 0) with
no boundaries. The resulting NFAB JNK has the alphabet B0

⇥ B0, which is
the singleton—this is precisely the state graph of N w.r.t. step semantics. The
following observation, which is central to our approach, is immediate.

Proposition 2. Supposed that N is a marked net. Then the final marking is

reachable from the initial marking i↵ L(JNK) 6= ? ut

Finally, we need to explain how NFABs are composed. If A : (k, l) and B :
(l,m) are NFABs then both A ; B : (k,m) and A ⌦ B : (k + l, l + m) have as
states pairs (a, b) where a is a state of A and b is a state of B. Initial and final
states are simply the product of the initial and final states of the component
NFABs. The only di↵erence is how the transition relations are defined:

a
↵/�
��! a0 b

�/�
��! b0

(;)

(a, b)
↵/�
��! (a0, b0)

a
↵/�
��! a0 b

�/�
��! b0

(⌦)

(a, b)
↵�/��
����! (a0, b0)

The following is straightforward to show and builds on known compositionality
properties of PNBs [2].

Proposition 3 (Compositionality). Given PNBs P : (k, l), Q : (l,m), we

have that JP ; QK ⇠= JP K ; JQK, where ⇠= is isomorphism of automata.

Of particular interest to our approach are NFA transitions witnessing the
firing of net transitions that are not connected to any boundary ports. Thus we

let ⌧k,l
def
= 0k/0l. We will refer to ⌧k,l as a ⌧ -move or silent move.

3 Compositional Reachability

In this section we explain our technique for compositional reachability checking
and present our algorithm. We will use the following running example, which
features a net that is particularly suitable for our approach.

5

A

C

B

D

A

C

B

D

Fig. 1: Two ways of drawing hypergraphs

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. Intuitively, transitions connected
to a boundary port are not yet completely specified. The two sets of ports are
drawn, from top to bottom, on the left and right hand sides of an enclosing box.
An example is in the left side Fig. 2: here both boundaries consist of one port.
We write P : (1, 1) to mean that P is a PNB with both boundaries of size 1.

Di↵erently to [2, 24] we consider “vanilla” PNBs to be unmarked; in §2 we
introduce a marked variant that contains both an initial and a target marking.

p

q

Fig. 2: An example PNB and marked PNB (1, 1)

There are two operations for composing PNBs: synchronisation along a com-
mon boundary (;) and a non-commutative, parallel composition (⌦). The most
interesting operation is synchronisation: we refer to [2] for the formal details,
but the graphical intuition shown in Fig. 3 su�ces for most examples. Note that
the size of the right boundary of P agrees with the size of the left boundary of
Q—this is a general requirement for composition to be defined: nets can be com-
posed i↵ they agree on the size of the intermediate boundary. Given X : (k, l)
and Y : (l,m), the composition is written X ; Y : (k,m). Transitions of the com-
posed net—called minimal synchronisations—are, in general, sets of transitions
of the two components. In Fig. 3, the transition {t, a} results from synchronising
t and a. Transition t can synchronise both with a and b; indeed, both choices
are taken into account (with b further synchronising with u). Transition c has no
complementary transition to synchronise with and thus no composite transition
results. Finally, v does not connect to any places, only to the fourth boundary
port, and is thus synchronised with d.

3

A

C

B

D

A

C

B

D

Fig. 1: Two ways of drawing hypergraphs

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. Intuitively, transitions connected
to a boundary port are not yet completely specified. The two sets of ports are
drawn, from top to bottom, on the left and right hand sides of an enclosing box.
An example is in the left side Fig. 2: here both boundaries consist of one port.
We write P : (1, 1) to mean that P is a PNB with both boundaries of size 1.

Di↵erently to [2, 24] we consider “vanilla” PNBs to be unmarked; in §2 we
introduce a marked variant that contains both an initial and a target marking.

p

q

Fig. 2: An example PNB and marked PNB (1, 1)

There are two operations for composing PNBs: synchronisation along a com-
mon boundary (;) and a non-commutative, parallel composition (⌦). The most
interesting operation is synchronisation: we refer to [2] for the formal details,
but the graphical intuition shown in Fig. 3 su�ces for most examples. Note that
the size of the right boundary of P agrees with the size of the left boundary of
Q—this is a general requirement for composition to be defined: nets can be com-
posed i↵ they agree on the size of the intermediate boundary. Given X : (k, l)
and Y : (l,m), the composition is written X ; Y : (k,m). Transitions of the com-
posed net—called minimal synchronisations—are, in general, sets of transitions
of the two components. In Fig. 3, the transition {t, a} results from synchronising
t and a. Transition t can synchronise both with a and b; indeed, both choices
are taken into account (with b further synchronising with u). Transition c has no
complementary transition to synchronise with and thus no composite transition
results. Finally, v does not connect to any places, only to the fourth boundary
port, and is thus synchronised with d.

3

A

C

B

D

A

C

B

D

Fig. 1: Two ways of drawing hypergraphs

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. Intuitively, transitions connected
to a boundary port are not yet completely specified. The two sets of ports are
drawn, from top to bottom, on the left and right hand sides of an enclosing box.
An example is in the left side Fig. 2: here both boundaries consist of one port.
We write P : (1, 1) to mean that P is a PNB with both boundaries of size 1.

Di↵erently to [2, 24] we consider “vanilla” PNBs to be unmarked; in §2 we
introduce a marked variant that contains both an initial and a target marking.

p

q

Fig. 2: An example PNB and marked PNB (1, 1)

There are two operations for composing PNBs: synchronisation along a com-
mon boundary (;) and a non-commutative, parallel composition (⌦). The most
interesting operation is synchronisation: we refer to [2] for the formal details,
but the graphical intuition shown in Fig. 3 su�ces for most examples. Note that
the size of the right boundary of P agrees with the size of the left boundary of
Q—this is a general requirement for composition to be defined: nets can be com-
posed i↵ they agree on the size of the intermediate boundary. Given X : (k, l)
and Y : (l,m), the composition is written X ; Y : (k,m). Transitions of the com-
posed net—called minimal synchronisations—are, in general, sets of transitions
of the two components. In Fig. 3, the transition {t, a} results from synchronising
t and a. Transition t can synchronise both with a and b; indeed, both choices
are taken into account (with b further synchronising with u). Transition c has no
complementary transition to synchronise with and thus no composite transition
results. Finally, v does not connect to any places, only to the fourth boundary
port, and is thus synchronised with d.

3

This assignment is functorial
(the LTS of a composed net is the
composition of component LTSs)

Describing interaction
• LTS labels indicate when a transition that is

connected to a boundary port has been fired

{p} {q}

0/0 0/0

0/1

1/0

{p} {q}

0/0 0/0

0/1

1/0

Fig. 4: LTS/NFA semantics of the PNB and marked PNB of Fig. 2

Definition 1. A non-deterministic finite automaton with boundaries (NFAB)

A : (k, l) is a non-deterministic finite automaton A with alphabet Bk
⇥ Bl

. Let

L(A) ✓ (Bk
⇥ Bl)⇤ denote the language of A.

Given a PNB P : (k, l), we denote the resulting NFAB JP K : (k, l). Note
that any ordinary marked net, N , can be regarded as a PNB, N : (0, 0) with
no boundaries. The resulting NFAB JNK has the alphabet B0

⇥ B0, which is
the singleton—this is precisely the state graph of N w.r.t. step semantics. The
following observation, which is central to our approach, is immediate.

Proposition 2. Supposed that N is a marked net. Then the final marking is

reachable from the initial marking i↵ L(JNK) 6= ? ut

Finally, we need to explain how NFABs are composed. If A : (k, l) and B :
(l,m) are NFABs then both A ; B : (k,m) and A ⌦ B : (k + l, l + m) have as
states pairs (a, b) where a is a state of A and b is a state of B. Initial and final
states are simply the product of the initial and final states of the component
NFABs. The only di↵erence is how the transition relations are defined:

a
↵/�
��! a0 b

�/�
��! b0

(;)

(a, b)
↵/�
��! (a0, b0)

a
↵/�
��! a0 b

�/�
��! b0

(⌦)

(a, b)
↵�/��
����! (a0, b0)

The following is straightforward to show and builds on known compositionality
properties of PNBs [2].

Proposition 3 (Compositionality). Given PNBs P : (k, l), Q : (l,m), we

have that JP ; QK ⇠= JP K ; JQK, where ⇠= is isomorphism of automata.

Of particular interest to our approach are NFA transitions witnessing the
firing of net transitions that are not connected to any boundary ports. Thus we

let ⌧k,l
def
= 0k/0l. We will refer to ⌧k,l as a ⌧ -move or silent move.

3 Compositional Reachability

In this section we explain our technique for compositional reachability checking
and present our algorithm. We will use the following running example, which
features a net that is particularly suitable for our approach.

5

A

C

B

D

A

C

B

D

Fig. 1: Two ways of drawing hypergraphs

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. Intuitively, transitions connected
to a boundary port are not yet completely specified. The two sets of ports are
drawn, from top to bottom, on the left and right hand sides of an enclosing box.
An example is in the left side Fig. 2: here both boundaries consist of one port.
We write P : (1, 1) to mean that P is a PNB with both boundaries of size 1.

Di↵erently to [2, 24] we consider “vanilla” PNBs to be unmarked; in §2 we
introduce a marked variant that contains both an initial and a target marking.

p

q

Fig. 2: An example PNB and marked PNB (1, 1)

There are two operations for composing PNBs: synchronisation along a com-
mon boundary (;) and a non-commutative, parallel composition (⌦). The most
interesting operation is synchronisation: we refer to [2] for the formal details,
but the graphical intuition shown in Fig. 3 su�ces for most examples. Note that
the size of the right boundary of P agrees with the size of the left boundary of
Q—this is a general requirement for composition to be defined: nets can be com-
posed i↵ they agree on the size of the intermediate boundary. Given X : (k, l)
and Y : (l,m), the composition is written X ; Y : (k,m). Transitions of the com-
posed net—called minimal synchronisations—are, in general, sets of transitions
of the two components. In Fig. 3, the transition {t, a} results from synchronising
t and a. Transition t can synchronise both with a and b; indeed, both choices
are taken into account (with b further synchronising with u). Transition c has no
complementary transition to synchronise with and thus no composite transition
results. Finally, v does not connect to any places, only to the fourth boundary
port, and is thus synchronised with d.

3

A

C

B

D

A

C

B

D

Fig. 1: Two ways of drawing hypergraphs

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. Intuitively, transitions connected
to a boundary port are not yet completely specified. The two sets of ports are
drawn, from top to bottom, on the left and right hand sides of an enclosing box.
An example is in the left side Fig. 2: here both boundaries consist of one port.
We write P : (1, 1) to mean that P is a PNB with both boundaries of size 1.

Di↵erently to [2, 24] we consider “vanilla” PNBs to be unmarked; in §2 we
introduce a marked variant that contains both an initial and a target marking.

p

q

Fig. 2: An example PNB and marked PNB (1, 1)

There are two operations for composing PNBs: synchronisation along a com-
mon boundary (;) and a non-commutative, parallel composition (⌦). The most
interesting operation is synchronisation: we refer to [2] for the formal details,
but the graphical intuition shown in Fig. 3 su�ces for most examples. Note that
the size of the right boundary of P agrees with the size of the left boundary of
Q—this is a general requirement for composition to be defined: nets can be com-
posed i↵ they agree on the size of the intermediate boundary. Given X : (k, l)
and Y : (l,m), the composition is written X ; Y : (k,m). Transitions of the com-
posed net—called minimal synchronisations—are, in general, sets of transitions
of the two components. In Fig. 3, the transition {t, a} results from synchronising
t and a. Transition t can synchronise both with a and b; indeed, both choices
are taken into account (with b further synchronising with u). Transition c has no
complementary transition to synchronise with and thus no composite transition
results. Finally, v does not connect to any places, only to the fourth boundary
port, and is thus synchronised with d.

3

A

C

B

D

A

C

B

D

Fig. 1: Two ways of drawing hypergraphs

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. Intuitively, transitions connected
to a boundary port are not yet completely specified. The two sets of ports are
drawn, from top to bottom, on the left and right hand sides of an enclosing box.
An example is in the left side Fig. 2: here both boundaries consist of one port.
We write P : (1, 1) to mean that P is a PNB with both boundaries of size 1.

Di↵erently to [2, 24] we consider “vanilla” PNBs to be unmarked; in §2 we
introduce a marked variant that contains both an initial and a target marking.

p

q

Fig. 2: An example PNB and marked PNB (1, 1)

There are two operations for composing PNBs: synchronisation along a com-
mon boundary (;) and a non-commutative, parallel composition (⌦). The most
interesting operation is synchronisation: we refer to [2] for the formal details,
but the graphical intuition shown in Fig. 3 su�ces for most examples. Note that
the size of the right boundary of P agrees with the size of the left boundary of
Q—this is a general requirement for composition to be defined: nets can be com-
posed i↵ they agree on the size of the intermediate boundary. Given X : (k, l)
and Y : (l,m), the composition is written X ; Y : (k,m). Transitions of the com-
posed net—called minimal synchronisations—are, in general, sets of transitions
of the two components. In Fig. 3, the transition {t, a} results from synchronising
t and a. Transition t can synchronise both with a and b; indeed, both choices
are taken into account (with b further synchronising with u). Transition c has no
complementary transition to synchronise with and thus no composite transition
results. Finally, v does not connect to any places, only to the fourth boundary
port, and is thus synchronised with d.

3

This assignment is functorial
(the LTS of a composed net is the
composition of component LTSs)

Describing interaction
• LTS labels indicate when a transition that is

connected to a boundary port has been fired

{p} {q}

0/0 0/0

0/1

1/0

{p} {q}

0/0 0/0

0/1

1/0

Fig. 4: LTS/NFA semantics of the PNB and marked PNB of Fig. 2

Definition 1. A non-deterministic finite automaton with boundaries (NFAB)

A : (k, l) is a non-deterministic finite automaton A with alphabet Bk
⇥ Bl

. Let

L(A) ✓ (Bk
⇥ Bl)⇤ denote the language of A.

Given a PNB P : (k, l), we denote the resulting NFAB JP K : (k, l). Note
that any ordinary marked net, N , can be regarded as a PNB, N : (0, 0) with
no boundaries. The resulting NFAB JNK has the alphabet B0

⇥ B0, which is
the singleton—this is precisely the state graph of N w.r.t. step semantics. The
following observation, which is central to our approach, is immediate.

Proposition 2. Supposed that N is a marked net. Then the final marking is

reachable from the initial marking i↵ L(JNK) 6= ? ut

Finally, we need to explain how NFABs are composed. If A : (k, l) and B :
(l,m) are NFABs then both A ; B : (k,m) and A ⌦ B : (k + l, l + m) have as
states pairs (a, b) where a is a state of A and b is a state of B. Initial and final
states are simply the product of the initial and final states of the component
NFABs. The only di↵erence is how the transition relations are defined:

a
↵/�
��! a0 b

�/�
��! b0

(;)

(a, b)
↵/�
��! (a0, b0)

a
↵/�
��! a0 b

�/�
��! b0

(⌦)

(a, b)
↵�/��
����! (a0, b0)

The following is straightforward to show and builds on known compositionality
properties of PNBs [2].

Proposition 3 (Compositionality). Given PNBs P : (k, l), Q : (l,m), we

have that JP ; QK ⇠= JP K ; JQK, where ⇠= is isomorphism of automata.

Of particular interest to our approach are NFA transitions witnessing the
firing of net transitions that are not connected to any boundary ports. Thus we

let ⌧k,l
def
= 0k/0l. We will refer to ⌧k,l as a ⌧ -move or silent move.

3 Compositional Reachability

In this section we explain our technique for compositional reachability checking
and present our algorithm. We will use the following running example, which
features a net that is particularly suitable for our approach.

5

A

C

B

D

A

C

B

D

Fig. 1: Two ways of drawing hypergraphs

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. Intuitively, transitions connected
to a boundary port are not yet completely specified. The two sets of ports are
drawn, from top to bottom, on the left and right hand sides of an enclosing box.
An example is in the left side Fig. 2: here both boundaries consist of one port.
We write P : (1, 1) to mean that P is a PNB with both boundaries of size 1.

Di↵erently to [2, 24] we consider “vanilla” PNBs to be unmarked; in §2 we
introduce a marked variant that contains both an initial and a target marking.

p

q

Fig. 2: An example PNB and marked PNB (1, 1)

There are two operations for composing PNBs: synchronisation along a com-
mon boundary (;) and a non-commutative, parallel composition (⌦). The most
interesting operation is synchronisation: we refer to [2] for the formal details,
but the graphical intuition shown in Fig. 3 su�ces for most examples. Note that
the size of the right boundary of P agrees with the size of the left boundary of
Q—this is a general requirement for composition to be defined: nets can be com-
posed i↵ they agree on the size of the intermediate boundary. Given X : (k, l)
and Y : (l,m), the composition is written X ; Y : (k,m). Transitions of the com-
posed net—called minimal synchronisations—are, in general, sets of transitions
of the two components. In Fig. 3, the transition {t, a} results from synchronising
t and a. Transition t can synchronise both with a and b; indeed, both choices
are taken into account (with b further synchronising with u). Transition c has no
complementary transition to synchronise with and thus no composite transition
results. Finally, v does not connect to any places, only to the fourth boundary
port, and is thus synchronised with d.

3

A

C

B

D

A

C

B

D

Fig. 1: Two ways of drawing hypergraphs

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. Intuitively, transitions connected
to a boundary port are not yet completely specified. The two sets of ports are
drawn, from top to bottom, on the left and right hand sides of an enclosing box.
An example is in the left side Fig. 2: here both boundaries consist of one port.
We write P : (1, 1) to mean that P is a PNB with both boundaries of size 1.

Di↵erently to [2, 24] we consider “vanilla” PNBs to be unmarked; in §2 we
introduce a marked variant that contains both an initial and a target marking.

p

q

Fig. 2: An example PNB and marked PNB (1, 1)

There are two operations for composing PNBs: synchronisation along a com-
mon boundary (;) and a non-commutative, parallel composition (⌦). The most
interesting operation is synchronisation: we refer to [2] for the formal details,
but the graphical intuition shown in Fig. 3 su�ces for most examples. Note that
the size of the right boundary of P agrees with the size of the left boundary of
Q—this is a general requirement for composition to be defined: nets can be com-
posed i↵ they agree on the size of the intermediate boundary. Given X : (k, l)
and Y : (l,m), the composition is written X ; Y : (k,m). Transitions of the com-
posed net—called minimal synchronisations—are, in general, sets of transitions
of the two components. In Fig. 3, the transition {t, a} results from synchronising
t and a. Transition t can synchronise both with a and b; indeed, both choices
are taken into account (with b further synchronising with u). Transition c has no
complementary transition to synchronise with and thus no composite transition
results. Finally, v does not connect to any places, only to the fourth boundary
port, and is thus synchronised with d.

3

A

C

B

D

A

C

B

D

Fig. 1: Two ways of drawing hypergraphs

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. Intuitively, transitions connected
to a boundary port are not yet completely specified. The two sets of ports are
drawn, from top to bottom, on the left and right hand sides of an enclosing box.
An example is in the left side Fig. 2: here both boundaries consist of one port.
We write P : (1, 1) to mean that P is a PNB with both boundaries of size 1.

Di↵erently to [2, 24] we consider “vanilla” PNBs to be unmarked; in §2 we
introduce a marked variant that contains both an initial and a target marking.

p

q

Fig. 2: An example PNB and marked PNB (1, 1)

There are two operations for composing PNBs: synchronisation along a com-
mon boundary (;) and a non-commutative, parallel composition (⌦). The most
interesting operation is synchronisation: we refer to [2] for the formal details,
but the graphical intuition shown in Fig. 3 su�ces for most examples. Note that
the size of the right boundary of P agrees with the size of the left boundary of
Q—this is a general requirement for composition to be defined: nets can be com-
posed i↵ they agree on the size of the intermediate boundary. Given X : (k, l)
and Y : (l,m), the composition is written X ; Y : (k,m). Transitions of the com-
posed net—called minimal synchronisations—are, in general, sets of transitions
of the two components. In Fig. 3, the transition {t, a} results from synchronising
t and a. Transition t can synchronise both with a and b; indeed, both choices
are taken into account (with b further synchronising with u). Transition c has no
complementary transition to synchronise with and thus no composite transition
results. Finally, v does not connect to any places, only to the fourth boundary
port, and is thus synchronised with d.

3

This assignment is functorial
(the LTS of a composed net is the
composition of component LTSs)

P
~a�!~c Q R

~c�!~b S
(Cut)

P ;R
~a�!~b Q;S

P
~a�!~b Q R

~c�!~d S
(Ten)

P⌦R
~a~c�!~b~d

Q⌦S

Reachability,
compositionally

• NFA captures the interaction patterns which allow
the subnet to reach the desired local marking

A

C

B

D

A

C

B

D

Fig. 1: Two ways of drawing hypergraphs

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. Intuitively, transitions connected
to a boundary port are not yet completely specified. The two sets of ports are
drawn, from top to bottom, on the left and right hand sides of an enclosing box.
An example is in the left side Fig. 2: here both boundaries consist of one port.
We write P : (1, 1) to mean that P is a PNB with both boundaries of size 1.

Di↵erently to [2, 24] we consider “vanilla” PNBs to be unmarked; in §2 we
introduce a marked variant that contains both an initial and a target marking.

p

q

Fig. 2: An example PNB and marked PNB (1, 1)

There are two operations for composing PNBs: synchronisation along a com-
mon boundary (;) and a non-commutative, parallel composition (⌦). The most
interesting operation is synchronisation: we refer to [2] for the formal details,
but the graphical intuition shown in Fig. 3 su�ces for most examples. Note that
the size of the right boundary of P agrees with the size of the left boundary of
Q—this is a general requirement for composition to be defined: nets can be com-
posed i↵ they agree on the size of the intermediate boundary. Given X : (k, l)
and Y : (l,m), the composition is written X ; Y : (k,m). Transitions of the com-
posed net—called minimal synchronisations—are, in general, sets of transitions
of the two components. In Fig. 3, the transition {t, a} results from synchronising
t and a. Transition t can synchronise both with a and b; indeed, both choices
are taken into account (with b further synchronising with u). Transition c has no
complementary transition to synchronise with and thus no composite transition
results. Finally, v does not connect to any places, only to the fourth boundary
port, and is thus synchronised with d.

3

{p} {q}

0/0 0/0

0/1

1/0

{p} {q}

0/0 0/0

0/1

1/0

Fig. 4: LTS/NFA semantics of the PNB and marked PNB of Fig. 2

Definition 1. A non-deterministic finite automaton with boundaries (NFAB)

A : (k, l) is a non-deterministic finite automaton A with alphabet Bk
⇥ Bl

. Let

L(A) ✓ (Bk
⇥ Bl)⇤ denote the language of A.

Given a PNB P : (k, l), we denote the resulting NFAB JP K : (k, l). Note
that any ordinary marked net, N , can be regarded as a PNB, N : (0, 0) with
no boundaries. The resulting NFAB JNK has the alphabet B0

⇥ B0, which is
the singleton—this is precisely the state graph of N w.r.t. step semantics. The
following observation, which is central to our approach, is immediate.

Proposition 2. Supposed that N is a marked net. Then the final marking is

reachable from the initial marking i↵ L(JNK) 6= ? ut

Finally, we need to explain how NFABs are composed. If A : (k, l) and B :
(l,m) are NFABs then both A ; B : (k,m) and A ⌦ B : (k + l, l + m) have as
states pairs (a, b) where a is a state of A and b is a state of B. Initial and final
states are simply the product of the initial and final states of the component
NFABs. The only di↵erence is how the transition relations are defined:

a
↵/�
��! a0 b

�/�
��! b0

(;)

(a, b)
↵/�
��! (a0, b0)

a
↵/�
��! a0 b

�/�
��! b0

(⌦)

(a, b)
↵�/��
����! (a0, b0)

The following is straightforward to show and builds on known compositionality
properties of PNBs [2].

Proposition 3 (Compositionality). Given PNBs P : (k, l), Q : (l,m), we

have that JP ; QK ⇠= JP K ; JQK, where ⇠= is isomorphism of automata.

Of particular interest to our approach are NFA transitions witnessing the
firing of net transitions that are not connected to any boundary ports. Thus we

let ⌧k,l
def
= 0k/0l. We will refer to ⌧k,l as a ⌧ -move or silent move.

3 Compositional Reachability

In this section we explain our technique for compositional reachability checking
and present our algorithm. We will use the following running example, which
features a net that is particularly suitable for our approach.

5

Reachability,
compositionally

• NFA captures the interaction patterns which allow
the subnet to reach the desired local marking

A

C

B

D

A

C

B

D

Fig. 1: Two ways of drawing hypergraphs

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. Intuitively, transitions connected
to a boundary port are not yet completely specified. The two sets of ports are
drawn, from top to bottom, on the left and right hand sides of an enclosing box.
An example is in the left side Fig. 2: here both boundaries consist of one port.
We write P : (1, 1) to mean that P is a PNB with both boundaries of size 1.

Di↵erently to [2, 24] we consider “vanilla” PNBs to be unmarked; in §2 we
introduce a marked variant that contains both an initial and a target marking.

p

q

Fig. 2: An example PNB and marked PNB (1, 1)

There are two operations for composing PNBs: synchronisation along a com-
mon boundary (;) and a non-commutative, parallel composition (⌦). The most
interesting operation is synchronisation: we refer to [2] for the formal details,
but the graphical intuition shown in Fig. 3 su�ces for most examples. Note that
the size of the right boundary of P agrees with the size of the left boundary of
Q—this is a general requirement for composition to be defined: nets can be com-
posed i↵ they agree on the size of the intermediate boundary. Given X : (k, l)
and Y : (l,m), the composition is written X ; Y : (k,m). Transitions of the com-
posed net—called minimal synchronisations—are, in general, sets of transitions
of the two components. In Fig. 3, the transition {t, a} results from synchronising
t and a. Transition t can synchronise both with a and b; indeed, both choices
are taken into account (with b further synchronising with u). Transition c has no
complementary transition to synchronise with and thus no composite transition
results. Finally, v does not connect to any places, only to the fourth boundary
port, and is thus synchronised with d.

3

{p} {q}

0/0 0/0

0/1

1/0

{p} {q}

0/0 0/0

0/1

1/0

Fig. 4: LTS/NFA semantics of the PNB and marked PNB of Fig. 2

Definition 1. A non-deterministic finite automaton with boundaries (NFAB)

A : (k, l) is a non-deterministic finite automaton A with alphabet Bk
⇥ Bl

. Let

L(A) ✓ (Bk
⇥ Bl)⇤ denote the language of A.

Given a PNB P : (k, l), we denote the resulting NFAB JP K : (k, l). Note
that any ordinary marked net, N , can be regarded as a PNB, N : (0, 0) with
no boundaries. The resulting NFAB JNK has the alphabet B0

⇥ B0, which is
the singleton—this is precisely the state graph of N w.r.t. step semantics. The
following observation, which is central to our approach, is immediate.

Proposition 2. Supposed that N is a marked net. Then the final marking is

reachable from the initial marking i↵ L(JNK) 6= ? ut

Finally, we need to explain how NFABs are composed. If A : (k, l) and B :
(l,m) are NFABs then both A ; B : (k,m) and A ⌦ B : (k + l, l + m) have as
states pairs (a, b) where a is a state of A and b is a state of B. Initial and final
states are simply the product of the initial and final states of the component
NFABs. The only di↵erence is how the transition relations are defined:

a
↵/�
��! a0 b

�/�
��! b0

(;)

(a, b)
↵/�
��! (a0, b0)

a
↵/�
��! a0 b

�/�
��! b0

(⌦)

(a, b)
↵�/��
����! (a0, b0)

The following is straightforward to show and builds on known compositionality
properties of PNBs [2].

Proposition 3 (Compositionality). Given PNBs P : (k, l), Q : (l,m), we

have that JP ; QK ⇠= JP K ; JQK, where ⇠= is isomorphism of automata.

Of particular interest to our approach are NFA transitions witnessing the
firing of net transitions that are not connected to any boundary ports. Thus we

let ⌧k,l
def
= 0k/0l. We will refer to ⌧k,l as a ⌧ -move or silent move.

3 Compositional Reachability

In this section we explain our technique for compositional reachability checking
and present our algorithm. We will use the following running example, which
features a net that is particularly suitable for our approach.

5

Any language equivalent NFA describes the same
interaction patterns. e.g. a minimal NFA

Reachability,
compositionally

• NFA captures the interaction patterns which allow
the subnet to reach the desired local marking

A

C

B

D

A

C

B

D

Fig. 1: Two ways of drawing hypergraphs

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. Intuitively, transitions connected
to a boundary port are not yet completely specified. The two sets of ports are
drawn, from top to bottom, on the left and right hand sides of an enclosing box.
An example is in the left side Fig. 2: here both boundaries consist of one port.
We write P : (1, 1) to mean that P is a PNB with both boundaries of size 1.

Di↵erently to [2, 24] we consider “vanilla” PNBs to be unmarked; in §2 we
introduce a marked variant that contains both an initial and a target marking.

p

q

Fig. 2: An example PNB and marked PNB (1, 1)

There are two operations for composing PNBs: synchronisation along a com-
mon boundary (;) and a non-commutative, parallel composition (⌦). The most
interesting operation is synchronisation: we refer to [2] for the formal details,
but the graphical intuition shown in Fig. 3 su�ces for most examples. Note that
the size of the right boundary of P agrees with the size of the left boundary of
Q—this is a general requirement for composition to be defined: nets can be com-
posed i↵ they agree on the size of the intermediate boundary. Given X : (k, l)
and Y : (l,m), the composition is written X ; Y : (k,m). Transitions of the com-
posed net—called minimal synchronisations—are, in general, sets of transitions
of the two components. In Fig. 3, the transition {t, a} results from synchronising
t and a. Transition t can synchronise both with a and b; indeed, both choices
are taken into account (with b further synchronising with u). Transition c has no
complementary transition to synchronise with and thus no composite transition
results. Finally, v does not connect to any places, only to the fourth boundary
port, and is thus synchronised with d.

3

{p} {q}

0/0 0/0

0/1

1/0

{p} {q}

0/0 0/0

0/1

1/0

Fig. 4: LTS/NFA semantics of the PNB and marked PNB of Fig. 2

Definition 1. A non-deterministic finite automaton with boundaries (NFAB)

A : (k, l) is a non-deterministic finite automaton A with alphabet Bk
⇥ Bl

. Let

L(A) ✓ (Bk
⇥ Bl)⇤ denote the language of A.

Given a PNB P : (k, l), we denote the resulting NFAB JP K : (k, l). Note
that any ordinary marked net, N , can be regarded as a PNB, N : (0, 0) with
no boundaries. The resulting NFAB JNK has the alphabet B0

⇥ B0, which is
the singleton—this is precisely the state graph of N w.r.t. step semantics. The
following observation, which is central to our approach, is immediate.

Proposition 2. Supposed that N is a marked net. Then the final marking is

reachable from the initial marking i↵ L(JNK) 6= ? ut

Finally, we need to explain how NFABs are composed. If A : (k, l) and B :
(l,m) are NFABs then both A ; B : (k,m) and A ⌦ B : (k + l, l + m) have as
states pairs (a, b) where a is a state of A and b is a state of B. Initial and final
states are simply the product of the initial and final states of the component
NFABs. The only di↵erence is how the transition relations are defined:

a
↵/�
��! a0 b

�/�
��! b0

(;)

(a, b)
↵/�
��! (a0, b0)

a
↵/�
��! a0 b

�/�
��! b0

(⌦)

(a, b)
↵�/��
����! (a0, b0)

The following is straightforward to show and builds on known compositionality
properties of PNBs [2].

Proposition 3 (Compositionality). Given PNBs P : (k, l), Q : (l,m), we

have that JP ; QK ⇠= JP K ; JQK, where ⇠= is isomorphism of automata.

Of particular interest to our approach are NFA transitions witnessing the
firing of net transitions that are not connected to any boundary ports. Thus we

let ⌧k,l
def
= 0k/0l. We will refer to ⌧k,l as a ⌧ -move or silent move.

3 Compositional Reachability

In this section we explain our technique for compositional reachability checking
and present our algorithm. We will use the following running example, which
features a net that is particularly suitable for our approach.

5

This assignment is functorial
(the NFA of a composed net is the
composition of component NFAs)

Any language equivalent NFA describes the same
interaction patterns. e.g. a minimal NFA

Compositionality as
Functoriality

p0

p1

(a) Bu↵er net

0 1

0/0 0/0

0/1

1/0

(b) LTS semantics of Bu↵er net

Fig. 19: Bu↵er net and its semantics

For example, consider the bu↵er net of Fig. 19a composed with itself: the
resulting net is illustrated in Fig. 20a. Its semantics can be obtained directly by
reasoning about the behaviour of the net; alternatively, we could compose the
LTS of Fig. 19b with itself, as illustrated in Fig. 20b. Compositionality means
that these two LTSs are isomorphic.

(p0, 0)

(p1, 0)

(p0, 1)

(p1, 1)

(a) Bu↵er net composed with itself

(0, 0)

(0, 1) (1, 0)

(1, 1)0/0

0/0 0/0

0/0

0/1

0/0

1/1

0/1
1
/0

1/
0

(b) Bu↵er LTS composed with itself

Fig. 20: Bu↵er net composition and Bu↵er LTS compostion

Formally, the labelled semantics is defined as follows.

Definition 7 (Labelled Semantics). Let N : m ! n be a PNB and X,Y ✓

PN . Write:

[N]X
↵/�
��!

[N]Y
def

= 9 mutually independent U ✓ TN s.t.

[N]X !U [N]Y , ↵ = •U & � = U•

It is worth emphasising that no information about precisely which set U of
transitions has been fired is carried by transition labels, merely the e↵ect of the

firing on the boundaries. Notice that we always have [N]X
0

m/0n

����!

[N]X , as the
empty set of transitions is vacuously mutually independent.

23

;

p0

p1

(a) Bu↵er net

0 1

0/0 0/0

0/1

1/0

(b) LTS semantics of Bu↵er net

Fig. 19: Bu↵er net and its semantics

For example, consider the bu↵er net of Fig. 19a composed with itself: the
resulting net is illustrated in Fig. 20a. Its semantics can be obtained directly by
reasoning about the behaviour of the net; alternatively, we could compose the
LTS of Fig. 19b with itself, as illustrated in Fig. 20b. Compositionality means
that these two LTSs are isomorphic.

(p0, 0)

(p1, 0)

(p0, 1)

(p1, 1)

(a) Bu↵er net composed with itself

(0, 0)

(0, 1) (1, 0)

(1, 1)0/0

0/0 0/0

0/0

0/1

0/0

1/1

0/1
1
/0

1/
0

(b) Bu↵er LTS composed with itself

Fig. 20: Bu↵er net composition and Bu↵er LTS compostion

Formally, the labelled semantics is defined as follows.

Definition 7 (Labelled Semantics). Let N : m ! n be a PNB and X,Y ✓

PN . Write:

[N]X
↵/�
��!

[N]Y
def

= 9 mutually independent U ✓ TN s.t.

[N]X !U [N]Y , ↵ = •U & � = U•

It is worth emphasising that no information about precisely which set U of
transitions has been fired is carried by transition labels, merely the e↵ect of the

firing on the boundaries. Notice that we always have [N]X
0

m/0n

����!

[N]X , as the
empty set of transitions is vacuously mutually independent.

23

p0

p1

(a) Bu↵er net

0 1

0/0 0/0

0/1

1/0

(b) LTS semantics of Bu↵er net

Fig. 19: Bu↵er net and its semantics

For example, consider the bu↵er net of Fig. 19a composed with itself: the
resulting net is illustrated in Fig. 20a. Its semantics can be obtained directly by
reasoning about the behaviour of the net; alternatively, we could compose the
LTS of Fig. 19b with itself, as illustrated in Fig. 20b. Compositionality means
that these two LTSs are isomorphic.

(p0, 0)

(p1, 0)

(p0, 1)

(p1, 1)

(a) Bu↵er net composed with itself

(0, 0)

(0, 1) (1, 0)

(1, 1)0/0

0/0 0/0

0/0

0/1

0/0

1/1

0/1
1
/0

1/
0

(b) Bu↵er LTS composed with itself

Fig. 20: Bu↵er net composition and Bu↵er LTS compostion

Formally, the labelled semantics is defined as follows.

Definition 7 (Labelled Semantics). Let N : m ! n be a PNB and X,Y ✓

PN . Write:

[N]X
↵/�
��!

[N]Y
def

= 9 mutually independent U ✓ TN s.t.

[N]X !U [N]Y , ↵ = •U & � = U•

It is worth emphasising that no information about precisely which set U of
transitions has been fired is carried by transition labels, merely the e↵ect of the

firing on the boundaries. Notice that we always have [N]X
0

m/0n

����!

[N]X , as the
empty set of transitions is vacuously mutually independent.

23

p0

p1

(a) Bu↵er net

0 1

0/0 0/0

0/1

1/0

(b) LTS semantics of Bu↵er net

Fig. 19: Bu↵er net and its semantics

For example, consider the bu↵er net of Fig. 19a composed with itself: the
resulting net is illustrated in Fig. 20a. Its semantics can be obtained directly by
reasoning about the behaviour of the net; alternatively, we could compose the
LTS of Fig. 19b with itself, as illustrated in Fig. 20b. Compositionality means
that these two LTSs are isomorphic.

(p0, 0)

(p1, 0)

(p0, 1)

(p1, 1)

(a) Bu↵er net composed with itself

(0, 0)

(0, 1) (1, 0)

(1, 1)0/0

0/0 0/0

0/0

0/1

0/0

1/1

0/1
1
/0

1/
0

(b) Bu↵er LTS composed with itself

Fig. 20: Bu↵er net composition and Bu↵er LTS compostion

Formally, the labelled semantics is defined as follows.

Definition 7 (Labelled Semantics). Let N : m ! n be a PNB and X,Y ✓

PN . Write:

[N]X
↵/�
��!

[N]Y
def

= 9 mutually independent U ✓ TN s.t.

[N]X !U [N]Y , ↵ = •U & � = U•

It is worth emphasising that no information about precisely which set U of
transitions has been fired is carried by transition labels, merely the e↵ect of the

firing on the boundaries. Notice that we always have [N]X
0

m/0n

����!

[N]X , as the
empty set of transitions is vacuously mutually independent.

23

p0

p1

(a) Bu↵er net

0 1

0/0 0/0

0/1

1/0

(b) LTS semantics of Bu↵er net

Fig. 19: Bu↵er net and its semantics

For example, consider the bu↵er net of Fig. 19a composed with itself: the
resulting net is illustrated in Fig. 20a. Its semantics can be obtained directly by
reasoning about the behaviour of the net; alternatively, we could compose the
LTS of Fig. 19b with itself, as illustrated in Fig. 20b. Compositionality means
that these two LTSs are isomorphic.

(p0, 0)

(p1, 0)

(p0, 1)

(p1, 1)

(a) Bu↵er net composed with itself

(0, 0)

(0, 1) (1, 0)

(1, 1)0/0

0/0 0/0

0/0

0/1

0/0

1/1

0/1
1
/0

1/
0

(b) Bu↵er LTS composed with itself

Fig. 20: Bu↵er net composition and Bu↵er LTS compostion

Formally, the labelled semantics is defined as follows.

Definition 7 (Labelled Semantics). Let N : m ! n be a PNB and X,Y ✓

PN . Write:

[N]X
↵/�
��!

[N]Y
def

= 9 mutually independent U ✓ TN s.t.

[N]X !U [N]Y , ↵ = •U & � = U•

It is worth emphasising that no information about precisely which set U of
transitions has been fired is carried by transition labels, merely the e↵ect of the

firing on the boundaries. Notice that we always have [N]X
0

m/0n

����!

[N]X , as the
empty set of transitions is vacuously mutually independent.

23

p0

p1

(a) Bu↵er net

0 1

0/0 0/0

0/1

1/0

(b) LTS semantics of Bu↵er net

Fig. 19: Bu↵er net and its semantics

For example, consider the bu↵er net of Fig. 19a composed with itself: the
resulting net is illustrated in Fig. 20a. Its semantics can be obtained directly by
reasoning about the behaviour of the net; alternatively, we could compose the
LTS of Fig. 19b with itself, as illustrated in Fig. 20b. Compositionality means
that these two LTSs are isomorphic.

(p0, 0)

(p1, 0)

(p0, 1)

(p1, 1)

(a) Bu↵er net composed with itself

(0, 0)

(0, 1) (1, 0)

(1, 1)0/0

0/0 0/0

0/0

0/1

0/0

1/1

0/1
1
/0

1/
0

(b) Bu↵er LTS composed with itself

Fig. 20: Bu↵er net composition and Bu↵er LTS compostion

Formally, the labelled semantics is defined as follows.

Definition 7 (Labelled Semantics). Let N : m ! n be a PNB and X,Y ✓

PN . Write:

[N]X
↵/�
��!

[N]Y
def

= 9 mutually independent U ✓ TN s.t.

[N]X !U [N]Y , ↵ = •U & � = U•

It is worth emphasising that no information about precisely which set U of
transitions has been fired is carried by transition labels, merely the e↵ect of the

firing on the boundaries. Notice that we always have [N]X
0

m/0n

����!

[N]X , as the
empty set of transitions is vacuously mutually independent.

23

net
composition

LTS
composition

semantics

semantics

Main Theorem
• Weak language equivalence is a congruence wrt to

composition operations

• weak here means regarding internal moves (ie firing of
transitions that are not connected to a boundary port) in a
net as tau-moves or epsilon-moves

• up-to-weak-language-equivalence means that we can
discard irrelevant local state

• in essence, we only care about how a component net
interacts

• Reachability reduces to language emptiness for nets with
no boundaries!

Naive Algorithm

Naive Algorithm
• The main theorem suggests the following

algorithm for deciding reachability:

Naive Algorithm
• The main theorem suggests the following

algorithm for deciding reachability:

• Write your Petri Net as a composition of subnets

Naive Algorithm
• The main theorem suggests the following

algorithm for deciding reachability:

• Write your Petri Net as a composition of subnets

• Generate the NFA for each of these wrt their desired
submarking

Naive Algorithm
• The main theorem suggests the following

algorithm for deciding reachability:

• Write your Petri Net as a composition of subnets

• Generate the NFA for each of these wrt their desired
submarking

• Check their languages: if any of their languages is
already empty then reachability fails

Naive Algorithm
• The main theorem suggests the following

algorithm for deciding reachability:

• Write your Petri Net as a composition of subnets

• Generate the NFA for each of these wrt their desired
submarking

• Check their languages: if any of their languages is
already empty then reachability fails

• Compose the NFAs - and check whether their
languages are empty

Example - buffer

B4 = > ; b1 ; b1 ; b1 ; b1 ; ? > b1 ?

Fig. 5: The net B4 as a composition of nets >, b1 and ?.

Example 4. Consider the marked PNB, B4, shown in Fig. 5 that models a 4 place
bu↵er [9]. It enjoys a simple, regular structure, yet the number of transitions that
need to be fired in order to reach the target marking is quadratic in the size of
the bu↵er1. Using marked PNBs, we can express B4 as:

> ; (b1 ; (b1 ; (b1 ; (b1 ; ?)))) (1)

3.1 Wiring Expressions

Our procedure takes a decomposition of a net as an input: roughly an expression
akin to (1) that expresses a net as a composition of simple components. To use
decompositions within our algorithm, we first need to introduce the related data
structure, that we call wiring expressions.

A wiring expression is simply the abstract syntax tree t of a PNB expression,
where internal nodes are labelled with either ; or ⌦ and leaves are variables. Now
a wiring expression together with an assignment map V, that takes variables to
marked PNBs, can be evaluated to obtain a marked PNB JtKV . Given a net
N : (k, l), we say that (t,V) is a wiring decomposition of N if JtKV ⇠= N . Wiring
expressions are described in more detail in Appendix A.

Consider any net N , together with corresponding initial and target markings.
Given any ordinary PNB expression for N , notice that we can extend it into a
wiring decomposition: first by translating the expression into a formal syntax
tree generated by the grammar (2), second by translating the initial and target
markings of N component-wise into marked PNBs, that we bind to the variables
that appear in the tree. The specification of the reachability problem is thus
naturally compositional; the fact that PNBs enjoy a compositional semantics
allows us, moreover, to perform the computation in divide-and-conquer fashion.

3.2 Description of the Algorithm

The core idea is to convert a wiring decomposition (t,V) of a net N to an NFAB
that represents the “protocol” that N must adhere to w.r.t. its context (i.e. the
nets connected to its boundaries), in order to reach its local target marking. By

1 Precisely, the length of the minimal firing sequence of Bi is the ith triangle number.

6

B4 = > ; b1 ; b1 ; b1 ; b1 ; ? > b1 ?

Fig. 5: The net B4 as a composition of nets >, b1 and ?.

Example 4. Consider the marked PNB, B4, shown in Fig. 5 that models a 4 place
bu↵er [9]. It enjoys a simple, regular structure, yet the number of transitions that
need to be fired in order to reach the target marking is quadratic in the size of
the bu↵er1. Using marked PNBs, we can express B4 as:

> ; (b1 ; (b1 ; (b1 ; (b1 ; ?)))) (1)

3.1 Wiring Expressions

Our procedure takes a decomposition of a net as an input: roughly an expression
akin to (1) that expresses a net as a composition of simple components. To use
decompositions within our algorithm, we first need to introduce the related data
structure, that we call wiring expressions.

A wiring expression is simply the abstract syntax tree t of a PNB expression,
where internal nodes are labelled with either ; or ⌦ and leaves are variables. Now
a wiring expression together with an assignment map V, that takes variables to
marked PNBs, can be evaluated to obtain a marked PNB JtKV . Given a net
N : (k, l), we say that (t,V) is a wiring decomposition of N if JtKV ⇠= N . Wiring
expressions are described in more detail in Appendix A.

Consider any net N , together with corresponding initial and target markings.
Given any ordinary PNB expression for N , notice that we can extend it into a
wiring decomposition: first by translating the expression into a formal syntax
tree generated by the grammar (2), second by translating the initial and target
markings of N component-wise into marked PNBs, that we bind to the variables
that appear in the tree. The specification of the reachability problem is thus
naturally compositional; the fact that PNBs enjoy a compositional semantics
allows us, moreover, to perform the computation in divide-and-conquer fashion.

3.2 Description of the Algorithm

The core idea is to convert a wiring decomposition (t,V) of a net N to an NFAB
that represents the “protocol” that N must adhere to w.r.t. its context (i.e. the
nets connected to its boundaries), in order to reach its local target marking. By

1 Precisely, the length of the minimal firing sequence of Bi is the ith triangle number.

6

B4 = > ; b1 ; b1 ; b1 ; b1 ; ? > b1 ?

Fig. 5: The net B4 as a composition of nets >, b1 and ?.

Example 4. Consider the marked PNB, B4, shown in Fig. 5 that models a 4 place
bu↵er [9]. It enjoys a simple, regular structure, yet the number of transitions that
need to be fired in order to reach the target marking is quadratic in the size of
the bu↵er1. Using marked PNBs, we can express B4 as:

> ; (b1 ; (b1 ; (b1 ; (b1 ; ?)))) (1)

3.1 Wiring Expressions

Our procedure takes a decomposition of a net as an input: roughly an expression
akin to (1) that expresses a net as a composition of simple components. To use
decompositions within our algorithm, we first need to introduce the related data
structure, that we call wiring expressions.

A wiring expression is simply the abstract syntax tree t of a PNB expression,
where internal nodes are labelled with either ; or ⌦ and leaves are variables. Now
a wiring expression together with an assignment map V, that takes variables to
marked PNBs, can be evaluated to obtain a marked PNB JtKV . Given a net
N : (k, l), we say that (t,V) is a wiring decomposition of N if JtKV ⇠= N . Wiring
expressions are described in more detail in Appendix A.

Consider any net N , together with corresponding initial and target markings.
Given any ordinary PNB expression for N , notice that we can extend it into a
wiring decomposition: first by translating the expression into a formal syntax
tree generated by the grammar (2), second by translating the initial and target
markings of N component-wise into marked PNBs, that we bind to the variables
that appear in the tree. The specification of the reachability problem is thus
naturally compositional; the fact that PNBs enjoy a compositional semantics
allows us, moreover, to perform the computation in divide-and-conquer fashion.

3.2 Description of the Algorithm

The core idea is to convert a wiring decomposition (t,V) of a net N to an NFAB
that represents the “protocol” that N must adhere to w.r.t. its context (i.e. the
nets connected to its boundaries), in order to reach its local target marking. By

1 Precisely, the length of the minimal firing sequence of Bi is the ith triangle number.

6

Example - buffer
0 {0/0}

1

{0/1}{1/0}

{0/0}

0 {0/0}

1

{0/1}{1/0}

{0/0}

0 {*/}; ;

B4 = > ; b1 ; b1 ; b1 ; b1 ; ? > b1 ?

Fig. 5: The net B4 as a composition of nets >, b1 and ?.

Example 4. Consider the marked PNB, B4, shown in Fig. 5 that models a 4 place
bu↵er [9]. It enjoys a simple, regular structure, yet the number of transitions that
need to be fired in order to reach the target marking is quadratic in the size of
the bu↵er1. Using marked PNBs, we can express B4 as:

> ; (b1 ; (b1 ; (b1 ; (b1 ; ?)))) (1)

3.1 Wiring Expressions

Our procedure takes a decomposition of a net as an input: roughly an expression
akin to (1) that expresses a net as a composition of simple components. To use
decompositions within our algorithm, we first need to introduce the related data
structure, that we call wiring expressions.

A wiring expression is simply the abstract syntax tree t of a PNB expression,
where internal nodes are labelled with either ; or ⌦ and leaves are variables. Now
a wiring expression together with an assignment map V, that takes variables to
marked PNBs, can be evaluated to obtain a marked PNB JtKV . Given a net
N : (k, l), we say that (t,V) is a wiring decomposition of N if JtKV ⇠= N . Wiring
expressions are described in more detail in Appendix A.

Consider any net N , together with corresponding initial and target markings.
Given any ordinary PNB expression for N , notice that we can extend it into a
wiring decomposition: first by translating the expression into a formal syntax
tree generated by the grammar (2), second by translating the initial and target
markings of N component-wise into marked PNBs, that we bind to the variables
that appear in the tree. The specification of the reachability problem is thus
naturally compositional; the fact that PNBs enjoy a compositional semantics
allows us, moreover, to perform the computation in divide-and-conquer fashion.

3.2 Description of the Algorithm

The core idea is to convert a wiring decomposition (t,V) of a net N to an NFAB
that represents the “protocol” that N must adhere to w.r.t. its context (i.e. the
nets connected to its boundaries), in order to reach its local target marking. By

1 Precisely, the length of the minimal firing sequence of Bi is the ith triangle number.

6

B4 = > ; b1 ; b1 ; b1 ; b1 ; ? > b1 ?

Fig. 5: The net B4 as a composition of nets >, b1 and ?.

Example 4. Consider the marked PNB, B4, shown in Fig. 5 that models a 4 place
bu↵er [9]. It enjoys a simple, regular structure, yet the number of transitions that
need to be fired in order to reach the target marking is quadratic in the size of
the bu↵er1. Using marked PNBs, we can express B4 as:

> ; (b1 ; (b1 ; (b1 ; (b1 ; ?)))) (1)

3.1 Wiring Expressions

Our procedure takes a decomposition of a net as an input: roughly an expression
akin to (1) that expresses a net as a composition of simple components. To use
decompositions within our algorithm, we first need to introduce the related data
structure, that we call wiring expressions.

A wiring expression is simply the abstract syntax tree t of a PNB expression,
where internal nodes are labelled with either ; or ⌦ and leaves are variables. Now
a wiring expression together with an assignment map V, that takes variables to
marked PNBs, can be evaluated to obtain a marked PNB JtKV . Given a net
N : (k, l), we say that (t,V) is a wiring decomposition of N if JtKV ⇠= N . Wiring
expressions are described in more detail in Appendix A.

Consider any net N , together with corresponding initial and target markings.
Given any ordinary PNB expression for N , notice that we can extend it into a
wiring decomposition: first by translating the expression into a formal syntax
tree generated by the grammar (2), second by translating the initial and target
markings of N component-wise into marked PNBs, that we bind to the variables
that appear in the tree. The specification of the reachability problem is thus
naturally compositional; the fact that PNBs enjoy a compositional semantics
allows us, moreover, to perform the computation in divide-and-conquer fashion.

3.2 Description of the Algorithm

The core idea is to convert a wiring decomposition (t,V) of a net N to an NFAB
that represents the “protocol” that N must adhere to w.r.t. its context (i.e. the
nets connected to its boundaries), in order to reach its local target marking. By

1 Precisely, the length of the minimal firing sequence of Bi is the ith triangle number.

6

B4 = > ; b1 ; b1 ; b1 ; b1 ; ? > b1 ?

Fig. 5: The net B4 as a composition of nets >, b1 and ?.

Example 4. Consider the marked PNB, B4, shown in Fig. 5 that models a 4 place
bu↵er [9]. It enjoys a simple, regular structure, yet the number of transitions that
need to be fired in order to reach the target marking is quadratic in the size of
the bu↵er1. Using marked PNBs, we can express B4 as:

> ; (b1 ; (b1 ; (b1 ; (b1 ; ?)))) (1)

3.1 Wiring Expressions

Our procedure takes a decomposition of a net as an input: roughly an expression
akin to (1) that expresses a net as a composition of simple components. To use
decompositions within our algorithm, we first need to introduce the related data
structure, that we call wiring expressions.

A wiring expression is simply the abstract syntax tree t of a PNB expression,
where internal nodes are labelled with either ; or ⌦ and leaves are variables. Now
a wiring expression together with an assignment map V, that takes variables to
marked PNBs, can be evaluated to obtain a marked PNB JtKV . Given a net
N : (k, l), we say that (t,V) is a wiring decomposition of N if JtKV ⇠= N . Wiring
expressions are described in more detail in Appendix A.

Consider any net N , together with corresponding initial and target markings.
Given any ordinary PNB expression for N , notice that we can extend it into a
wiring decomposition: first by translating the expression into a formal syntax
tree generated by the grammar (2), second by translating the initial and target
markings of N component-wise into marked PNBs, that we bind to the variables
that appear in the tree. The specification of the reachability problem is thus
naturally compositional; the fact that PNBs enjoy a compositional semantics
allows us, moreover, to perform the computation in divide-and-conquer fashion.

3.2 Description of the Algorithm

The core idea is to convert a wiring decomposition (t,V) of a net N to an NFAB
that represents the “protocol” that N must adhere to w.r.t. its context (i.e. the
nets connected to its boundaries), in order to reach its local target marking. By

1 Precisely, the length of the minimal firing sequence of Bi is the ith triangle number.

6

Example - buffer
0 {0/0}

1

{0/1}{1/0}

{0/0}

0 {0/0}

1

{0/1}{1/0}

{0/0}

0 {*/}; ;

weak language equivalent to

0 {*/}

B4 = > ; b1 ; b1 ; b1 ; b1 ; ? > b1 ?

Fig. 5: The net B4 as a composition of nets >, b1 and ?.

Example 4. Consider the marked PNB, B4, shown in Fig. 5 that models a 4 place
bu↵er [9]. It enjoys a simple, regular structure, yet the number of transitions that
need to be fired in order to reach the target marking is quadratic in the size of
the bu↵er1. Using marked PNBs, we can express B4 as:

> ; (b1 ; (b1 ; (b1 ; (b1 ; ?)))) (1)

3.1 Wiring Expressions

Our procedure takes a decomposition of a net as an input: roughly an expression
akin to (1) that expresses a net as a composition of simple components. To use
decompositions within our algorithm, we first need to introduce the related data
structure, that we call wiring expressions.

A wiring expression is simply the abstract syntax tree t of a PNB expression,
where internal nodes are labelled with either ; or ⌦ and leaves are variables. Now
a wiring expression together with an assignment map V, that takes variables to
marked PNBs, can be evaluated to obtain a marked PNB JtKV . Given a net
N : (k, l), we say that (t,V) is a wiring decomposition of N if JtKV ⇠= N . Wiring
expressions are described in more detail in Appendix A.

Consider any net N , together with corresponding initial and target markings.
Given any ordinary PNB expression for N , notice that we can extend it into a
wiring decomposition: first by translating the expression into a formal syntax
tree generated by the grammar (2), second by translating the initial and target
markings of N component-wise into marked PNBs, that we bind to the variables
that appear in the tree. The specification of the reachability problem is thus
naturally compositional; the fact that PNBs enjoy a compositional semantics
allows us, moreover, to perform the computation in divide-and-conquer fashion.

3.2 Description of the Algorithm

The core idea is to convert a wiring decomposition (t,V) of a net N to an NFAB
that represents the “protocol” that N must adhere to w.r.t. its context (i.e. the
nets connected to its boundaries), in order to reach its local target marking. By

1 Precisely, the length of the minimal firing sequence of Bi is the ith triangle number.

6

B4 = > ; b1 ; b1 ; b1 ; b1 ; ? > b1 ?

Fig. 5: The net B4 as a composition of nets >, b1 and ?.

Example 4. Consider the marked PNB, B4, shown in Fig. 5 that models a 4 place
bu↵er [9]. It enjoys a simple, regular structure, yet the number of transitions that
need to be fired in order to reach the target marking is quadratic in the size of
the bu↵er1. Using marked PNBs, we can express B4 as:

> ; (b1 ; (b1 ; (b1 ; (b1 ; ?)))) (1)

3.1 Wiring Expressions

Our procedure takes a decomposition of a net as an input: roughly an expression
akin to (1) that expresses a net as a composition of simple components. To use
decompositions within our algorithm, we first need to introduce the related data
structure, that we call wiring expressions.

A wiring expression is simply the abstract syntax tree t of a PNB expression,
where internal nodes are labelled with either ; or ⌦ and leaves are variables. Now
a wiring expression together with an assignment map V, that takes variables to
marked PNBs, can be evaluated to obtain a marked PNB JtKV . Given a net
N : (k, l), we say that (t,V) is a wiring decomposition of N if JtKV ⇠= N . Wiring
expressions are described in more detail in Appendix A.

Consider any net N , together with corresponding initial and target markings.
Given any ordinary PNB expression for N , notice that we can extend it into a
wiring decomposition: first by translating the expression into a formal syntax
tree generated by the grammar (2), second by translating the initial and target
markings of N component-wise into marked PNBs, that we bind to the variables
that appear in the tree. The specification of the reachability problem is thus
naturally compositional; the fact that PNBs enjoy a compositional semantics
allows us, moreover, to perform the computation in divide-and-conquer fashion.

3.2 Description of the Algorithm

The core idea is to convert a wiring decomposition (t,V) of a net N to an NFAB
that represents the “protocol” that N must adhere to w.r.t. its context (i.e. the
nets connected to its boundaries), in order to reach its local target marking. By

1 Precisely, the length of the minimal firing sequence of Bi is the ith triangle number.

6

B4 = > ; b1 ; b1 ; b1 ; b1 ; ? > b1 ?

Fig. 5: The net B4 as a composition of nets >, b1 and ?.

Example 4. Consider the marked PNB, B4, shown in Fig. 5 that models a 4 place
bu↵er [9]. It enjoys a simple, regular structure, yet the number of transitions that
need to be fired in order to reach the target marking is quadratic in the size of
the bu↵er1. Using marked PNBs, we can express B4 as:

> ; (b1 ; (b1 ; (b1 ; (b1 ; ?)))) (1)

3.1 Wiring Expressions

Our procedure takes a decomposition of a net as an input: roughly an expression
akin to (1) that expresses a net as a composition of simple components. To use
decompositions within our algorithm, we first need to introduce the related data
structure, that we call wiring expressions.

A wiring expression is simply the abstract syntax tree t of a PNB expression,
where internal nodes are labelled with either ; or ⌦ and leaves are variables. Now
a wiring expression together with an assignment map V, that takes variables to
marked PNBs, can be evaluated to obtain a marked PNB JtKV . Given a net
N : (k, l), we say that (t,V) is a wiring decomposition of N if JtKV ⇠= N . Wiring
expressions are described in more detail in Appendix A.

Consider any net N , together with corresponding initial and target markings.
Given any ordinary PNB expression for N , notice that we can extend it into a
wiring decomposition: first by translating the expression into a formal syntax
tree generated by the grammar (2), second by translating the initial and target
markings of N component-wise into marked PNBs, that we bind to the variables
that appear in the tree. The specification of the reachability problem is thus
naturally compositional; the fact that PNBs enjoy a compositional semantics
allows us, moreover, to perform the computation in divide-and-conquer fashion.

3.2 Description of the Algorithm

The core idea is to convert a wiring decomposition (t,V) of a net N to an NFAB
that represents the “protocol” that N must adhere to w.r.t. its context (i.e. the
nets connected to its boundaries), in order to reach its local target marking. By

1 Precisely, the length of the minimal firing sequence of Bi is the ith triangle number.

6

Example - buffer
0 {0/0}

1

{0/1}{1/0}

{0/0}

0 {0/0}

1

{0/1}{1/0}

{0/0}

0 {*/}; ;

weak language equivalent to

0 {*/}

B4 = > ; b1 ; b1 ; b1 ; b1 ; ? > b1 ?

Fig. 5: The net B4 as a composition of nets >, b1 and ?.

Example 4. Consider the marked PNB, B4, shown in Fig. 5 that models a 4 place
bu↵er [9]. It enjoys a simple, regular structure, yet the number of transitions that
need to be fired in order to reach the target marking is quadratic in the size of
the bu↵er1. Using marked PNBs, we can express B4 as:

> ; (b1 ; (b1 ; (b1 ; (b1 ; ?)))) (1)

3.1 Wiring Expressions

Our procedure takes a decomposition of a net as an input: roughly an expression
akin to (1) that expresses a net as a composition of simple components. To use
decompositions within our algorithm, we first need to introduce the related data
structure, that we call wiring expressions.

A wiring expression is simply the abstract syntax tree t of a PNB expression,
where internal nodes are labelled with either ; or ⌦ and leaves are variables. Now
a wiring expression together with an assignment map V, that takes variables to
marked PNBs, can be evaluated to obtain a marked PNB JtKV . Given a net
N : (k, l), we say that (t,V) is a wiring decomposition of N if JtKV ⇠= N . Wiring
expressions are described in more detail in Appendix A.

Consider any net N , together with corresponding initial and target markings.
Given any ordinary PNB expression for N , notice that we can extend it into a
wiring decomposition: first by translating the expression into a formal syntax
tree generated by the grammar (2), second by translating the initial and target
markings of N component-wise into marked PNBs, that we bind to the variables
that appear in the tree. The specification of the reachability problem is thus
naturally compositional; the fact that PNBs enjoy a compositional semantics
allows us, moreover, to perform the computation in divide-and-conquer fashion.

3.2 Description of the Algorithm

The core idea is to convert a wiring decomposition (t,V) of a net N to an NFAB
that represents the “protocol” that N must adhere to w.r.t. its context (i.e. the
nets connected to its boundaries), in order to reach its local target marking. By

1 Precisely, the length of the minimal firing sequence of Bi is the ith triangle number.

6

B4 = > ; b1 ; b1 ; b1 ; b1 ; ? > b1 ?

Fig. 5: The net B4 as a composition of nets >, b1 and ?.

Example 4. Consider the marked PNB, B4, shown in Fig. 5 that models a 4 place
bu↵er [9]. It enjoys a simple, regular structure, yet the number of transitions that
need to be fired in order to reach the target marking is quadratic in the size of
the bu↵er1. Using marked PNBs, we can express B4 as:

> ; (b1 ; (b1 ; (b1 ; (b1 ; ?)))) (1)

3.1 Wiring Expressions

Our procedure takes a decomposition of a net as an input: roughly an expression
akin to (1) that expresses a net as a composition of simple components. To use
decompositions within our algorithm, we first need to introduce the related data
structure, that we call wiring expressions.

A wiring expression is simply the abstract syntax tree t of a PNB expression,
where internal nodes are labelled with either ; or ⌦ and leaves are variables. Now
a wiring expression together with an assignment map V, that takes variables to
marked PNBs, can be evaluated to obtain a marked PNB JtKV . Given a net
N : (k, l), we say that (t,V) is a wiring decomposition of N if JtKV ⇠= N . Wiring
expressions are described in more detail in Appendix A.

Consider any net N , together with corresponding initial and target markings.
Given any ordinary PNB expression for N , notice that we can extend it into a
wiring decomposition: first by translating the expression into a formal syntax
tree generated by the grammar (2), second by translating the initial and target
markings of N component-wise into marked PNBs, that we bind to the variables
that appear in the tree. The specification of the reachability problem is thus
naturally compositional; the fact that PNBs enjoy a compositional semantics
allows us, moreover, to perform the computation in divide-and-conquer fashion.

3.2 Description of the Algorithm

The core idea is to convert a wiring decomposition (t,V) of a net N to an NFAB
that represents the “protocol” that N must adhere to w.r.t. its context (i.e. the
nets connected to its boundaries), in order to reach its local target marking. By

1 Precisely, the length of the minimal firing sequence of Bi is the ith triangle number.

6

B4 = > ; b1 ; b1 ; b1 ; b1 ; ? > b1 ?

Fig. 5: The net B4 as a composition of nets >, b1 and ?.

Example 4. Consider the marked PNB, B4, shown in Fig. 5 that models a 4 place
bu↵er [9]. It enjoys a simple, regular structure, yet the number of transitions that
need to be fired in order to reach the target marking is quadratic in the size of
the bu↵er1. Using marked PNBs, we can express B4 as:

> ; (b1 ; (b1 ; (b1 ; (b1 ; ?)))) (1)

3.1 Wiring Expressions

Our procedure takes a decomposition of a net as an input: roughly an expression
akin to (1) that expresses a net as a composition of simple components. To use
decompositions within our algorithm, we first need to introduce the related data
structure, that we call wiring expressions.

A wiring expression is simply the abstract syntax tree t of a PNB expression,
where internal nodes are labelled with either ; or ⌦ and leaves are variables. Now
a wiring expression together with an assignment map V, that takes variables to
marked PNBs, can be evaluated to obtain a marked PNB JtKV . Given a net
N : (k, l), we say that (t,V) is a wiring decomposition of N if JtKV ⇠= N . Wiring
expressions are described in more detail in Appendix A.

Consider any net N , together with corresponding initial and target markings.
Given any ordinary PNB expression for N , notice that we can extend it into a
wiring decomposition: first by translating the expression into a formal syntax
tree generated by the grammar (2), second by translating the initial and target
markings of N component-wise into marked PNBs, that we bind to the variables
that appear in the tree. The specification of the reachability problem is thus
naturally compositional; the fact that PNBs enjoy a compositional semantics
allows us, moreover, to perform the computation in divide-and-conquer fashion.

3.2 Description of the Algorithm

The core idea is to convert a wiring decomposition (t,V) of a net N to an NFAB
that represents the “protocol” that N must adhere to w.r.t. its context (i.e. the
nets connected to its boundaries), in order to reach its local target marking. By

1 Precisely, the length of the minimal firing sequence of Bi is the ith triangle number.

6

The trivial accepting automaton is a fixed point of this process: this can
also be seen as a proof of parametrised reachability for the buffer example!

Implementation details
• Penrose tool: implemented in Haskell, with almost no optimisation, but:

• We try to keep automata small

R. Mayr and L. Clemente. Advanced Automata Minimization. In PoPL ’13.

• Memoisation is used to avoid re-minimising and re-composing weak language
equivalent automata

F. Bonchi and D. Pous. Checking NFA Equivalence with Bisimulations up to
Congruence. In PoPL ’13.

Problem Time (s) Max Resident (MB)
name size LOLA CLP CNA Penrose LOLA CLP CNA Penrose
bu↵er 8 0.001 0.003 0.017 0.002 7.51 33.30 38.45 13.78
bu↵er 32 0.001 0.013 0.824 0.002 7.51 34.49 48.09 13.87
bu↵er 512 0.058 T M 0.002 83.44 T M 13.96

bu↵er 4096 T T M 0.005 T T M 14.82

bu↵er 32768 T T M 0.029 T T M 23.50

over 8 31.039 0.008 1.071 0.003 3812.00 37.63 141.85 15.49

over 32 M T M 0.004 M T M 15.50

over 512 M T M 0.003 M T M 15.52

over 4096 M T M 0.004 M T M 16.04

over 32768 M T M 0.010 M T M 20.09

dac 8 0.001 0.003 0.017 0.002 7.51 33.28 38.85 14.68
dac 32 0.001 0.005 0.028 0.002 7.50 34.50 49.45 14.68
dac 512 0.005 T 255.847 0.003 20.62 T 6012.00 14.80

dac 4096 2.462 T M 0.008 166.07 T M 15.92

dac 32768 T T M 0.053 T T M 24.24

philo 8 0.002 0.003 0.016 0.005 8.86 33.22 38.54 17.34
philo 32 M 0.003 0.017 0.005 M 33.53 40.87 17.35

philo 512 M 0.020 0.086 0.008 M 41.69 290.77 17.39

philo 4096 M 7.853 M 0.019 M 172.76 M 17.58

philo 32768 M T M 1.014 M T M 21.32

iter-choice⇤ 8 0.006 5.025 19.062 0.002 36.37 465.17 1570.64 14.64

iter-choice⇤ 32 M T T 0.003 M T T 14.64

iter-choice⇤ 512 M T T 0.006 M T T 14.71

iter-choice⇤ 4096 M T T 0.028 M T T 15.22

iter-choice⇤ 32768 M T T 1.644 M T T 20.15

replicator⇤ 8 0.001 / 0.016 0.002 7.51 / 38.15 14.72
replicator⇤ 32 0.001 / 0.017 0.002 7.51 / 39.41 14.72
replicator⇤ 512 0.002 / 1.023 0.009 14.72 / 77.87 14.82
replicator⇤ 4096 0.062 / 64.046 0.056 86.85 / 3256.00 15.72

replicator⇤ 32768 91.646 / M 3.660 1524.50 / M 21.90

counter⇤ 8 0.001 / / 0.054 7.51 / / 19.98
counter⇤ 16 0.000 / / 4.646 7.51 / / 27.98
counter⇤ 32 0.001 / / 52.072 7.51 / / 50.25
counter⇤ 64 0.001 / / T 8.60 / / T
hartstone 8 0.001 0.002 / 0.062 7.51 33.17 / 20.05
hartstone 16 0.001 0.003 / 5.073 7.51 33.20 / 24.01
hartstone 32 0.001 0.002 / 64.062 7.51 33.22 / 38.70
hartstone 64 0.001 0.002 / T 8.54 33.46 / T
token-ring 8 0.001 0.007 0.071 1.085 7.51 39.96 89.81 20.89
token-ring 16 1.824 T T 16.038 318.08 T T 29.41

token-ring 32 M T T 165.461 M T T 50.19

token-ring 64 M T T T M T T T

Fig. 7: Time and Memory results

11

Performance on standard benchmarks
Problem Time (s) Max Resident (MB)

name size LOLA CLP CNA Penrose LOLA CLP CNA Penrose
bu↵er 8 0.001 0.003 0.017 0.002 7.51 33.30 38.45 13.78
bu↵er 32 0.001 0.013 0.824 0.002 7.51 34.49 48.09 13.87
bu↵er 512 0.058 T M 0.002 83.44 T M 13.96

bu↵er 4096 T T M 0.005 T T M 14.82

bu↵er 32768 T T M 0.029 T T M 23.50

over 8 31.039 0.008 1.071 0.003 3812.00 37.63 141.85 15.49

over 32 M T M 0.004 M T M 15.50

over 512 M T M 0.003 M T M 15.52

over 4096 M T M 0.004 M T M 16.04

over 32768 M T M 0.010 M T M 20.09

dac 8 0.001 0.003 0.017 0.002 7.51 33.28 38.85 14.68
dac 32 0.001 0.005 0.028 0.002 7.50 34.50 49.45 14.68
dac 512 0.005 T 255.847 0.003 20.62 T 6012.00 14.80

dac 4096 2.462 T M 0.008 166.07 T M 15.92

dac 32768 T T M 0.053 T T M 24.24

philo 8 0.002 0.003 0.016 0.005 8.86 33.22 38.54 17.34
philo 32 M 0.003 0.017 0.005 M 33.53 40.87 17.35

philo 512 M 0.020 0.086 0.008 M 41.69 290.77 17.39

philo 4096 M 7.853 M 0.019 M 172.76 M 17.58

philo 32768 M T M 1.014 M T M 21.32

iter-choice⇤ 8 0.006 5.025 19.062 0.002 36.37 465.17 1570.64 14.64

iter-choice⇤ 32 M T T 0.003 M T T 14.64

iter-choice⇤ 512 M T T 0.006 M T T 14.71

iter-choice⇤ 4096 M T T 0.028 M T T 15.22

iter-choice⇤ 32768 M T T 1.644 M T T 20.15

replicator⇤ 8 0.001 / 0.016 0.002 7.51 / 38.15 14.72
replicator⇤ 32 0.001 / 0.017 0.002 7.51 / 39.41 14.72
replicator⇤ 512 0.002 / 1.023 0.009 14.72 / 77.87 14.82
replicator⇤ 4096 0.062 / 64.046 0.056 86.85 / 3256.00 15.72

replicator⇤ 32768 91.646 / M 3.660 1524.50 / M 21.90

counter⇤ 8 0.001 / / 0.054 7.51 / / 19.98
counter⇤ 16 0.000 / / 4.646 7.51 / / 27.98
counter⇤ 32 0.001 / / 52.072 7.51 / / 50.25
counter⇤ 64 0.001 / / T 8.60 / / T
hartstone 8 0.001 0.002 / 0.062 7.51 33.17 / 20.05
hartstone 16 0.001 0.003 / 5.073 7.51 33.20 / 24.01
hartstone 32 0.001 0.002 / 64.062 7.51 33.22 / 38.70
hartstone 64 0.001 0.002 / T 8.54 33.46 / T
token-ring 8 0.001 0.007 0.071 1.085 7.51 39.96 89.81 20.89
token-ring 16 1.824 T T 16.038 318.08 T T 29.41

token-ring 32 M T T 165.461 M T T 50.19

token-ring 64 M T T T M T T T

Fig. 7: Time and Memory results

11

Caveats
• Our tool takes in an algebraic decomposition as input

• some nets do not allow efficient decompositions because of graph
theoretic complexity (high rank width of the underlying hypergraph)

P
iv

o
t T

a
b

le
_
S

h
e
e

t1
_

1

P
a

g
e

 1

2 20 200 2000 20000
0.0005

0.005

0.05

0.5

5

50

500

buffer

counter

dac

hartstone

iterated_choice

over

philo

replicator

token_ring

timeout

Problem Size

T
im

e
 (

s
)

Caveats
• Our tool takes in an algebraic decomposition as input

• some nets do not allow efficient decompositions because of graph
theoretic complexity (high rank width of the underlying hypergraph)

• even if a net has small rank-width, efficient decompositions may not
exist for semantic reasons

• deriving efficient decompositions automatically is highly non-trivial

• even after choosing a graph decomposition, the syntactic description
is important e.g. associativity matters!

• But high-level system descriptions are the norm in real systems: e.g.
decompositions have followed Corbett’s high-level Ada descriptions very
closely

Conclusions
• Divide and conquer for reachability in 1-bounded nets

• on many realistic examples, this approach vastly
outperforms traditional global approaches

• Speculation and future work

• examples on which we perform less well can sometimes
be determined statically (e.g. by looking at the graph
theoretical complexity of the underlying net!)

• can compositionality help us to understand reachability
in the infinite state case?

