Compositional Reachability in Petri Nets

Julian Rathke,

Pawel Sobocinski, Owen Stephens University of Southampton

> NII Shonan Sept 2015

Interaction is key

- Interaction between entities is fundamental to understanding their semantics.
- Labelled transitions are usefully understood as descriptions of a contribution to an interaction rather than as structural properties of a term
- We can use these to study algebraic properties of systems
- This principle underpins all manner of computation ...

• We look for **compositional** algebras of systems

Petri nets with Boundaries (PNB)

Fig. 6: A token ring network as a PNB expression

The algebraic expression reflects the system communication topology

(we can see how the net is wired up from looking at the term!)

Fig. 6: A token ring network as a PNB expression

• LTS labels indicate when a transition that is connected to a boundary port has been fired

• LTS labels indicate when a transition that is connected to a boundary port has been fired

• LTS labels indicate when a transition that is connected to a boundary port has been fired

• LTS labels indicate when a transition that is connected to a boundary port has been fired

• LTS labels indicate when a transition that is connected to a boundary port has been fired

• LTS labels indicate when a transition that is connected to a boundary port has been fired

Reachability, compositionally

 NFA captures the interaction patterns which allow the subnet to reach the desired local marking

Reachability, compositionally

 NFA captures the interaction patterns which allow the subnet to reach the desired local marking

Any language equivalent NFA describes the same interaction patterns. e.g. a minimal NFA

Reachability, compositionally

 NFA captures the interaction patterns which allow the subnet to reach the desired local marking

Any language equivalent NFA describes the same interaction patterns. e.g. a minimal NFA

Compositionality as Functoriality

Main Theorem

- Weak language equivalence is a congruence wrt to composition operations
 - weak here means regarding internal moves (ie firing of transitions that are not connected to a boundary port) in a net as tau-moves or epsilon-moves
 - up-to-weak-language-equivalence means that we can discard irrelevant local state
 - in essence, we only care about how a component net *interacts*
 - Reachability reduces to language emptiness for nets with no boundaries!

• The main theorem suggests the following algorithm for deciding reachability:

- The main theorem suggests the following algorithm for deciding reachability:
 - Write your Petri Net as a composition of subnets

- The main theorem suggests the following algorithm for deciding reachability:
 - Write your Petri Net as a composition of subnets
 - Generate the NFA for each of these wrt their desired submarking

- The main theorem suggests the following algorithm for deciding reachability:
 - Write your Petri Net as a composition of subnets
 - Generate the NFA for each of these wrt their desired submarking
 - Check their languages: if any of their languages is already empty then reachability fails

- The main theorem suggests the following algorithm for deciding reachability:
 - Write your Petri Net as a composition of subnets
 - Generate the NFA for each of these wrt their desired submarking
 - Check their languages: if any of their languages is already empty then reachability fails
 - Compose the NFAs and check whether their languages are empty

The trivial accepting automaton is a fixed point of this process: this can also be seen as a proof of parametrised reachability for the buffer example!

Implementation details

- Penrose tool: implemented in Haskell, with almost no optimisation, but:
- We try to keep automata small

R. Mayr and L. Clemente. Advanced Automata Minimization. In PoPL '13.

 Memoisation is used to avoid re-minimising and re-composing weak language equivalent automata

F. Bonchi and D. Pous. *Checking NFA Equivalence with Bisimulations up to Congruence*. In PoPL '13.

name	size	LOLA	CLP	CNA	Penrose
buffer	8	0.001	0.003	0.017	0.002
buffer	32	0.001	0.013	0.824	0.002
buffer	512	0.058	T	M	0.002
buffer	4096	Т	T	M	<u>0.005</u>
buffer	32768	T	T	M	<u>0.029</u>

Performance on standard benchmarks

over	8	31.039	0.008	1.071	<u>0.003</u>	3812.00	37.63	141.85	15.49
over	32	M	T	M	<u>0.004</u>	M	T	M	15.50
over	512	M	T	M	<u>0.003</u>	M	T	M	$\underline{15.52}$
over	4096	M	T	M	<u>0.004</u>	M	T	M	<u>16.04</u>
over	32768	M	T	M	<u>0.010</u>	M	T	M	<u>20.09</u>
dac	8	<u>0.001</u>	0.003	0.017	0.002	7.51	33.28	38.85	14.68
dac	32	<u>0.001</u>	0.005	0.028	0.002	7.50	34.50	49.45	14.68
dac	512	0.005	T	255.847	<u>0.003</u>	20.62	T	6012.00	<u>14.80</u>
dac	4096	2.462	T	M	<u>0.008</u>	166.07	T	M	15.92
dac	32768	T	T	M	0.053	T	T	M	$\underline{24.24}$
philo	8	0.002	0.003	0.016	0.005	<u>8.86</u>	33.22	38.54	17.34
philo	32	M	<u>0.003</u>	0.017	0.005	M	33.53	40.87	17.35
philo	512	M	0.020	0.086	<u>0.008</u>	M	41.69	290.77	17.39
philo	4096	M	7.853	M	<u>0.019</u>	M	172.76	M	17.58
philo	32768	M	T	M	1.014	M	Т	M	$\underline{21.32}$
iter-choice*	8	0.006	5.025	19.062	<u>0.002</u>	36.37	465.17	1570.64	14.64
iter-choice*	32	M	T	Т	<u>0.003</u>	M	Т	Т	14.64
iter-choice*	512	M	T	Т	<u>0.006</u>	M	Т	T	14.71
iter-choice*	4096	M	T	Т	0.028	M	Т	Т	15.22
iter-choice*	32768	M	T	Т	1.644	M	Т	T	$\underline{20.15}$
replicator*	8	<u>0.001</u>	/	0.016	0.002	7.51	/	38.15	14.72
replicator*	32	<u>0.001</u>	/	0.017	0.002	7.51	/	39.41	14.72
replicator*	512	<u>0.002</u>	/	1.023	0.009	14.72	/	77.87	14.82
replicator*	4096	0.062	/	64.046	<u>0.056</u>	86.85	/	3256.00	15.72
replicator*	32768	91.646	/	M	<u>3.660</u>	1524.50	/	M	<u>21.90</u>
$\operatorname{counter} *$	8	<u>0.001</u>	/	/	0.054	7.51	/	/	19.98
$\operatorname{counter} *$	16	0.000	/	/	4.646	7.51	/	/	27.98
$\operatorname{counter} *$	32	<u>0.001</u>	/	/	52.072	7.51	/	/	50.25
$\operatorname{counter} *$	64	<u>0.001</u>	/	/	T	<u>8.60</u>	/	/	T
hartstone	8	<u>0.001</u>	0.002	/	0.062	7.51	33.17	/	20.05
hartstone	16	<u>0.001</u>	0.003	/	5.073	7.51	33.20	/	24.01
hartstone	32	<u>0.001</u>	0.002	/	64.062	7.51	33.22	/	38.70
hartstone	64	<u>0.001</u>	0.002	/	Т	8.54	33.46	/	T
token-ring	8	<u>0.001</u>	0.007	0.071	1.085	7.51	39.96	89.81	20.89
token-ring	16	1.824	T	Т	16.038	318.08	T	Т	29.41
token-ring	32	M	T	T	165.461	M	T	T	50.19
token-ring	64	M	T	Т	Т	M	T	Т	Т

Caveats

- Our tool takes in an algebraic decomposition as input
 - some nets do not allow efficient decompositions because of graph theoretic complexity (high rank width of the underlying hypergraph)

Caveats

- Our tool takes in an algebraic decomposition as input
 - some nets do not allow efficient decompositions because of graph theoretic complexity (high rank width of the underlying hypergraph)
 - even if a net has small rank-width, efficient decompositions may not exist for semantic reasons
 - deriving efficient decompositions automatically is highly non-trivial
 - even after choosing a graph decomposition, the *syntactic* description is important e.g. **associativity matters!**
- But high-level system descriptions are the norm in real systems: e.g. decompositions have followed Corbett's high-level Ada descriptions very closely

Conclusions

- Divide and conquer for reachability in 1-bounded nets
 - on many realistic examples, this approach vastly outperforms traditional global approaches
- Speculation and future work
 - examples on which we perform less well can sometimes be determined statically (e.g. by looking at the graph theoretical complexity of the underlying net!)
 - can compositionality help us to understand reachability in the infinite state case?