
Modular Reasoning and
a Definition of

Supertype Abstraction

Gary T. Leavens and David A. Naumann
University of Central Florida and Stevens Inst. of Technology

Support from US National Science Foundation
NII Shonan Workshop on OO Specification and Verification,

September 22, 2015

jmlspecs.org www.cs.ucf.edu/~leavens

Presenter
Presentation Notes
For more technical details, see our August 2015 TOPLAS article [LN15] (references at the end of the talk).

http://www.jmlspecs.org/
http://www.cs.iastate.edu/%7Eleavens

Problem

 Modular reasoning for OO programs
 Proving soundness and completeness
 In general, without restriction to some particular

proof system.

Approach

 Supertype abstraction
T x;
// …
{preT

m[x/self]} x.m(); {postT
m[x/self]}

 Formalize semantically:
 Independent of program logic

Presenter
Presentation Notes
That is independently of the particulars of a specification and verification system.

Contributions in [LN15]:
Semantic treatments of:
 Refinement
 Modular correctness
 Supertype abstraction
 Behavioral Subtyping
 Necessity and sufficiency of behavioral

subtyping
 Specification inheritance

Related Work:
Liskov 1988 (p. 25)
“If for each object o1 of type S
there is an object o2 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged
when o1 is substituted for o2,
then S is a subtype of T.”

Problems:
 “Unchanged” behavior is too restrictive,
 What does substitution mean in OO programs?

Presenter
Presentation Notes
This has been called the “Liskov Substitutability Principle” or LSP.

Related Work:
Liskov & Wing 1994 (fig. 4)
For S to be a behavioral subtype of T,
 Subtype’s invariant must imply the supertype’s:

Ɐ self:S . invS(self) ⇒ invT(self)
 “Subtype methods preserve the supertype method’s

behavior.”
For each method m of type T and self:S

preT
m(self) ⇒ preS

m (self)
postS

m (self) ⇒ postT
m (self)

Problems:
 No proofs of soundness
 Postcondition rule is too strong

Why Liskov and Wing’s
postcondition rule is too strong
class TrustingAnimal {

public model int age;
int ag; represents age := ag;

meth setAge(int a)
requires 0 ≤ a ⋀ a ≤ 150;
ensures age = a;
{ ag := a; } }

public class Animal extends TrustingAnimal {
meth setAge(int a);

requires (0 ≤ a ⋀ a ≤ 150) || a < 0 ;
ensures (old(0 ≤ a ⋀ a ≤ 150) ⇒ age = a)

&& (old(a < 0) ⇒ age = old(age)) ;
if (0 ≤ a ⋀ a ≤ 150) then { ag := a } }

Presenter
Presentation Notes
The notation is not JML.In Liskov and Wing’s definition, we can’t allow Animal as a (behavioral) subtype of NormSetAge,but an Animal can be used where a TrustingAnimal is expected.

An Idealized Java-like
OO Language
 interfaces
 classes
 exceptions as objects
 type tests (is) and type casts
 expressions with effects

Omits:
 constructors
 super calls
 concurrency

Language Semantics overview

 Denotational Semantics
 State transformers

 Separate state spaces for initial and final states
 Commands: final state variable exc
 Expressions: final state variables exc and res
 Only two kinds of outcomes: ⊥ or a state

 Two kinds of semantics:
 Dynamic, models dynamic dispatch
 Static, models supertype abstraction in

reasoning

Language Grammar
(Abstract Syntax)

Presenter
Presentation Notes
C is commands, E is expressions. The syntax is in A-normal form, meaning that one can’t use compound expressions anywhere interesting.

Basic Domains
Γ ∈ TypeContext = Variable ⇀ T

S,T,U ∈ RefType = ClassName ∪ InterfaceName
o ∈ Ref
r ∈ RefCtx = Ref ⇀ ClassName

o ∈ dom r means: o is allocated and has type r o

Values:
Val(int, r) = ℤ
Val(bool, r) = {true, false}
Val(K, r) = {null} ∪ {o | o ∈ dom r ∧ r o ≤ K}
Val(I, r) = {null} ∪ {o | ∃K· K ≤ I ∧ o ∈ Val(K, r)}

Presenter
Presentation Notes
We encoded this semantics in PVS, so use dependent types in many places.

Stores, Heaps, States, and
State Transformers
s ∈ Store(Γ, r) ⇔ s ∈ ((x : dom Γ) → Val(x, r))

∧ (self ∈ dom Γ ⇒ s(self) = null)
Obrecord(K, r) = Store(fields K, r)

h ∈ Heap(r) = (o : dom r) → Obrecord(r o, r)
σ ∈ State(Γ) = (r : RefCtx) × Heap(r) × Store(Γ, r)
φ ∈ STrans(Γ, Γ’) =

(σ : State(Γ)) → {⊥} ∪ {σ’ | σ’ ∈ State(Γ’)
∧ extState(σ, σ’) ∧ imuSelf(σ, σ’)}

extState((r, h, s), (r’, h’, s’)) ⇔ r ⊆ r’
imuSelf((r, h, s), (r’, h’, s’)) ⇔

(self ∈ (dom s ∩ dom s’) ⇒ s(self) = s’(self)).

Presenter
Presentation Notes
A store s is an element of the dependent function space of type (x : dom Γ) → Val(x, r). Similarly for heaps.Emphasize that states of type Γ have a store whose typing is given by Γ

Semantics of Expressions,
Commands, and Methods
SemExpr(Γ, T) = STrans(Γ, [res : T, exc : Exc])
SemCommand(Γ, Γ’) = STrans(Γ, [Γ, exc : Exc])
SemMeth(T,m) = STrans([self : T, z1:U1,…,zn:Un],

[res : U, exc : Exc])
where mtype(T,m) = (z1:U1,…,zn:Un) → U

Presenter
Presentation Notes
Commands don’t return a value, although methods do (in theory).

Method Environments

Normal method environments:
η ∈ MethEnv = (K : ClassName) × (m: Meths K)

→ SemMeth(K,m)

Extended method environment:
η.

∈ XMethEnv = (T : RefType) × (m: Meths T)
→ SemMeth(T,m)

Example Semantics Clauses
Common to Dynamic and Static
[[Γ ⊢ let x be E in E1 : U]](η)(r, h, s)

= lets (r0, h0, s0) = [[Γ ⊢ E : T]](η)(r, h, s) in
if s0 exc ≠ null
then (r0, h0, [res : default U, exc : s0 exc])
else let s1 = [s , x : s0 res] in

[[Γ, x : T ⊢ E1 : U]](η)(r0, h0, s1)

[[Γ ⊢ x := E]](η)(r, h, s)
= lets (r1, h1, s1) = [[Γ ⊢ E : T]](η)(r, h, s) in
if s1 exc = null
then (r1, h1, [[s | x : s1 res] , exc : null])
else (r1, h1, [s, exc : s1 exc]).

Presenter
Presentation Notes
Most of the semantics are the same for both semantics, so we only show one clause.�Note that we give semantics to typings (type judgments). Note how exceptions are handled. The “lets” is a strict let.Most of the semantic clauses are standard (e.g., for Java).

Dynamic and Static Semantics
for method calls

D[[Γ ⊢ x.m(y1,…,yn) : U]](η)(r, h, s)
= if s x = null then except(r, h, U, NullDeref)

else let K = r(s x) in let z1,…,zn = formals(K,m) in
let s1 = [self : s x, z1:s y1,…,zn:s yn] in
η(K,m)(r, h, s1)

S[[Γ ⊢ x.m(y1,…,yn) : U]](η.)(r, h, s)
= if s x = null then except(r, h, U, NullDeref)

else let T = Γ x in let z1,…,zn = formals(T,m) in
let s1 = [self : s x, z1:s y1,…,zn:s yn] in
η.(T,m)(r, h, s1)

Presenter
Presentation Notes
In the dynamic one (D), K is the dynamic type of x. In the static one, T is the static type of x.

Approximation Orderings
On State Transformers ϕ and ψ in STrans(Γ, Γ’):

define ϕ ≼ ψ
if and only if for all σ in State(Γ),
either ϕ σ = ψ σ or ϕ σ = ⊥.

On Method Environments η and η’:
define η ≼ η’ if and only if
η(K,m) ≼ η’(K,m), for all K,m.

Dynamic semantics of class tables: D[[CT]]
is lub of chains of method environments

Presenter
Presentation Notes
This ordering is used in the usual way to define least upper bounds (fixed points) for the dynamic semantics of class tables.

Specification Semantics Basics

 Semantics, not syntax
 One-state predicate on Γ-states = ℘(State(Γ))

General specifications of methods:
def: A general specification of type Γ⇝Γ’ is a
triple (J, pre, post) consisting of:

a nonempty set J and
J-indexed families of predicates:

pre ∈ J → ℘(State(Γ)) and
post ∈ J → ℘(State(Γ’)).

Presenter
Presentation Notes
General specifications model dependence of post-states on pre-states by using an indexed family of pairs of states.Simple specifications without such a dependence are modeled by using a singleton set for J, like J = {0}.

Relation to Two-State
Specifications
Consider a method specification of the form:

requires 0 ≤ age ⋀ age < 150;
ensures age = old(age+1);

Can encode this as the general specification of
type [age: int] ⇝ [exc: Exc] with index set
[age: int]-States: (℘(State([age:int]), preσ, postσ)
where preσ = {τ | σ =τ ⋀ σ = (r,h,s)

⋀ 0≤s(age) ⋀ s(age)<150}
and postσ = {τ| σ =(r,h,s) ⋀ τ=(r’,h’,s’)

⋀ s’(age) = s(age)+1 }

Presenter
Presentation Notes
It should be clear that this kind of encoding of two-state specifications works in general. I’m ignoring the (ignored) result in this case.

Satisfaction (total correctness)
for General Specifications
def: ϕ |= (J, pre, post) if and only if for all i ∈ J,

∀σ · σ ∈ prei ⇒ ϕ(σ) ∈ posti.

Correctness for
Method Specifications

output
post-state

input pre-state

prei

posti
m()

Presenter
Presentation Notes
This graph shows what satisfaction of a pre/post specification means (for a given index)

Intrinsic Refinement of
General Specifications
Idea: Subtype’s (stronger) specifications have
implementations that can be used in place of
those of supertype’s (weaker) specifications.

Problem:
Subtype’s specification knows that self has its
subtype (or lower).
Thus type of self changes covariantly!
So types of the corresponding state
transformers are not related by subtyping!

Dealing with type of self

 Two flavors:
 Exact: self has exactly the subtype
 Downward: self has the subtype or lower

Define:
selftype(r, h, s) = r(s(self))
σ ∈ pre⇂T ⇔ selftype(σ) = T ⋀ σ ∈ pre
σ ∈ pre⇂*T ⇔ selftype(σ) ≤ T ⋀ σ ∈ pre

Presenter
Presentation Notes
The second to last formula is the exact restriction, the last is downward restriction. Downward restriction corresponds to the is-test in the language.The exact restriction is not defined when T is an interface type.

Refinement (standard)

Let spec0 : Γ⇝Γ’ and spec1 : Δ⇝ Δ’,
where Δ⇝ Δ’ ≤ Γ⇝Γ’ (i.e., Γ ≤ Δ and Δ’ ≤ Γ’).

Then spec1 refines spec0, written spec1 ⊒ spec0,
if and only if for all ϕ ∈ STrans(Δ, Δ’),

ϕ |= spec1 ⇒ ϕ |= spec0

Presenter
Presentation Notes
This is without subtyping.

Refinement at a Subtype

Let spec0 : Γ⇝Γ’ and spec2 : [Δ | self : S] ⇝ Δ’.
where Δ⇝ Δ’ ≤ Γ⇝Γ’ (i.e., Γ ≤ Δ and Δ’ ≤ Γ’)
and S ≤ Γ self.

Refinement at exact subtype S, spec2 ⊒S spec0,
is defined by

spec2 ⊒S spec0 ⇔ spec2 ⊒ spec0⇂S.
Refinement at a downward subtype S,

spec2 ⊒*S spec0, is defined by
spec2 ⊒*S spec0 ⇔ spec2 ⊒ spec0⇂*S.

Presenter
Presentation Notes
Both of these notions turn out to be useful. The second corresponds to what is normally used and is tested by the is expression.

Refinement at type S

pre

post

Presenter
Presentation Notes
We ignore framing, by reducing framing to post-state conjuncts.

Refinement at type S

pre

post

pre′

Refinement at type S

pre

post

pre′

post′

Characterization of Refinement
at a subtype
Suppose that (I, pre, post) : Γ⇝Γ’ and
(J, pre’, post’) : spec2 : [Δ | self : S] ⇝ Δ’,
where S ≤ Γ self and Δ⇝ Δ’ ≤ Γ⇝Γ’.
If (J, pre’, post’) is satisfiable,
then the following are equivalent:
(a) (J, pre’, post’) ⊒S (I, pre, post)
(b) ∀i ∈ I, σ ∈ State(Γ) · σ ∈ prei⇂S

⇒(∃ j ∈ J · σ ∈ pre’j)
∧ (∀τ ∈ State(Δ’)

· (∀ k ∈ J · σ ∈ pre’k ⇒ τ ∈ post’k)
⇒ τ ∈ posti).

Presenter
Presentation Notes
This is prop. 5.18 in the paper. Recall this is for exact refinement of total correctness specifications.Downward refinement is the same, but using downward refinement and downward restriction in part (b).

Modular Correctness

Modular verifiers and proof systems:
 Focus on one method at a time
 Assume specification of all other methods

Domains for
Modular Correctness
CT ∈ ClassTable =

(K:ClassName) x (m:MethodName)
⇀ SemMeth(K,m)

ST ∈ SpecTable =
(T:RefType) x (m:MethodName)

⇀ ([self:T, formals(T,m)]
⇝ [res: resType(T,m), exc:Exc])

Presenter
Presentation Notes
The class table has all the code in the program, so we can think of it as containing the meaning of the code for all methods in all classes. The specification table has the ENTIRE specification for all methods in all types, including interfaces.

Satisfaction for Spec Tables

An extended method environment η. satisfies ST,
written η. |= ST,
if and only if for all ref types T and m ∈ Meths T,

η.(T,m) |= ST(T,m).

An normal method environment η satisfies ST,
written η |= ST,
if and only if for all classes K and m ∈ Meths K,

η(K,m) |= ST(K,m).

Presenter
Presentation Notes
This gives the context (the meanings of the specifications) for modular correctness definitions.

Modular Correctness

For command Γ ⊢ C and Γ-specification spec,
C modularly satisfies spec with respect to ST,
written ST, (Γ ⊢ C) |=D spec if and only if
∀η ∈ MethEnv · η |= ST ⇒ D[[Γ ⊢ C]](η) |= spec.

For command Γ ⊢ C and Γ-specification spec,
C modularly satisfies spec with respect to ST
under static dispatch,
written ST, (Γ ⊢ C) |=S spec if and only if
∀ η.

∈ XMethEnv ·
η. |= ST ⇒ S[[Γ ⊢ C]](η.) |= spec.

Presenter
Presentation Notes
We also say C is modularly correct when ST and spec are understood from context. Similarly for expressions.Modular verification decomposes the work into more tractable tasks, and avoids reverification when implementations change.

Supertype Abstraction (1)

A specification table ST allows supertype
abstraction when
ST, (Γ ⊢ C) |=S spec implies ST, (Γ ⊢ C) |=D spec

and similarly for expressions.

However, we don’t want to reason about all
method environments as in the definitions of
satisfaction!

Predicate Transformers
to the Rescue
 A proof system would use axiomatic semantics
 Method m in type T would be dealt with as:

assert preT
m;

assume postT
m;

which acts as a predicate transformer.
 Notation:

 {[spec]} is the predicate transformer for spec.
 {[ST]} is the extended method environment

composed of such transformers
= least refined environment that satisfies ST.

 S{[Γ ⊢ C]}({[ST]}) is the predicate transformer
denoted by C in {[ST]}.

Modular Verification (2)

For command Γ ⊢ C and Γ-specification spec,
C is modularly verified for spec with respect to
ST, if and only if

S{[Γ ⊢ C]}({[ST]}) ⊒ {[spec]}.

Presenter
Presentation Notes
In other words, spec is satisfied by C under static dispatch and in the least refined extended method environment that satisfies ST. Similarly for expressions.

Supertype Abstraction

Modular verification implies modular
correctness when:

S{[Γ ⊢ C]}{[ST]}) ⊒ {[spec]}
implies ST, (Γ ⊢ C) |=D spec

and similarly for expressions.

Main Results
The following are equivalent:
(a) ST has behavioral subtyping.
(b) Modular correctness under static dispatch
implies modular correctness.
(c) Modular verification implies modular
correctness.

Presenter
Presentation Notes
The ones with the + superscript depend on behavioral subtyping.

Related Work
 Work with Naumann [LN06][LN15], basis for

this talk. Proved exact conditions on behavioral
subtyping for validity of supertype abstraction

 Liskov and Wing [LW94] “subtype requirement”
like supertype abstraction.
Abstraction functions implicit in JML.

 Several program logics for Java,
[Mül02] [Par05] [Pie06] [PHM99],
use supertype abstraction.

 America [Ame87] [Ame91] first
proved soundness with behavioral subtyping.

Conclusions

 Supertype abstraction defined semantically,
based on modular reasoning.

 Supertype abstraction is valid if:
 invariant methodology enforced, and
 subtypes are behavioral subtypes.

Plus: a story about specification inheritance.

References
[Ame87] Pierre America. Inheritance and subtyping in a parallel object-oriented language. In Jean Bezivin et al., editors, ECOOP ’87, European Conference

on Object-Oriented Programming, Paris, France, pages 234–242, New York, NY, June 1987. Springer-Verlag. Lecture Notes in Computer Science,
volume 276.

[Ame91] Pierre America. Designing an object-oriented programming language with behavioural subtyping. In J. W. de Bakker, W. P. de Roever, and
G. Rozenberg, editors, Foundations of Object-Oriented Languages, REX School/Workshop, Noordwijkerhout, The Netherlands, May/June 1990,
volume 489 of Lecture Notes in Computer Science, pages 60–90. Springer-Verlag, New York, NY, 1991.

[BCC+05] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joeseph R. Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview of
JML tools and applications. International Journal on Software Tools for Technology Transfer, 7(3):212–232, June 2005.

[DL96] Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping through specification inheritance. In Proceedings of the 18th International
Conference on Software Engineering, Berlin, Germany, pages 258–267. IEEE Computer Society Press, March 1996. A corrected version is ISU CS TR
#95-20c, rlhttp://tinyurl.com/s2krg.

[FF01] Robert Bruce Findler and Matthias Felleisen. Contract soundness for object-oriented languages. In OOPSLA ’01 Conference Proceedings, Object-
Oriented Programming, Systems, Languages, and Applications, October 14-18, 2001, Tampa Bay, Florida, USA, pages 1–15, October 2001.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12(10):576–580,583, October 1969.
[Hoa72] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1(4):271–281, 1972.
[LD00] Gary T. Leavens and Krishna Kishore Dhara. Concepts of behavioral subtyping and a sketch of their extension to component-based systems. In

Gary T. Leavens and Murali Sitaraman, editors, Foundations of Component-Based Systems, chapter 6, pages 113–135. Cambridge University Press,
2000.

[Lei98] K. Rustan M. Leino. Data groups: Specifying the modification of extended state. In OOPSLA ’98 Conference Proceedings, volume 33(10) of ACM
SIGPLAN Notices, pages 144–153. ACM, October 1998.

[LN06] Gary T. Leavens and David A. Naumann. Behavioral subtyping, specification inheritance, and modular reasoning. Technical Report 06-20b,
Department of Computer Science, Iowa State University, Ames, Iowa, 50011, September 2006.

[LN15] Gary T. Leavens and David A. Naumann. Behavioral Subtyping, Specification Inheritance, and Modular Reasoning. ACM TOPLAS, 37(4):13:1-13:88,
Aug. 2015. http://doi.acm.org/10.1145/2766446.

[LW94] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Transactions on Programming Languages and Systems, 16(6):1811–
1841, November 1994.

[Mey97] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, New York, NY, second edition, 1997.
[MPHL06] Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular invariants for layered object structures. Science of Computer Programming,

62(3):253– 286, October 2006.
[Mül02] Peter Müller. Modular Specification and Verification of Object-Oriented Programs, volume 2262 of Lecture Notes in Computer Science. Springer-

Verlag, 2002.
[Par05] Matthew J. Parkinson. Local reasoning for Java. Technical Report 654, University of Cambridge Computer Laboratory, November 2005. The

author’s Ph.D. dissertation.
[PHM99] A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In S. D. Swierstra, editor, European Symposium on Programming

(ESOP ’99), volume 1576 of Lecture Notes in Computer Science, pages 162–176. Springer-Verlag, 1999.
[Pie06] Cees Pierik. Validation Techniques for Object-Oriented Proof Outlines. PhD thesis, Universiteit Utrecht, 2006.
[SBC92] Susan Stepney, Rosalind Barden, and David Cooper, editors. Object Orientation in Z. Workshops in Computing. Springer-Verlag, Cambridge CB2

1LQ, UK, 1992.
[Wil92] Alan Wills. Specification in Fresco. In Stepney et al. [SBC92], chapter 11, pages 127–135.
[Win83] Jeannette Marie Wing. A two-tiered approach to specifying programs. Technical Report TR-299, Massachusetts Institute of Technology,

Laboratory for Computer Science, 1983.

	Modular Reasoning and a Definition of Supertype Abstraction
	Problem
	Approach
	Contributions in [LN15]:�Semantic treatments of:
	Related Work:�Liskov 1988 (p. 25)
	Related Work:�Liskov & Wing 1994 (fig. 4)
	Why Liskov and Wing’s postcondition rule is too strong
	An Idealized Java-like�OO Language
	Language Semantics overview
	Language Grammar�(Abstract Syntax)
	Basic Domains
	Stores, Heaps, States, and�State Transformers
	Semantics of Expressions, Commands, and Methods
	Method Environments
	Example Semantics Clauses�Common to Dynamic and Static
	Dynamic and Static Semantics�for method calls
	Approximation Orderings
	Specification Semantics Basics
	Relation to Two-State Specifications
	Satisfaction (total correctness)�for General Specifications
	Correctness for �Method Specifications
	Intrinsic Refinement of �General Specifications
	Dealing with type of self
	Refinement (standard)
	Refinement at a Subtype
	Refinement at type S
	Refinement at type S
	Refinement at type S
	Characterization of Refinement at a subtype
	Modular Correctness
	Domains for �Modular Correctness
	Satisfaction for Spec Tables
	Modular Correctness
	Supertype Abstraction (1)
	Predicate Transformers�to the Rescue
	Modular Verification (2)
	Supertype Abstraction
	Main Results
	Related Work
	Conclusions
	References

