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Problem

 Modular reasoning for OO programs
 Proving soundness and completeness
 In general, without restriction to some particular 

proof system.



Approach

 Supertype abstraction
T x;
// …
{preT

m[x/self]} x.m(); {postT
m[x/self]}

 Formalize semantically:
 Independent of program logic
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Contributions in [LN15]:
Semantic treatments of:
 Refinement
 Modular correctness
 Supertype abstraction
 Behavioral Subtyping
 Necessity and sufficiency of behavioral 

subtyping
 Specification inheritance



Related Work:
Liskov 1988 (p. 25)
“If for each object o1 of type S 
there is an object o2 of type T 
such that for all programs P defined in terms of T, 
the behavior of P is unchanged
when o1 is substituted for o2, 
then S is a subtype of T.”

Problems:
 “Unchanged” behavior is too restrictive,
 What does substitution mean in OO programs?
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Related Work:
Liskov & Wing 1994 (fig. 4)
For S to be a behavioral subtype of T,
 Subtype’s invariant must imply the supertype’s:

Ɐ self:S . invS(self) ⇒ invT(self)
 “Subtype methods preserve the supertype method’s 

behavior.” 
For each method m of type T and self:S

preT
m(self) ⇒ preS

m (self)
postS

m (self) ⇒ postT
m (self)

Problems:
 No proofs of soundness
 Postcondition rule is too strong



Why Liskov and Wing’s 
postcondition rule is too strong
class TrustingAnimal {

public model int age; 
int ag; represents age := ag;

meth setAge(int a)
requires 0 ≤ a ⋀ a ≤ 150;
ensures age = a;
{ ag := a; }             }

public class Animal extends TrustingAnimal {
meth setAge(int a);

requires (0 ≤ a ⋀ a ≤ 150) || a < 0 ;
ensures (old(0 ≤ a ⋀ a ≤ 150) ⇒ age = a)

&& (old(a < 0) ⇒ age = old(age)) ;
if (0 ≤ a ⋀ a ≤ 150)  then { ag := a }           }
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An Idealized Java-like
OO Language
 interfaces
 classes
 exceptions as objects
 type tests (is) and type casts
 expressions with effects

Omits:
 constructors
 super calls
 concurrency



Language Semantics overview

 Denotational Semantics
 State transformers

 Separate state spaces for initial and final states
 Commands: final state variable exc
 Expressions: final state variables exc and res
 Only two kinds of outcomes: ⊥ or a state

 Two kinds of semantics:
 Dynamic, models dynamic dispatch
 Static, models supertype abstraction in 

reasoning



Language Grammar
(Abstract Syntax)
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Basic Domains
Γ ∈ TypeContext = Variable ⇀ T

S,T,U ∈ RefType = ClassName ∪ InterfaceName
o ∈ Ref
r ∈ RefCtx = Ref ⇀ ClassName

o ∈ dom r means: o is allocated and has type r o

Values:
Val(int, r) = ℤ
Val(bool, r) = {true, false}
Val(K, r) = {null} ∪ {o | o ∈ dom r ∧ r o ≤ K}
Val(I, r) = {null} ∪ {o | ∃K· K ≤ I ∧ o ∈ Val(K, r)}
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Stores, Heaps, States, and
State Transformers
s ∈ Store(Γ, r) ⇔ s ∈ ((x : dom Γ) → Val(x, r)) 

∧ (self ∈ dom Γ ⇒ s(self) = null)
Obrecord(K, r) = Store(fields K, r)

h ∈ Heap(r) = (o : dom r) → Obrecord(r o, r)
σ ∈ State(Γ) = (r : RefCtx) × Heap(r) × Store(Γ, r)
φ ∈ STrans(Γ, Γ’) =

(σ : State(Γ)) → {⊥} ∪ {σ’ | σ’ ∈ State(Γ’)
∧ extState(σ, σ’) ∧ imuSelf(σ, σ’)}

extState((r, h, s), (r’, h’, s’)) ⇔ r ⊆ r’
imuSelf((r, h, s), (r’, h’, s’)) ⇔

(self ∈ (dom s ∩ dom s’) ⇒ s(self) = s’(self)).

Presenter
Presentation Notes
A store s is an element of the dependent function space of type (x : dom Γ) → Val(x, r).  Similarly for heaps.Emphasize that states of type Γ have a store whose typing is given by Γ



Semantics of Expressions, 
Commands, and Methods
SemExpr(Γ, T) = STrans(Γ, [res : T, exc : Exc])
SemCommand(Γ, Γ’ ) = STrans(Γ, [Γ, exc : Exc])
SemMeth(T,m) = STrans([self : T, z1:U1,…,zn:Un], 

[res : U, exc : Exc])
where mtype(T,m) = (z1:U1,…,zn:Un ) → U
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Method Environments

Normal method environments:
η ∈ MethEnv = (K : ClassName) × (m: Meths K) 

→ SemMeth(K,m)

Extended method environment:
η.

∈ XMethEnv = (T : RefType) × (m: Meths T) 
→ SemMeth(T,m)



Example Semantics Clauses
Common to Dynamic and Static
[[Γ ⊢ let x be E in E1 : U]](η)(r, h, s)

= lets (r0, h0, s0) = [[Γ ⊢ E : T]](η)(r, h, s) in
if s0 exc ≠ null 
then (r0, h0, [res : default U, exc : s0 exc])
else let s1 = [s , x : s0 res] in 

[[Γ, x : T ⊢ E1 : U]](η)(r0, h0, s1)

[[Γ ⊢ x := E]](η)(r, h, s) 
= lets (r1, h1, s1) = [[Γ ⊢ E : T]](η)(r, h, s) in
if s1 exc = null 
then (r1, h1, [ [s | x : s1 res] , exc : null ])
else (r1, h1, [s, exc : s1 exc]).
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Dynamic and Static Semantics
for method calls

D[[Γ ⊢ x.m(y1,…,yn) : U]](η)(r, h, s) 
= if s x = null then except(r, h, U, NullDeref)

else let K = r(s x) in let z1,…,zn = formals(K,m) in
let s1 = [self : s x, z1:s y1,…,zn:s yn] in 
η(K,m)(r, h, s1)

S[[Γ ⊢ x.m(y1,…,yn) : U]](η.)(r, h, s) 
= if s x = null then except(r, h, U, NullDeref)

else let T = Γ x in let z1,…,zn = formals(T,m) in
let s1 = [self : s x, z1:s y1,…,zn:s yn] in 
η.(T,m)(r, h, s1)
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Approximation Orderings
On State Transformers ϕ and ψ in STrans(Γ, Γ’):

define ϕ ≼ ψ 
if and only if for all σ in State(Γ), 
either ϕ σ = ψ σ or ϕ σ = ⊥.

On Method Environments η and η’:
define η ≼ η’ if and only if
η(K,m) ≼ η’(K,m), for all K,m.

Dynamic semantics of class tables: D[[CT]]
is lub of chains of method environments
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Specification Semantics Basics

 Semantics, not syntax
 One-state predicate on Γ-states = ℘(State(Γ)) 

General specifications of methods:
def: A general specification of type Γ⇝Γ’ is a 
triple (J, pre, post) consisting of:

a nonempty set J and 
J-indexed families of predicates: 

pre ∈ J → ℘(State(Γ))   and 
post ∈ J → ℘(State(Γ’)).
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Relation to Two-State 
Specifications
Consider a method specification of the form:

requires 0 ≤ age ⋀ age < 150;
ensures age = old(age+1);

Can encode this as the general specification of 
type [age: int] ⇝ [exc: Exc] with index set
[age: int]-States:  (℘(State([age:int]), preσ, postσ)
where preσ = {τ | σ =τ ⋀ σ = (r,h,s) 

⋀ 0≤s(age) ⋀ s(age)<150}
and postσ = {τ| σ =(r,h,s) ⋀ τ=(r’,h’,s’) 

⋀ s’(age) = s(age)+1 }
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Satisfaction (total correctness)
for General Specifications
def: ϕ |= (J, pre, post) if and only if for all i ∈ J,

∀σ · σ ∈ prei ⇒ ϕ(σ) ∈ posti.



Correctness for 
Method Specifications

output
post-state

input pre-state

prei

posti
m()
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Intrinsic Refinement of 
General Specifications
Idea: Subtype’s (stronger) specifications have 
implementations that can be used in place of 
those of supertype’s (weaker) specifications.

Problem:
Subtype’s specification knows that self has its 
subtype (or lower).
Thus type of self changes covariantly!
So types of the corresponding state 
transformers are not related by subtyping!



Dealing with type of self

 Two flavors:
 Exact: self has exactly the subtype
 Downward: self has the subtype or lower

Define:
selftype(r, h, s) = r(s(self))
σ ∈ pre⇂T ⇔  selftype(σ) = T ⋀  σ ∈ pre
σ ∈ pre⇂*T ⇔ selftype(σ) ≤ T ⋀ σ ∈ pre

Presenter
Presentation Notes
The second to last formula is the exact restriction, the last is downward restriction. Downward restriction corresponds to the is-test in the language.The exact restriction is not defined when T is an interface type.



Refinement (standard)

Let spec0 : Γ⇝Γ’ and spec1 : Δ⇝ Δ’, 
where Δ⇝ Δ’ ≤ Γ⇝Γ’ (i.e., Γ ≤ Δ and Δ’ ≤ Γ’).

Then spec1 refines spec0,  written spec1 ⊒ spec0, 
if and only if  for all ϕ ∈ STrans(Δ, Δ’),

ϕ |= spec1 ⇒ ϕ |= spec0
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Refinement at a Subtype

Let spec0 : Γ⇝Γ’ and spec2 : [Δ | self : S] ⇝ Δ’.
where Δ⇝ Δ’ ≤ Γ⇝Γ’ (i.e., Γ ≤ Δ and Δ’ ≤ Γ’)
and S ≤ Γ self. 

Refinement at exact subtype S, spec2 ⊒S spec0,
is defined by

spec2 ⊒S spec0 ⇔ spec2 ⊒ spec0⇂S.
Refinement at a downward subtype S, 

spec2 ⊒*S spec0,  is defined by
spec2 ⊒*S spec0 ⇔ spec2 ⊒ spec0⇂*S.
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Refinement at type S

pre

post
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Refinement at type S

pre

post

pre′



Refinement at type S

pre

post

pre′

post′



Characterization of Refinement 
at a subtype
Suppose that (I, pre, post) : Γ⇝Γ’ and
(J, pre’, post’) : spec2 : [Δ | self : S] ⇝ Δ’,
where S ≤ Γ self and Δ⇝ Δ’ ≤ Γ⇝Γ’. 
If (J, pre’, post’) is satisfiable, 
then the following are equivalent:
(a) (J, pre’, post’) ⊒S (I, pre, post)
(b) ∀i ∈ I, σ ∈ State(Γ) · σ ∈ prei⇂S

⇒(∃ j ∈ J · σ ∈ pre’j) 
∧ (∀τ ∈ State(Δ’) 

· (∀ k ∈ J · σ ∈ pre’k ⇒ τ ∈ post’k) 
⇒ τ ∈ posti).
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Modular Correctness

Modular verifiers and proof systems:
 Focus on one method at a time
 Assume specification of all other methods



Domains for 
Modular Correctness
CT ∈ ClassTable =

(K:ClassName) x (m:MethodName) 
⇀ SemMeth(K,m)

ST ∈ SpecTable =
(T:RefType) x (m:MethodName) 

⇀ ([self:T, formals(T,m)]
⇝ [res: resType(T,m), exc:Exc])
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Satisfaction for Spec Tables

An extended method environment η. satisfies ST, 
written η. |= ST,  
if and only if for all ref types T and m ∈ Meths T,

η.(T,m) |= ST(T,m).

An normal method environment η satisfies ST, 
written η |= ST,  
if and only if for all classes K and m ∈ Meths K,

η(K,m) |= ST(K,m).
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Modular Correctness

For command Γ ⊢ C and Γ-specification spec,
C modularly satisfies spec with respect to ST,
written ST, (Γ ⊢ C) |=D spec  if and only if
∀η ∈ MethEnv · η |= ST ⇒ D[[Γ ⊢ C]](η) |= spec.

For command Γ ⊢ C and Γ-specification spec,
C modularly satisfies spec with respect to ST 
under static dispatch,
written ST, (Γ ⊢ C) |=S spec  if and only if
∀ η.

∈ XMethEnv · 
η. |= ST ⇒ S[[Γ ⊢ C]](η.) |= spec.
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Supertype Abstraction (1)

A specification table ST allows supertype 
abstraction when
ST, (Γ ⊢ C) |=S spec  implies ST, (Γ ⊢ C) |=D spec

and similarly for expressions. 

However, we don’t want to reason about all 
method environments as in the definitions of 
satisfaction! 



Predicate Transformers
to the Rescue
 A proof system would use axiomatic semantics
 Method m in type T would be dealt with as:

assert preT
m;

assume postT
m;

which acts as a predicate transformer.
 Notation:

 {[spec]} is the predicate transformer for spec.
 {[ST]} is the extended method environment 

composed of such transformers
= least refined environment that satisfies ST.

 S{[Γ ⊢ C]}({[ST]}) is the predicate transformer 
denoted by C in {[ST]}.



Modular Verification (2)

For command Γ ⊢ C and Γ-specification spec,
C is modularly verified for spec with respect to 
ST, if and only if

S{[Γ ⊢ C]}({[ST]}) ⊒ {[spec]}. 
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Supertype Abstraction

Modular verification implies modular 
correctness when:

S{[Γ ⊢ C]}{[ST]}) ⊒ {[spec]}
implies ST, (Γ ⊢ C) |=D spec

and similarly for expressions.



Main Results
The following are equivalent:
(a) ST has behavioral subtyping.
(b) Modular correctness under static dispatch 
implies modular correctness.
(c) Modular verification implies modular 
correctness.
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Related Work
 Work with Naumann [LN06][LN15], basis for 

this talk. Proved exact conditions on behavioral 
subtyping for validity of supertype abstraction

 Liskov and Wing [LW94] “subtype requirement” 
like supertype abstraction.
Abstraction functions implicit in JML.

 Several program logics for Java,
[Mül02] [Par05] [Pie06] [PHM99],
use supertype abstraction.

 America [Ame87] [Ame91] first
proved soundness with behavioral subtyping.



Conclusions

 Supertype abstraction defined semantically, 
based on modular reasoning.

 Supertype abstraction is valid if:
 invariant methodology enforced, and
 subtypes are behavioral subtypes.

Plus: a story about specification inheritance.
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