
Jeremy G. Siek

Indiana University Bloomington
NII Shonan, May 2014

1 / 4



My Background
I 1998: Matrix Template Library (C++, generic

programming, template metaprogramming, EDSL)
I 2002: Boost Graph Library (C++, generic

programming)
I 2005: “Concepts” proposal for C++ (i.e. type classes).
I 2006: Gradual typing: mixing static and dynamic typing.
I 2009: Build-to-Order BLAS (BTO). (standalone DSL)
I 2010: Type-reflective metaprogramming, incremental

type checking.
I 2014: The ParalleX execution model: asynchronous

communication via active messages.
I 2014: Auto-tuning BTO via Monte Carlo Markov Chain

methods.

2 / 4



My Position

I Staging is an important way to acheive high levels of
abstraction and performance.

I Domain-specific languages (DSLs) are great for presenting
reusable software at the appropriate level of abstraction.

I Standalone DSL’s suffer the language interoperability
problem, but embedded DSL’s, to the most part,
overcome this problem.

I Embedded DSL’s traditionally have limitations wrt.
abstraction leaks (e.g. error messages) and performance.

I Auto-tuning can deliver portable high-performance, but
auto-tuners are difficult to build and historically have
focused only on optimization parameters (e.g. unroll
factors).

3 / 4



Questions

I Can we build reusable framworks for auto-tuning?
I Reusable abstractions (containers and iterators).
I Reusable optimizations (loop fusion, array contraction,

tiling, data parallelism, task parallelism)
I Can we interface generic static analyses and optimizations

with domain-specific abstractions? (equational
simplification, alias analysis, code motion, vectorization)

I Efficient representations of the space of
differently-optimized code variants.

I Search algorithms.
I What can our general purpose languages do to support

embedded DSLs?
I E.g., fast stage zero performance
I extensible type checking

4 / 4


