Jeremy G. Siek

Indiana University Bloomington
NII Shonan, May 2014




My Background

>

1998: Matrix Template Library (C+ +, generic
programming, template metaprogramming, EDSL)

2002: Boost Graph Library (C+ +, generic
programming)

2005: “Concepts” proposal for C+ + (i.e. type classes).
2006: Gradual typing: mixing static and dynamic typing.
2009: Build-to-Order BLAS (BTO). (standalone DSL)
2010: Type-reflective metaprogramming, incremental
type checking.

2014: The ParalleX execution model: asynchronous
communication via active messages.

2014: Auto-tuning BTO via Monte Carlo Markov Chain
methods.



My Position

>

Staging is an important way to acheive high levels of
abstraction and performance.

Domain-specific languages (DSLs) are great for presenting
reusable software at the appropriate level of abstraction.

Standalone DSL’s suffer the langnage interoperability
problem, but embedded DSLs, to the most part,
overcome this problem.

Embedded DSL’s traditionally have limitations wrt.
abstraction leaks (e.g. error messages) and performance.

Auto-tuning can deliver portable high-performance, but
auto-tuners are difficult to build and historically have
focused only on optimization parameters (e.g. unroll
factors).



Questions

» Can we build reusable framworks for auto-tuning?

>

>

>

Reusable abstractions (containers and iterators).

Reusable optimizations (loop fusion, array contraction,
tiling, data parallelism, task parallelism)

Can we interface generic static analyses and optimizations
with domain-specific abstractions? (equational
simplification, alias analysis, code motion, vectorization)
Efficient representations of the space of
differently-optimized code variants.

Search algorithms.

» What can our general purpose languages do to support

embedded DSLs?

>

>

E.g., fast stage zero performance
extensible type checking



