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Today’s Plan 

Part 1: Conceptually 
•  Brief review of generating extensions 
•  Staging programs into generating extensions 

 
Part 2: Construction 
•  MetaScheme and multi-level generating extensions 
•  A compiler generator for recursive Flowchart 
•  Advanced: bootstrapping a DSL-compiler generator 
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Generating Extension 

Program with two arguments: 
  out  =  [p](x,y) 
 

Generating extension of program p: 
   res  =  [gen] x 
 [res] y   =  [p](x,y) 
 

Characteristic equation: 
  [ [gen] x ] y      =      [p](x,y)   correctness: 

      functionally equivalent 
 

  gen: program p staged wrt. division: x known before y 
 

Terminology: gen is a 
generating extension 

1 stage 
 

2 stages 
 

Ershov’77 
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Where does gen come from? 

Staging area: 
   gen  =  [    ] p    handwrite gen 

 
 
PE area: 

   gen  =  [cog] p   automate task 
 
 

  

4 

Scala, 
MetaOCaml, 
Scheme ... 

Scala, 
MetaOCaml, 
Scheme ... 

Terminology: 
cog ...  compiler generator for historical reasons (p=interpreter) 

  also called program-generator generator 

This talk: 

early, late? 

Where does cog come from? 

“Cogen approach”: 
   cog  =  [    ] spec   handwrite cog 
   

 
Futamura projections (two options):  automate task: 

   cog  =  [spec](spec,spec)  3rd: self-apply spec 
   cog  =  [cog’] spec   4th: stage spec 
 
    

This talk: 

Terminology: 
spec ... program specializer (e.g. partial evaluator) 

early, late? 
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Just a Game  
with Symbols? 

2nd Part of Talk 
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Approach: Handwrite cog 
Typical structure: 

binding-time 
analysis 

generate 
executable code 

p    program 

pann 

gen    generating extension 

annotated program, 
staging information 

implemented in C, ML, Scala, 
MetaScheme, MetaOCaml ... 

e.g. add admin. code, 
code optimizers 

staging of computation 

cog 
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Two Examples of Handwritten cog 

1.  Multi-level compiler generator (monovariant, offline): 
source language: Scheme 
target language:   MetaScheme 

2.  Two-level compiler generator (polyvariant, online): 
source = target language: Recursive Flowchart 

           an imperative language w/goto, blocks, lists 

[Glück,Jørgensen’95] 

[Glück’12] 
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MetaScheme 

t = 0:  evaluate op as usual (e.g. by Scheme implementation) 
t > 0:  interpret op as code-generating operation 
lift:  coerce (time t) value into (time t+s) value 

 

MetaScheme together with multi-level typing rules 
is a statically-typed multi-level programming language. 

[Glück,Jørgensen’95,’96,’97,’99] 9 

From Program to Generating Extension 

Program in Scheme: 
Inner product of two 
n-dimensional vectors v, w 

auto-staged by cog (n:0, v:1, w:2) 

Library (can use peephole 
opt., algebraic simpl., etc.) 

3-level Generating Extension 
(MetaScheme concrete syntax) 10 

Computing the Inner Product in Stages 

auto-staged by cog: iprod2, iprod3 from iprod. 
computation performed in 1, 2, 3 stages. 
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General: Multi-Level Staging 

[Glück,Jørgensen’97] 

Generation pipeline: “offline” (order ‘0...n-1’ fixed at start), 
      “online” (order decided on-the-fly) 
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Multi-Level Binding-Time Analysis 

Task of MBTA: given program p and bt-time values (0,...,n-1), 
find a consistent staging which is - in some sense - the best. 

[Glück,Jørgensen’96] 
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Two Examples of Handwritten cog 

1.  Multi-level compiler generator (monovariant, offline): 
source language: Scheme 
target language:   MetaScheme 

2.  Two-level compiler generator (polyvariant, online): 
source = target language: Recursive Flowchart 

  

[Glück,Jørgensen’95] 

[Glück’12] 

Next: 

✔ 
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constant assigned: n static 

Ackermann Function in Flowchart 

polyvariant call 

[Ershov’78] 

m=static n=dynamic 
Initial division: 
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Ackermann Generating Extension 

  

dynamic: turn into code generator 

add administrative code 

static: copy from source program 
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cog 

Generating a Generating Extension 

Ackermann  
source program 

auto-stage 
(online, polyvariant) 
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Ackermann  
generating extension 

cog for Recursive Flowchart 

See paper for definition of compiler generator. 
[Glück’12] 18 



More Examples of Handwritten cog 

1.  Multi-level compiler generator (monovariant, offline): 
source language: Scheme 
target language:   MetaScheme 

2.  Two-level compiler generator (polyvariant, online): 
source = target language: Recursive Flowchart 
 

3.  More handwritten cog-systems: 
 ML-cog 
 C-Mix II 
 PGG, ... 
  

✔ 

[Birkedal,Welinder’94] 
[Andersen’94] 
[Thiemann’96,’99] 

✔ 
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New to Ershov’s Generating Extensions 

The generating extension of a specializer 
is a compiler generator. 

Program 
1-stage computation 

Generating extension 
 2-stage computation 

 [interpreter] (pgm, data)  [ [compiler] pgm] data 

 [parser] (grm, text)    [ [parser-gen] grm] text 

 [spec] (p, x)  [ [cog] p] x 

= 

= 

= 

[Ershov’77] 
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Advanced: Bootstrapping cog by cog’ 
4th Futamura Projection (general case): 

Generating cogDSL for a domain-specific language DSL: 

cog involves 4 languages (general case): 
source language A, implementation language X, target language Y, 
target language Z of the generating extension (produced by cog). 

[Glück ’09] 
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