
On the Mechanics of
Program-Generator Generators

Robert Glück
University of Copenhagen

Part of this work

National Institute of Informatics, Tokyo

IFIP WG 2.11 Meeting
Halmstad Sweden

2012
NII Shonan Meeting
Staging and HPC

Japan 2014

Today’s Plan

Part 1: Conceptually
•  Brief review of generating extensions
•  Staging programs into generating extensions

Part 2: Construction
•  MetaScheme and multi-level generating extensions
•  A compiler generator for recursive Flowchart
•  Advanced: bootstrapping a DSL-compiler generator

2

Generating Extension

Program with two arguments:
 out = [p](x,y)

Generating extension of program p:
 res = [gen] x
 [res] y = [p](x,y)

Characteristic equation:
 [[gen] x] y = [p](x,y) correctness:

 functionally equivalent

 gen: program p staged wrt. division: x known before y

Terminology: gen is a
generating extension

1 stage

2 stages

Ershov’77

3

Where does gen come from?

Staging area:
 gen = [] p handwrite gen

PE area:

 gen = [cog] p automate task

4

Scala,
MetaOCaml,
Scheme ...

Scala,
MetaOCaml,
Scheme ...

Terminology:
cog ... compiler generator for historical reasons (p=interpreter)

 also called program-generator generator

This talk:

early, late?

Where does cog come from?

“Cogen approach”:
 cog = [] spec handwrite cog

Futamura projections (two options): automate task:

 cog = [spec](spec,spec) 3rd: self-apply spec
 cog = [cog’] spec 4th: stage spec

This talk:

Terminology:
spec ... program specializer (e.g. partial evaluator)

early, late?

5

Just a Game
with Symbols?

2nd Part of Talk

6

Approach: Handwrite cog
Typical structure:

binding-time
analysis

generate
executable code

p program

pann

gen generating extension

annotated program,
staging information

implemented in C, ML, Scala,
MetaScheme, MetaOCaml ...

e.g. add admin. code,
code optimizers

staging of computation

cog

7

Two Examples of Handwritten cog

1.  Multi-level compiler generator (monovariant, offline):
source language: Scheme
target language: MetaScheme

2.  Two-level compiler generator (polyvariant, online):
source = target language: Recursive Flowchart

 an imperative language w/goto, blocks, lists

[Glück,Jørgensen’95]

[Glück’12]

8

MetaScheme

t = 0: evaluate op as usual (e.g. by Scheme implementation)
t > 0: interpret op as code-generating operation
lift: coerce (time t) value into (time t+s) value

MetaScheme together with multi-level typing rules
is a statically-typed multi-level programming language.

[Glück,Jørgensen’95,’96,’97,’99] 9

From Program to Generating Extension

Program in Scheme:
Inner product of two
n-dimensional vectors v, w

auto-staged by cog (n:0, v:1, w:2)

Library (can use peephole
opt., algebraic simpl., etc.)

3-level Generating Extension
(MetaScheme concrete syntax) 10

Computing the Inner Product in Stages

auto-staged by cog: iprod2, iprod3 from iprod.
computation performed in 1, 2, 3 stages.

11

General: Multi-Level Staging

[Glück,Jørgensen’97]

Generation pipeline: “offline” (order ‘0...n-1’ fixed at start),
 “online” (order decided on-the-fly)

12

Multi-Level Binding-Time Analysis

Task of MBTA: given program p and bt-time values (0,...,n-1),
find a consistent staging which is - in some sense - the best.

[Glück,Jørgensen’96]
13

Two Examples of Handwritten cog

1.  Multi-level compiler generator (monovariant, offline):
source language: Scheme
target language: MetaScheme

2.  Two-level compiler generator (polyvariant, online):
source = target language: Recursive Flowchart

[Glück,Jørgensen’95]

[Glück’12]

Next:

✔

14

constant assigned: n static

Ackermann Function in Flowchart

polyvariant call

[Ershov’78]

m=static n=dynamic
Initial division:

15

Ackermann Generating Extension

dynamic: turn into code generator

add administrative code

static: copy from source program

16

cog

Generating a Generating Extension

Ackermann
source program

auto-stage
(online, polyvariant)

17

Ackermann
generating extension

cog for Recursive Flowchart

See paper for definition of compiler generator.
[Glück’12] 18

More Examples of Handwritten cog

1.  Multi-level compiler generator (monovariant, offline):
source language: Scheme
target language: MetaScheme

2.  Two-level compiler generator (polyvariant, online):
source = target language: Recursive Flowchart

3.  More handwritten cog-systems:
 ML-cog
 C-Mix II
 PGG, ...

✔

[Birkedal,Welinder’94]
[Andersen’94]
[Thiemann’96,’99]

✔

19

New to Ershov’s Generating Extensions

The generating extension of a specializer
is a compiler generator.

Program
1-stage computation

Generating extension
 2-stage computation

 [interpreter] (pgm, data) [[compiler] pgm] data

 [parser] (grm, text) [[parser-gen] grm] text

 [spec] (p, x) [[cog] p] x

=

=

=

[Ershov’77]

20

Advanced: Bootstrapping cog by cog’
4th Futamura Projection (general case):

Generating cogDSL for a domain-specific language DSL:

cog involves 4 languages (general case):
source language A, implementation language X, target language Y,
target language Z of the generating extension (produced by cog).

[Glück ’09]

21

References
Multi-level compiler generator, MetaScheme:
•  Glück R., Jørgensen J., Efficient multi-level generating extensions for

program specialization. Hermenegildo M., Swierstra S.D. (eds.),
PLILP. Proceedings. LNCS 982, 1995.

•  Glück R., Jørgensen J., Multi-level specialization (extended abstract).
Hatcliff J., et al. (eds.), Partial Evaluation. LNCS 1706, 1999.

Two-level compiler generator, bootstrapping:
•  Glück R., Is there a fourth Futamura projection?

In: PEPM. Proceedings. 2009.
•  Glück R., Bootstrapping compiler generators from partial evaluators.

Clarke E.M., et al. (eds.), Perspectives of System Informatics.
Proceedings. LNCS 7162, 2012.

•  Glück R., A self-applicable online partial evaluator for recursive
flowchart languages. Software - Practice and Experience, 42(6), 2012.

... and references therein.
22

