
Breakout Session 2 on Bidirectional Programming in Self‐Adaptive SystemsRecorded by

Chair Lionel Montrieux, NII, Japan

We discussed the use of bidirectional programs, and bidirectional
transformations, in the context of self-adaptive systems. We
identified 5 areas of interest, connected to the participants'
research.

** Model abstractions

Bidirectional programs can be used to transform a concrete,
platform-specific model of the system into an abstract,
platform-independent model of the system. Adaptation can then happen
on the abstract model, and changes will be propagated to the concrete
model. This allows developers to support heterogeneous environments,
and to migrate from one implementation to another, or from one version
to another, without having to update their self-adaptation
architecture.

** Extraction of sub-models for efficient analysis

A large model (abstract or concrete) can be expensive to
analyse. Using bidirectional programs, we can extract a portion of the
model for a particular analysis. This can be done multiple times, and
each of these views can be used by a separate MAPE
loop. Synchronisation between the views is relatively simple: every
'put' to the large model can trigger a new 'get' to each view that
could be affected by the changes made.

We could go further. If the amount of data needed by a particular MAPE
loop can vary, it should be possible to adapt the transformation at
runtime to narrow the view, giving the mape loop the smallest view
possible, all from a single bidirectional program. If the program
describes a transformation over the largest view that the MAPE loop
could need, it is trivial to automatically generate a transformation
that produces a subset of the largest possible view.

One of the participants likened the extraction of small views to the
concept of crosscutting concerns in aspect-oriented programming. This
is an interesting point of view to explore, and it may lead to more
interesting uses of bidirectional programs.

** Beyond self-configuration: current state of the system vs. desired state of the system

Modifying system models in the context of self-configuration is
relatively easy: if the part of the model that represents the system
can be entirely translated into configuration files, then effecting
the changes is as simple as updating the configuration files, and
possibly reloading the system to take the new configuration into
account.

However, in general, changes to the model may not always be effected
by changes to configuration files. For example, changes may have to be

done through an API. Those changes may or may not succeed, and hence
failures must be taken into account. In such a solution, the model may
represent the /current/ state of the system (if the model is extracted
from the system and the environment), but if modified, it then
represents the /desired/ state of the system, until (and if...) the
modifications are successfully reflected in the system.

Bidirectional programs can help deal with this. A program can be
written to isolate the changes to be made, and to keep track of their
results. Two very similar programs can then produce the /current/
model of the system and the /desired/ model of the system.

** Bidirectional programs and context-oriented programming/self-adaptation

We discussed the 'traditional' self-adaptation model, where gauges and
probes capture the state of the system and its environment, and
effectors act on the system or its environment to enact adaptation. In
general, the effectors can be completely different from the gauges and
probes. However, if we were able to describe relationships between
these, we may be able to configure and deploy compatible pairs of
gauges/probes and effectors to achieve adaptation.

** Bidirectional programs for partial model

Partial models can represent alternatives to choose from. It should be
possible to write bidirectional programs to synchronise each partial
model with the overall model, keep then synchronised, and handle
conflicts and merging.

