Requirements-Driven Mediation for Collaborative Security

Amel Bennaceur The Open University, UK

Collaborative Security

- Making multiple, heterogeneous, software-intensive components collaborate in order to meet security requirements
 - The boundary of the systems is uncertain
 - **₹** The components can change
 - The components are designed and implemented independently

Collaborative Security - Example

Protect phone from theft

Keep the room accessible if possible

Make NAO and Create collaborate to protect the phone and keep the room accessible

Lock: I can lock and unlock the room

NAO: I can see, talk, and pick up objects

Create: I can clean and move

Adaptive Security meets Collaborative Adaptation

Adaptive Security

Collaborative Adaptation

- Reasoning about assets, threats, attacks, and vulnerabilities
- Identify the security controls necessary to keep security requirements satisfied
- How to enact these security controls?

- Reasoning about dynamic discovery and composition
- Making multiple components collaborate
- How to reason about assets, threats and security controls?

Collaborative Security à la Michael Jackson

 $R = \{R_s, R_1, \dots, R_m\}$: partially ordered set of requirements

 $S = \{C_1, \dots, C_n\}$: set of components' capabilities

E : environment properties

Capabilities as Featured Transition Systems

Capabilities as Featured Transition Systems

Identifying Security Controls

Feature Selection using Constraint Programming

$$X = \{x_1, x_2, ..., x_n\}$$

$$D(X) = \mathcal{P}(\mathcal{F}_1) \times \mathcal{P}(\mathcal{F}_2) \times \cdots \times \mathcal{P}(\mathcal{F}_n)$$

Feature-based Constraints C_1, C_2

Optimisation functions $g_{A_1}, g_{A_2}, \dots, g_{A_l}$

CP Solver

 f_1, f_2, \ldots, f_n

 \mathcal{C}_1 : **Subsumes** the features of a selected security control provided some domain properties

 \mathcal{C}_2 : **Respects** the constraints between features

Feature Selection

Projection of Featured Transition Systems

Feature-based Mediation

Features-driven Mediator Synthesis

- Use the selected features to project the behaviour of the components
- Synthesise, if possible, a mediator that enables the composed system to reach

$$fts_{1|f_1} \parallel fts_{2|f_2} \parallel \dots fts_{n|f_n} \parallel M \models_B G_s$$

Tool Support

Summary

- Features and behavioural models to reason about and achieve collaborative security
- Capability selection (and mediation) as a multiobjective optimisation problem
- Features to scope components' behaviours and reduce the space for mediation

Open Questions

- Can collaboration be applied to other types of requirements besides security?
 - Yes but security exacerbates and opens many issues that make collaboration more challenging, e.g., dealing with change and assurance
- What are the limitations of the approach?
 - Predefined set of security control
 - Shared vocabulary between the specification of security controls and capabilities
 - Independent iterations between feature selection and mediator synthesis
 - individual components are trustworthy and implement the capabilities advertised

Open Questions

- How about the user?
 - How to explain the choice and implementation of the security control?
 - Is the user just another component?
- Where do the models come from? What is the impact of their inaccuracy on the model?

Thank you

www.amel.me

http://sead1.open.ac.uk/fics/

Adaptive Security and Privacy www.asap-project.eu

