Requirements-Driven Mediation for Collaborative Security

Amel Bennaceur
The Open University, UK
Collaborative Security

- Making multiple, heterogeneous, software-intensive components collaborate in order to meet security requirements
 - The boundary of the systems is uncertain
 - The components can change
 - The components are designed and implemented independently

Diagram:

- Component 1
- Component 2
- Component 3
- Component 4
- Component 5

Environment
Collaborative Security - Example

Protect phone from theft

Keep the room accessible if possible

Collaborative Security:

Make NAO and Create collaborate to protect the phone and keep the room accessible

Lock: I can lock and unlock the room

NAO: I can see, talk, and pick up objects

Create: I can clean and move
Adaptive Security meets Collaborative Adaptation

Adaptive Security

Collaborative Adaptation

- Reasoning about assets, threats, attacks, and vulnerabilities
- Identify the security controls necessary to keep security requirements satisfied
- How to enact these security controls?

- Reasoning about dynamic discovery and composition
- Making multiple components collaborate
- How to reason about assets, threats and security controls?
Collaborative Security à la Michael Jackson

\[R = \{ R_s, R_1, \ldots, R_m \} \quad : \quad \text{partially ordered set of requirements} \]
\[S = \{ C_1, \ldots, C_n \} \quad : \quad \text{set of components’ capabilities} \]
\[E \quad : \quad \text{environment properties} \]

Find \(C \subseteq \mathcal{P}(S) \) **and synthesize** \(C, M, E \vdash R \)

Feature based

Behaviour based
Collaborative Security Framework

Components’ Capabilities S

Operational Environment E

Discover

Component 1
Component 2
Component 3
Component 4
Capabilities as Featured Transition Systems

Diagram showing transitions and actions:
- Location: location(NAO) = location
- Actions:
 - Standup: RobotPosture
 - Move to: location(location) / Navigation
 - Locate: object/ObjectRecognition
 - Drop: object/RobotPosture
 - Pick: object/RobotPosture
 - Connect: Connection
 - Disconnect: Connection
 - Say: text/TextToSpeech
 - Location: location(NAO) = location(object)
Collaborative Security Framework

- Requirements R
- Security Controls SC
- Components’ Capabilities S
- Operational Environment E
- Analyse
- Discover

- Component 1
- Component 2
- Component 3
- Component 4
Identifying Security Controls

Level 1
Requirements

Level 2
Security controls & domain assumptions

Level 3
Features & attributes

Legend
- Feature
- Domain Property
- Soft Goal
- Goal
- Potential conflict
- Refinement
Collaborative Security Framework

- Requirements R
- Analyse
- Feature Selection
- Components’ Capabilities S
- Discover
- Operational Environment E

Security Controls SC

Component 1
Component 2
Component 3
Component 4
Feature Selection using Constraint Programming

\[X = \{x_1, x_2, \ldots, x_n\} \]

\[D(X) = \mathcal{P}(\mathcal{F}_1) \times \mathcal{P}(\mathcal{F}_2) \times \cdots \times \mathcal{P}(\mathcal{F}_n) \]

Feature-based Constraints \(\mathcal{C}_1, \mathcal{C}_2 \)

Optimisation functions \(g_{A_1}, g_{A_2}, \ldots, g_{A_k} \)

CP Solver \(f_1, f_2, \ldots, f_n \)

\(\mathcal{C}_1: \) **Subsumes** the features of a selected security control provided some domain properties

\(\mathcal{C}_2: \) **Respects** the constraints between features
Feature Selection
Collaborative Security Framework

Requirements R

analyse

Security Controls SC

C

Features-driven Mediator Synthesis

Components’ Capabilities S

discover

M

Component 1

Component 2

Component 3

Component 4

Operational Environment E
Projection of Featured Transition Systems
Feature-based Mediation

location = 0

location(NAO) = location

locate(object)

pick(object)

location(object)

drop(object)

location(NAO) = location(object)

location = 0

location(Create) = location

move(location)

Achieve [MovingPhoneToTheSafe]

\[location(phone) = location.SAFE \]
Features-driven Mediator Synthesis

- Use the selected features to project the behaviour of the components

- Synthesise, if possible, a mediator that enables the composed system to reach

\[fts_1|_{f_1} \parallel fts_2|_{f_2} \parallel \ldots fts_n|_{f_n} \parallel M \models_B G_s \]
Collaborative Security Framework

- Analyse Security Controls Requirements \(R \)
- Discover Components' Capabilities \(S \)
- Feature Selection \(C \)
- Features-driven Mediator Synthesis

Secure Operational Environment \(E \)

Components:
- Component 1
- Component 2
- Component 3
- Component 4

Mediator

M deploy
Tool Support

http://sead1.open.ac.uk/fics/
Summary

- Features and behavioural models to reason about and achieve collaborative security
- Capability selection (and mediation) as a multi-objective optimisation problem
- Features to scope components’ behaviours and reduce the space for mediation
Open Questions

- Can collaboration be applied to other types of requirements besides security?
 - Yes but security exacerbates and opens many issues that make collaboration more challenging, e.g., dealing with change and assurance.

- What are the limitations of the approach?
 - Predefined set of security control
 - Shared vocabulary between the specification of security controls and capabilities
 - Independent iterations between feature selection and mediator synthesis
 - Individual components are trustworthy and implement the capabilities advertised
Open Questions

- How about the user?
 - How to explain the choice and implementation of the security control?
 - Is the user just another component?

- Where do the models come from? What is the impact of their inaccuracy on the model?
Thank you

www.amel.me

http://sead1.open.ac.uk/fics/

Adaptive Security and Privacy

www.asap-project.eu