

A View-based Approach to Software Adaptation

Zhenjiang Hu (NII)

Joint work with Tianqi Zhao (PKU), Tao Zan (NII), Haiyan Zhao (PKU), **Zhi Jin (PKU)**

E-Commerce System: Context Feature Model

Mandatory Feature

Optional Feature

- Refinement

Legend

Ο

Chen, Bihuan; Peng, Xin; Yu, Yijun; Nuseibeh, Bashar and Zhao, Wenyun (2014). Self-adaptation through incremental generative model transformations at runtime. In: 36th International Conference on Software Engineering (ICSE 2014), 31 May-7 June, 2014, Hyderabad, India, ACM/IEEE.

E-Commerce System: Goals

- quick browse response (g1)
- quick order generation (g2)
- quick payment response (g3)
- high usability (g4)
- High security (g5)
- high reliability (g6)

$$G = \sum_{i=1}^{6} w_i g_i$$

Goal-Oriented Adaptation

 reduces the dynamic adaptation as an optimization process to find a configuration that maximizes the goal G
O System

Goal-Oriented Adaptation

• can be well combined with online learning process

Esfahani N, Elkhodary A, Malek S. A Learning-Based Framework for Engineering Feature-Oriented Self-Adaptive Software Systems[J]. IEEE Transactions on Software Engineering, 2013, 39(11):1467-1493.

Rule-based Adaptation

• Encoding the adaptation logic as a set of rules:

• Can we combine the advantages of both goaloriented (guaranteeing goal satisfactory) and rulebased adaptation (being efficient) ?

View-based Approach

A Challenge

• How to guarantee that the rule-based adaptation can keep the goal satisfactory achieved from the goal-oriented adaptation?

Introduce *view* to bridge the gap between goals and rules. (*view* denotes a state that captures a specific user intention) View-based Rules (vRules)

• Introduce invariant views to rules

$$v \land C \Rightarrow \dot{A} - \text{State v is preserved by A}$$

 $\neg A; A = A$
 $\overrightarrow{\vee}$
 $v \vdash C \Rightarrow A$

To preserve view v, if C then do A.

View-based Rule Examples

 $\begin{array}{l} VerificationType = Strict \\ \vdash PayRespTimeLevel = 5 \ \land Workload = High \\ \Rightarrow VerificationDesign := Parallel; PayLog := None \end{array}$

 $\begin{array}{l} VerificationDesign = Sequential \\ \vdash VerificationType = Strict \ \land Workload = High \\ \Rightarrow VerificationType := Simple; PayLog := None \end{array}$

View-based Adaptation Framework

Evaluation

- We have implemented the e-commerce website in Java, and imposed different adaptation logics into the same website:
 - The traditional goal-oriented approach
 - The traditional rule-based adaptation approach
 - The view-based approach

Experimental Results

Conclusion

- A new view-based adaptation framework
 - combine the advantages of both learning-based goal-oriented adaptation and the rule-based adaptation
- A novel concept of view-based rules
 - an invariant view is introduced for structuring traditional adaptation rules and relating them with goals.
- Two newly developed algorithms
 - One is for the automatic derivation of views, and the other is for dynamic construction of well-behaved goal-related view-baed rule set.
- A self-adaptive ecommerce website
 - confirm the usefulness of the new approach

Where is the view-based idea originated?

0th Shonan Meeting on Bidirectional Transformation, 2008

Shonan Village Center, Japan, 2008

Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lammel, Andy Schurr, James F. Terwilliger, Bidirectional Transformations: A Cross-Discipline Perspective, International Conference on Model Transformation, ETH Zurich, Switzerland, June 29–July 3 2009.