The Distributed Cloud

Rick McGeer

Takeaway

- The Distributed, Ubiquitous Cloud is the Internet of the Future
 - The most effective way to use a network is to send a program over it.
 - Solution to the Zettaflood (soon to be the Yottaflood)
 - Enables big, interactive applications on small devices
 - New challenges: placement, security, context...

- The Zettaflood
- Big Data and Small Devices
- The Pollution Visualizer: A Case Study
- DEMO
- What is the Distributed Cloud?
- Examples of the Distributed Cloud
- Opportunities and Challenges

The Zettaflood

- A zettabyte added to the world's disks every 2 years
 - -10^{21} bytes, 10^{22} bits, 7×10^{7} seconds
 - 10¹⁴ bits/second, or 100 Terabits/second
 - Just for ingress: egress is $10 \times 100 \times$
- We don't have the network to do that
 - Major NSF announcement: 100 Gb/s network for California Universities
 - Can take < 0.1% of ingress data</p>

All Bandwidth is Local

- Typical Building:
 - outbound connection sized for 1 Mb/s/person.
 - Edge switch: 1 Gb/s/person
 - 99.9% of bandwidth internal
- City with FTTH:
 - 1 Gb/s/home, 50K homes: 50 Tb/s internal bandwidth
 - Intercity bandwidth maybe 100 Gb/s
 - 98%+ of network traffic is intracity

High Bandwidth Sensors Flood the Network

- iSight camera: 8 mp
 - -8 mp x 24 bits/pixel x 60 frames/sec = 11.4 Gb/s
 - 1.8 billion cameras in the world...
 - Cameras can generate 200 Exabits/second
- Many more examples....(VR, Internet of Things...)
- But...programs *reduce* data from sensors, *generate* it for end users
- Programs *much* smaller than the data they reduce or generate
- Bottom Line: Better to ship programs to data

- The Zettaflood
- Big Data and Small Devices
- The Pollution Visualizer: A Case Study
- DEMO
- What is the Distributed Cloud?
- Examples of the Distributed Cloud
- Opportunities and Challenges

Big Data, Small Devices

- Want to render/visualize Big Data on tablets, cell phones, netbooks...
- Data/application must be resident in Cloud
- But "Classic Cloud" is too far away from the user
 - Amazon has 5 POPs in North America
 - 20ms 50 ms away from most users
 - Need 1 ms 10 ms for interactive applications

Why Cloud-Hosted Applications?

- Universal access on many clients
 - Handheld, laptop, netbook, VR headset, AR devices
- Control over execution environment
- Enhanced security for both application and user

- The Zettaflood
- Big Data and Small Devices
- The Pollution Visualizer: A Case Study
- DEMO
- What is the Distributed Cloud?
- Examples of the Distributed Cloud
- Opportunities and Challenges

Visualize Big Data

Any Device

Today: Pick 3

Fast

Distributed Cloud: All 5

Anywhere

Collaboratively

Distributed Collaboration Around Big Data

"A World Where Distance is Eliminated" Experts Around the World Interacting With Data Visualizations as Easily as if They Were in the Same Room

Previously: Expensive Hardware (OptlPortal, CAVE) over Expensive, Special-Purpose Networks Distributed Cloud: Any Device, Anywhere, Anytime, through a Web browser

Collaboration Around Big Data

All About Size and Speed

- Data Set: 4 million points per month
- 100 MB/month

Too Much Data For Laptop
Way Too Much for Tablet/Phone/Netbook
Need Server Close to User
How Close Depends on Bandwidth

Size and Speed

Task: Draw 30,000 circles in 160 milliseconds

World at 100-km resolution

Quarter-continent at 10-km resolution

Requirement: 160-milliseconds

User studies show dropoff beyond that.

Question. Can we do that from:

Server on campus, Server in city, Server on continent, Single Server for World?

Size And Speed

	Server in Building	Server in City	Server on Continent	Worldwid e Server
Request Time	1	5	50	250
Fetch Time	20	20	20	20
Transmit Time	8	30	300	1500
Draw Time	100	100	100	100
Total	129	155	470	1870

Time To Draw 30,000 Points in milliseconds. Goal: 150 ms

Size and Speed

Response Time For Scenarios

Scenario

N. Tolia, D. G. Andersen, and M. Satyanarayanan. Quantifying interactive user experience on thin clients. Computer, 39(3):46–52, 2006.

- The Zettaflood
- Big Data and Small Devices
- The Pollution Visualizer: A Case Study
- DEMO
- What is the Distributed Cloud?
- Examples of the Distributed Cloud
- Opportunities and Challenges

- The Zettaflood
- Big Data and Small Devices
- The Pollution Visualizer: A Case Study
- DEMO
- What is the Distributed Cloud?
- Examples of the Distributed Cloud
- Opportunities and Challenges

What Is The Distributed Cloud?

- First Approximation: EC2 with 50 PoPs across the US
 - Key difference: instantiate VMs in specific places, not just number of VMs
- Second Approximation: Layered Services

GENI Experiment Engine

Lively as a Service

Containers as a Service

VMs as a Service

Hardware as a Service

- The Zettaflood
- Big Data and Small Devices
- The Pollution Visualizer: A Case Study
- DEMO
- What is the Distributed Cloud?
- Examples of the Distributed Cloud
- Opportunities and Challenges

PlanetLab

- 1300 nodes at approx 400 sites worldwide
- Bare containers as a Service

GENI

- 50 baby racks across the US
- Full stack
 through
 ProtoGENI and
 the GENI
 Experiment
 Engine

SAVI (Canada)

- One "Core Node" (Large Rack)
- Several "Edge Nodes" (Baby Rack)
- OpenStackbased

FED4FIRE (EU)

- Federation of Cloud/Testbeds
- Based on GENI
 Software Stack

Vnode/Flare (Japan)

As of 2/5/2015

- The Zettaflood
- Big Data and Small Devices
- The Pollution Visualizer: A Case Study
- DEMO
- What is the Distributed Cloud?
- Examples of the Distributed Cloud
- Opportunities and Challenges

New Opportunities

- Collaboration Across Continents
- Application- and group-specific virtual internets
- Secure online education platform with realtime response
- Prototype for SmartCities/IoT
- Key technology behind 5G Wireless
 - 5G Wireless moves computation to the edge

Key Problems To Solve

- Heterogenous ownership/administration
 - Key early experiment: federating SAVI and GENI
 - GENI users can now use SAVI testbed and vice-versa
 - Can build services spanning both infrastructures
- Heterogeneity key since it permits grassroots infrastructure
- Location- and context-aware programs
 - Know where and which infrastructure is being used

Takeaway

- The Distributed, Ubiquitous Cloud is the Internet of the Future
 - The most effective way to use a network is to send a program over it.
 - Solution to the Zettaflood (soon to be the Yottaflood)
 - Enables big, interactive applications on small devices
 - New challenges: placement, security, context...

