EASSy 2015 (Sep. 7, 2015)

How to Capture Context and Context-dependent Behavior

Tetsuo Tamai (Hosei University)

Kumiki Project Series

- Grant-in-Aid for Scientific Research (KAKEN)
- Sponsored by MEXT (Ministry of Education, Culture, Sports, Sciences and Technology)
 Kumiki 1 (2001/10-2006/3)
 Kumiki 2 (2006/4-2010/3)
 Kumiki 3 (2010/4-2014/3)

"High Reliability Component-Based Software Engineering" Members: T. Tamai*, E. Shibayama, H. Masuhara, S. Nakajima, N. Ubayashi, A. Igarashi

How to design components and composition
 How to enhance reliability of

components and systems integrating components

Clean and flexible modularization to conquer structural complexity Formal reasoning to conquer behavioral complexity

Component & composition design

- Collaboration Model: Epsilon (T.Tamai et al.)
- Aspect Oriented Model (H.Masuhara et al.)

Formal verification

- Model checking component framework (Nakajima & Tamai)
- Variant parametric type system (A.Igarashi)

"Aspect-Oriented Software Development for Productivity and Reliability"

Members:

- T. Tamai^{*}, S. Chiba, H. Masuhara,
- S. Nakajima, N. Ubayashi, A. Igarashi

Motivation

Software is in everywhere but getting invisible ever more.
Much pressure on software providers w.r.t. shorter development cycle, variety of versions and high reliability

Our Approach

Clear modularization

- modules corresponding to features and concerns
- clear boundary
- correct internal structure and behavior
- flexible composition
- method for assuring safety and reliability of systems as composites

Targets & Results

- Propose new design methods, languages and verification methods for AOP
- Develop aspects for security, redundancy and other measures for reliability
- Integrate methods and tools to establish AOSD methodology covering requirements to evolution

- Modularization integrating hierarchical and crosscutting concerns in the post-aspectorientation era"
- Members:
 - S. Chiba*, H. Masuhara, T. Tamai,
 - S. Nakajima, N. Ubayashi, A. Igarashi,
 - T. Kamina

New language mechanism integrating hierarchical and cross-cutting modularization Predicate dispatching mechanism Context Oriented Programming Supporting theory Modeling method

- AOP has been producing practical results but not so widely accepted in industry as OOP.
- The reason may be complexity brought by two different modularization mechanisms for cross-cutting and hierarchical concerns.

Modeling 🔶 Tamai, Nakajima Design & Implementation Chiba, Masuhara, Ubayashi Theory 🔶 Igarashi, Kamina International collaborator: Robert Hirschfeld

Modularization mechanism

- Language GluonJ extending predicate dispatching
- Type theory for GluonJ
- Extending Context-Oriented Programming
 - Language EventCJ integrating COP and event-driven mechanism
 - Fundamental language model L, integrating method dispatching by class and by layer (with R. Hirschfeld)
- UML4COP: modeling method for COP
- CJAdviser: debugging tool for COP

What is Context?

Context diagram in "Structured Analysis" and "Problem Frame" relation between the system to be developed and the outer world where the system be deployed.

Context Diagram of Problem Frame

by Fred the Oyster

Recent Focus on "Context Change"

context change as Invite the driving force for behavior adaptation motivation mobile computing ubiquitous (pervasive) computing context-awareness is required to adaptive systems

Example Problems

[Kamina et al. 2015]

- Conference guide system
- CJEdit program editor
- Maze-solving robot simulator
- [Sutcliffe et al. 2006]
 - e-Mail for cognitively disabled users
 - Navigation support system
- [Tamai & Monpratarnchai 2014]
 - Traffic jam monitoring

What Determines Context?

Location

- GPS, indoor/outdoor, floor/room/section, home/office, ...
- Time
 - season, day/night, weekday/weekend, ...
- Natural environment
 - temperature, weather, ...
- Technical environment
 - online/local, device type, battery status, ...
- Social environment/personal properties

How Does it Affect Behavior?

In COP,

- layers to modularize contextdependent behavior
- layers dynamically activated/deactivated

Interactive Context

- Context determined by actors within and their interaction
 - fit to social environment but also others e.g. location and time context of home/office
 - behavior of actors determined by their roles
 - wife & husband, employer & employee

Context and Roles

Epsilon Model

- Contexts encapsulate collaboration fields enclosing a set of roles.
- Objects freely enter a context by binding to roles and leave a context by unbinding the ties to roles.
- Objects can belong to multiple contexts at a time.
- Contexts (with roles) are independent reuse components to be deployed separately from objects.

Context, Roles and Binding

How Context Changes

By entering one context instance

Switching from one context to another

Context attribute values change

How Behavior Changes

By entering a context and binding with a role, an object obtains new behavior of the role or changes its behavior by the overriding mechanism.

Example for Comparison

- "Has-network" context of the conference guide system
 - ♦ COP
 - HasNetwork layer is defined and condition for activation declared
 - A class declares the layer
 - Epsilon
 - Network context is defined with node roles
 - An object binds with a node role instance