
Shinichi Honiden, Yasuyuki Tahara

1

2

 Software evolution: activity for adapting to
requirements changes

 Play central role in overall software lifecycle

 Recent topics: continuous software evolution
◦ Continuous delivery

 Reliable Software Releases through Build, Test, and Deployment
Automation

 Background: continuous evolution to satisfy frequently-changed
user requirement

 Online shopping system
◦ Current version: No security

 Evolving two times
◦ First evolution: to add the authentication function with IDs

and passwords

◦ Second evolution: to add the two-factor authentication
function requiring users to exchange additional secret codes
using smart phone applications or e-mails

4

 Screenshot of browser before evolution

 After the first evolution

 After the second evolution

5

 Goal model before evolution

6

 Sequence diagram before evolution

 Goal model after the first evolution

8

Added parts

 Sequence diagram after the first evolution

Added parts

 Goal model after the second evolution

Added parts

 Sequence diagram after the second evolution

Added parts

 How to implement dynamic evolution?

 Our Approach: use of Javassist that is a class library
providing reflection functionalities for Java programs

12

 Dynamic evolution using reflection
◦ Reflection: System accesses to and manipulates itself from

the metalevel to the internal representation of object-level

13

Internal representation
of object-level

Metalevel

Object-level

Access

Manipulation

Data

Program

Call stack

Add the method

 Dynamic evolution using reflection
◦ Rewrite programs without interrupting system operation

◦ Javassist: Java class library for operations on Java byte
code

 Java programs can rewrite themselves at run time

 Example of use of Javassist

14

public static void main(String[] args) throws Exception {
ClassPool cp = ClassPool.getDefault();
CtClass hs = cp.getCtClass("javax.servlet.http.HttpServlet");
CtClass sfa = cp.makeClass("jp.ac.uec.tahara.eShop.SecondFactorAuthenticater", hs);
CtMethod m = CtMethod.make(

"public static String generateCode() {¥n"
// omitted

+ " }", sfa);
sfa.addMethod(m);

Create a new class
Create a new method

 Dynamic evolution using reflection
 Example of use of Javassist

15

Metalevel

Object-level

SecondFactorAuthenticate
class

Create

Add method

SecondFactorAuthenticate
class

 Dynamic evolution using reflection
◦ Example of use of Javassist (cont’d)

16

CtClass ru = cp.getCtClass("jp.ac.uec.tahara.eShop.RegisterUser");
// omitted
m = ru.getDeclaredMethod("processRequest");
m1 = CtMethod.make(

"protected void processRequest(HttpServletRequest request,
HttpServletResponse response)¥n"

// omitted
+ " }", ru);

m.setBody(m1, null);

Get existing class

Get existing method
Create a new method body

Replaces the method body

 Dynamic evolution using reflection
 Example of use of Javassist

17

Metalevel

Object-level

RegisterUser class

Internal representation

Change a method

RegisterUser
class

RegisterUser
class

Replaced

 Why reflection?
◦ Comparison with other techniques w.r.t. the unit of changes

◦ Reflection is the only technique that enables systems to
change their own program in detail

18

Techniques Unit of changes

Design patterns Classes or methods

Architectural patterns Components

Autonomic patterns Resources accessed by actions defined in policies

Middleware-based effectors Dependent on middleware's functionalities

Dynamic aspect weaving Aspect

Function pointers Functions

Reflection Program of the system itself in detail

 Why reflection?
◦ Comparison with other techniques w.r.t. the locations of

changes

◦ Reflection is the only technique that can change anywhere
in the program

19

Techniques Locations of changes

Design patterns Locations where the patterns are applied

Architectural patterns Locations where the patterns are applied

Autonomic patterns Resources accessible by actions defined in policies

Middleware-based effectors Locations accessible by the middleware

Dynamic aspect weaving Join points that can be specified by pointcuts

Function pointers Locations where the functions are called

Reflection Anywhere in the program

 Needs of dynamic software evolution
◦ To deal with rapidly changing requirements and

environments

◦ Without interruptions of system operation

 Service-down costs several thousands of dollars per minute*1*2

20

*1 http://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/
*2 http://www.compudata.com/calculating-costs-of-it-downtime/

Ordinary system operation

Engineering activities
Development
of the
program for
evolution
behaviors

Deployment of
the program

Execution of
evolution

Concurrent execution part

Before evolution After evolution

User 1

User n

・
・

 In the case of the second evolution

ID,
password

User 1
Authentication
process with ID
and Password

ID,
password

・
・

User n

 In the case of the second evolution

ID,
password

User 1

Start
dynamic
evolution

Authentication
process with ID
and Password

Two-Factor
Authentication
process

?

Engineer

ID,
password

・
・

User n

 Issue: complicated behaviors
◦ Concurrent execution of the ordinary system operations for

many users and the evolution behaviors may lead to
unexpected states

24

*1 http://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/
*2 http://www.compudata.com/calculating-costs-of-it-downtime/

 Verified property
◦ anytime the users can access the shop and the shop

properly deals with the users’ orders
◦ Under the assumption that the system treats all the users

fairly (even if more than 100 or 1000 users at the same
time)

27

 Issues

◦ How to express the behavior specifications of the dynamic
evolution using reflection?

 Our Approach: use of model checking

28

 Concurrent execution of the ordinary system
operations and the evolution behaviors

 Various accesses by many users in various timings
◦ Before and during evolution

 State space explodes to an enormous size

29

 Model checking would be promising for verification of
evolution behaviors
◦ Full coverage for possible behaviors

◦ Automated verification

 Issues in model checking dynamic evolution
◦ Difficult to write behavior specifications

 Most model checkers cannot deal with dynamic changes of
specifications directly

◦ State explosion: numbers of states to be explored become
enormous for large-scale systems

30

 Algebraic specification language

 Useful to write behavior specifications of distributed
object-based systems

 Support of reflection
◦ Treating constructs of object-level specifications as

metalevel terms (representations of data)

◦ Metalevel simulates object-level behaviors

 Effective theoretical basis of abstraction

 Model checkers

31

 Outline

32

Maude specification
Properties to be

verified

Automated tools

Maude
specification

generator

Maude model
checker

Source code
generatorSource code skeleton

of program carrying
out evolution

Goal models and sequence diagrams

Before evolution

After evolution

Create

if true

Add properties

 First evolution: addition of the authentication
functionality
◦ Verified property: anytime the users can access the shop

and the shop properly deals with the users’ orders

 Under the assumption that the system treats all the users fairly

◦ Verification time (in milliseconds)

33

No. of users Before evolution During evolution

1 80 120

2 200 1084

3 2432 42956

 Second evolution: addition of the two-factor
authentication functionality
◦ Verified property: the same

◦ Verification time (in milliseconds)

34

No. of users Before evolution During evolution

1 644 696

2 1948 3124

3 43772 117252

 Details of our proposed approach how to
solve issues
◦ Procedure
◦ Application to the motivating example
◦ Theoretical validation of abstraction

 Discussions
◦ Advantages and limitations of our proposed

approach
◦ Comparison with other approaches
◦ Future work

35

