Recursion schemes for P, NP and Pspace

Isabel Oitavem

CMAF-UL and FCT-UNL

P, NP, Pspace: models of computation

» Model of computation

» Ptime: Deterministic TM;
» NP: Non-deterministic TM;
» Pspace: Alternating TM.

» Resource constraint: polynomial time.

P, NP, Pspace: models of computation

» Model of computation

» Ptime: Deterministic TM;
» NP: Non-deterministic TM;
» Pspace: Alternating TM.

» Resource constraint: polynomial time.

DTM
Co Ce
| A
G (&)] o]
| A A

(&) Coo Co1 Cio C11

NP, Pspace: models of computation

NTM ATM
v V/A
A A
v v V/N V/A
A A A A
V VoV oV V/AV/A VIAV/A
final states 0 or 1 final states 0 or 1

Go back

Recursion-theoretic approach

» One works over W =< ¢, 5y, 51 >.
» Class of initial functions Z:

€, So and S; (the constructores of the algebra);
(predecessor);

P
C (case distinction);
7

>
>
>
> (projections).

Recursion-theoretic approach

» One works over W =< ¢, 59, S; >.
» Class of initial functions Z:

» €, So and 51 (the constructores of the algebra);
» P (predecessor);

» C (case distinction);
» 7 (projections).

[Z; Composition, Recursion schemes]

Recursion-theoretic approach

P C NP C Pspace

FPtime C C FPspace

Recursion-theoretic approach

P C NP C Pspace

FPtime C FPtime U NP C FPspace

Recursion-theoretic approach

P C NP C Pspace

FPtime C FPtime U NP C FPspace
—_———
FNPtime

Recursion-theoretic approach

P C NP C Pspace

FPtime C FPtime U NP C FPspace
~—_———
FNPtime

> : machine independent, but resource
dependent.

> : machine and resource independent.

Implicit recursion-theoretic approach
Functions have two sorts of input positions, normal and safe:
(% 7).
Input-sorted initial functions S7:
» €, So(; x) and S;(; x) (the constructores of the algebra);
» P(; x) (predecessor);
» C(;x,y, 20,21) (case distinction);

» 7" (projections over both input sorts).

Input-sorted composition €: f(x;y) = g(7(x;); 5(x;¥)).

[SZ; SC, Input-sorted Recursion]

Implicit recursion-theoretic approach: FPtime

FPtime = [SZ;SC,SR] (Bellantoni-Cook 1992)
(Input-sorted recursion over W): 3
fle,x;y) = &(e,x.y)
f(20,%y) = h(20,%;y,f(z,%, 7))
f(z1,%y) = h(z1, %y, (2, % 7))

Implicit recursion-theoretic approach:

FPtime = [SZ;SC,SR] (Bellantoni-Cook 1992)
FPspace = [SZ;SC,STR] (Mamino and O.)

SR (Input-sorted recursion over W):

fle,x;7) = g(e,%;y)
f(20,%;y) = h(z0,%;y,f(z. %X, ¥))
f(z1,x;y) = h(z1,x;y,f(z.X,¥))

Implicit recursion-theoretic approach:

FPtime = [SZ;SC,SR] (Bellantoni-Cook 1992)
FPspace = [SZ;SC,STR] (Mamino and O.)

SR (Input-sorted recursion over W):

fle,x;7) = g(e,%;y)
f(z0,x;y) = h(z0,x;y,f(z, X, ¥))
f(z1,x;y) = h(z1,x;y,f(z.X,¥))
STR:
f(e,;7.p) = gle, X7, p)
f(20,%;y,p) = h(z0,%;y,f(z,%, 7, p0), f(z,%; 7, p1
f(z1,x,y,p) = h(z1,%,y,f(z,%7,p0), f(z,% ¥, p1))

Implicit recursion-theoretic approach: FNPtime

FPtime C FPtime U NP C FPspace
N————
FNPtime

FNPtime = [FPtimeac;?, |

Implicit recursion-theoretic approach: FNPtime

FPtime C FPtime U NP C FPspace
N————
FNPtime

FNPtime = [FPtimesc;?, |

COMPgc: f()_() = h(g’()_()) with g € FPtimegc

Implicit recursion-theoretic approach: FNPtime

FPtime C FPtime U NP C FPspace
N————
FNPtime

FNPtime = [FPtimeBC; COMpgc, ?]

COMPgc: f()_() = h(g’()_()) with g € FPtimegc

Implicit recursion-theoretic approach: FNPtime

FPtime C FPtime U NP C FPspace
N————
FNPtime

| |
SR ? STR

FNPtime = [FPtimegc; COMPg, 7]

COMPgc: f(x) = h(g(x)) with g € FPtimegc

Implicit recursion-theoretic approach: FNPtime

FPtime C FPtime U NP C FPspace
—_———
FNPtime

| |
SR ? STR

FNPtime = [FPtimesc; COMP5c, 7]

STR:
fle,x;y,p) = gle, X y,p)
f(ZOa)_(;)_/>p) = h(ZO,)_(;_)_/, f(Z,)_(,_)_/,pO), f(Z,)_(}7,,01))
f(z1,x,y,p) = h(z1, %y, f(z,% ¥, p0), f(z,X; ¥, p1))

Implicit recursion-theoretic approach: FNPtime

FPtime C FPtime U NP C FPspace
—_———
FNPtime

| |
SR ? STR

FNPtime = [FPtimegc; COMPgc, STR[V]] (O 2011)
STR[V]:
fe,x:.7,p) = g€, X ¥, p)
f(z0,%;y,p)=V(; f(z,xy
f(zL,x;y,p)=V(; f(z,xy

Implicit recursion-theoretic approach: FNPtime
STR[V]:

f(20,%;y,p) = V(f(z,%,y,p0),f(z,X,y,pl))
F(z1,%:7.p) = V(f(z,% 7, p0), f(2,%: ¥, p1))
Example:

f(11;¢€) leads to V(V(g(00),g(01)),V(g(10),g(11)))

v
A
VAR,

A A

g00 g01 g10 gl1

Implicit recursion-theoretic approach: FNPtime
STR[V]:

Example:
f(11;¢€) leads to V(V(g(00),g(01)),V(g(10),g(11)))

V
A\
V V
A\ A
g00 g01 g10 gl1

Only the addresses of the leaves are available.
All internal nodes have the same (disjunctive) label.

Implicit recursion-theoretic approach

Input-sorted composition SC: f(x;y) = g(7(x;);

If F(x;y) is in the class then
» f(x,y;) = F(x;y) is in the class;
» f(;x,y) = F(x;y) is NOT in the class.

[
X
<

Implicit recursion-theoretic approach: FPtime

SR: fe,x;¥) = gle, % ¥)
f(z0,x;y) = h(z0,x;y,f(z.X,¥))
f(z1,xy) = h(z1,x,y,f(z.X,¥))

» Concatenation: @(e; x) = x

®(y, x;) is in the class.
@(;y,x) is NOT in the class.

Implicit recursion-theoretic approach: FPtime
SR: fle.x:y) = gle, % 7) =
f(20,%,y) = (0,x Y f(z,% 7))
1 7))

®(y, x;) is in the class.
®(; y, x) is NOT in the class.

» exp such that | exp(z)| = 27!

exp(e) =1
exp(zi) = ®(exp(z), exp(z))

Implicit recursion-theoretic approach: FPtime

SR: f(>'<7) g(e, y)
f(20,%,y) = h(20,%; ¥, f(z,%; ¥)
F(e1,%:5) = W21, %7, (2. 5.7)

‘<|

» Concatenation: @(¢; x) = x
®(y0; x) = So(; &(y; x))
®(yl; x) = Si(B(yi x))

®(y, x;) is in the class.
®(; y, x) is NOT in the class.

» exp such that | exp(z)| = 27!

exp(e;) =1
exp(zi;) = ®(; exp(z), exp(z)) PROBLEM!

<<

Implicit recursion-theoretic approach: FPtime

SR (Input-sorted recursion over W):

fle,x;y) =g, %)
f(20,%;y) = h(z0,%; ¥, f(z,%, 7))
f(z1,xy) = h(z1,x,7,f(2,%, 7))

Example: f(11;) leads to h(11; h(1; g(¢;)))

R —>— =

Implicit recursion-theoretic approach: FPtime

SR (Input-sorted recursion over W):

fle,xy) = g(e,%¥)
f(z0,x;y) = h(z0,x;y,f(z,X; 7))
f(z1,x,y) = h(z1,x;y,f(z,%; 7))

Example: f(11;) leads to h(11; h(1; g(¢;)))

R —>— =

SR reproduces the sequential structure of deterministic
computations. <<

Implicit recursion-theoretic approach: FPspace
STR:

Example: f(11;

h(11; h(L; g(e;

o
o =

0),g(e; 01)), h(1; g(e; 10), g(e 11))).

h

A
h h

A\ A
g00 g01 gl10 gl1

Implicit recursion-theoretic approach: FPspace
STR:

fle.x:y,p) = 8(e, %7, p)
f(z0,x;y,p) = h(z0,x;y,f(z,X;y,p0), f(z,x;y,pl))
f(z1,%y,p) = h(z1,xy, f(z,x;y.p0), f(z.X; ¥, p1))
Example: f(11;¢) leads to
h(11; h(1; g(€;00), g(e; 01)), h(1; g(e; 10), g(e; 11))).
h
A
h h
A A

g00 g01 gl10 gl1

The mentioned input is the pointer, and it gives the address
from the root of the tree to the leaves. <

STR trivially extends SR.

