Formal Security Proofs with 1CC

David Nowak

LIFL, CNRS & Lille 1 University
Joint work with Sylvain Heraud and Yu Zhang

Shonan Meeting on
Implicit Computational Complexity and applications:
Resource control, security, real-number computation

November 4-7, 2013
http://shonan.nii.ac.jp/seminar/033/

http://shonan.nii.ac.jp/seminar/033/

Outline

Formal security proofs in the computational model

Bellantoni-Cook

SLR

CSLR

Outline

Formal security proofs in the computational model

The problem with security proofs in cryptography

» Wrong proofs often find their way into top-level conferences.

An infamous example: RSA-OAEP
Industry-wide standard (PKCS#1 V2, IEEE P1363)

» It was supposedly proved highly secure (Eurocrypt'94).
» In fact, the proof had important holes (Crypto'01).
» Those holes were finally(?) fixed by Pointcheval in 2005.

» Sometimes there are hidden assumption
used in the proofs, but not stated in the theorem

» Some other a subtle point is underestimated by an author:
“One sees that...", “trivial" or “The reader may easily
supply the details.”

Formal security proofs within a proof assistant

function C
true statement L[

algorithm
proof

C
C

program
formal proof

» Formal security proofs in proof assistants:
» In Coq [Affeldt et al. 2007, Nowak 2007, 2008, Barthe et al.

2009]

Formal security proof for RSA-OAEP [Barthe et al., 2011]
» In Isabelle [Berg, 2013]

» But none of the above frameworks deals with complexity.

The proof assistant Coq
> Based on a kernel which checks that:
a given proof term p is really a proof of a given statement H.

» A tactic language (metalanguage) for building proofs
incrementically

» Decision procedures and heuristics
» Notations, implicit parameters, coercions. . ..

> A standard library:
arithmetic, analysis, polymorphic lists. ..

> The kernel is the only critical part:
it will reject wrong proof terms.

The computational model

» Cf. Tuesday's talk by Bruce.

» Bruce's talk on Tuesday was on the computational soundness:

Under which condition do we have the following?
security in the symbolic model (Dolev-Yao) by logicians

4

security in the computational model by cryptographers

> In this talk, | am talking about security proofs made directly
in the computational model by cryptographers.

Security in the computational model

» An adversary is a function computable in probabilistic
polynomial time (PPT),
i.e., executable on a Turing machine extended with a read-only
tape that has been filled with random bits, and working in
worst-case polynomial time.

» A cryptographic scheme is a set of PPT functions.
They are PPT:

» for usability,
» and also because they might be used by the adversary which
has to be PPT.

> A security property is modeled as a probabilistic algorithm,
i.e., a challenge that is to be solved by the adversary.

Example: ElGamal public-key encryption scheme

» ElGamal consists of the three following algorithms:

keygen() = x & Zq; pk < v; sk < x; return (sk, pk)

encrypt(pk,m) = y ¥il Zg; ¢ < (7,pkY *m); return c

2
— ; return m
Csk
1

decrypt(sk, (c1,¢2)) = m «

» Correctness is obvious: decryption indeed undoes encryption.

» Security is not so obvious.
In fact, what do we mean by security?

Example: Semantic security

» In English: The challenger says to the adversary
“Give me two plaintexts; | will select one by flipping a coin,
encrypt it, and give you the resulting cyphertext; You must
then guess which of the two plaintexts | have encrypted.”

> As a probabilistic algorithm:

(pk,sk) < keygen() ;
R
r +— R;
(m1, m2) < Ai(r, pk) ;
b & {1,2};
¢ <« encrypt(pk, mp) ;
b « Ax(r,pk,c);
return b= b
The cryptographic scheme is said "semantically secure” if for

any adversary (A1, Az), the probability that this game returns
true is negligibly close to %

Security proofs in the computational model

» A security proof rely on a computational hypothesis,
i.e., a problem that is believed not to be solvable in
polynomial time.
Example: Decisional Diffie-Hellman (DDH)
No efficient algorithm can distinguish between triples of the
form (v*,7Y,v¥) and (v*,~¥,~%) where x, y and z are
chosen randomly in Zg.

» Security proofs are done by contradiction:
You assume an adversary A that can break the scheme (e.g.,
win the semantic security game).
And, by using A, you build (usually, by game-hopping) another
adversary that can break the computational hypothesis.

Why ICC?

> |If you want to entirely formalize the proof in a proof assistant,
you must formally prove that the newly built adversary is PPT.

» We do not want to count explicitly the number of steps in a
precise execution model such as a Turing machine.

» We are interested in the complexity class, independently of
the execution model.

» The right approach is ICC:

Complexity Programming

class ,, J language

Outline

Bellantoni-Cook

The complexity class FP

» A function problem:
Given an input x, output y such that x R y.

» A function problem is solvable in polynomial time if there
exists a deterministic Turing machine M and a polynomial p
such that:

» On an input x, machine M halts after at most p(|x|) steps, and

» M(x)=yiff xRy

> FP is the set of function problems that can be solved by a
deterministic Turing machine in polynomial time.

Turing machines in Coq?

v

It is not difficult to define Turing machines in Coq.

v

But it is difficult to find a definition that will be usable.

» Even on paper, authors adapt the definition to their purpose
» Moving head: {L,R} or {L,R,N}?
» One or more tapes?

> L

We need an alternative definition of FP.

v

An alternative definition of FP

» FP by Cobham (1964):
i. Constant 0
ii. Projection 77(x1, ..., %) = x;
iii. Successors sij(x) =xi forie€ {0,1}
iv. smash 2/l-bel

v. Recursion f(0,X%) = g(x)
f(yi,x) = hi(y,x, f(y,x)) foryi#0
[f(y,x)|<=lj(y,X)| (rec_bounded)
where g, hg, h; and j are in this class
vi. Composition f(x) = h(7(x))
where h and ¥ are in this class

Cobham = FP

» This is exactly the class of functions computable in
polynomial time on a deterministic Turing machine.

» The proof by Cobham uses a particular class of Turing
machines but it is incidental. The results also holds with:

» more than one tape,
» multi-dimensional tapes,
> instruction to erase the whole tape,

> intruction to reset a scanning head.

> L

» We take Cobham’s definition for FP.

A syntactic characterization of FP

» FP by Bellantoni and Cook (1992):
i. Constant 0
ii. Projection 7rjf"’"(x1, e X X s - - s Xmn) = Xj
iii. Successors s;(;a) =ai forie {0,1}
iv. Predecessor p(;0)=0 and p(;ai)=a

v. Recursion £(0,x;3)=g(x;3)
f(yi,x;3)=hi(y,x;3,f(y,x;3)) foryi#0
where g, hg and h; are in this class

vi. Composition 1(x;3) = h(7(x;); t(x;3))
where h, 7 and t are in this class

» There are two kind of variables separated by a semicolon:

f(x1,. . Xn; 31, ...,as)
—— ——

normal safe

Why Bellantoni-Cook is more convenient than Cobham

» When defining a recursive function f with Cobham, one has
to exhibit a Cobham function j such that

1y, ¥)| <= Ly, %)

In other words, there is a proof obligation.

» No such bound has to be proved with Bellantoni-Cook:
This is a purely syntactic characterization of FP.

Bellantoni-Cook in Coq [Heraud and Nowak, 2011]
» Deep embedding of Cobham and Bellantoni-Cook classes

» Differences with the paper proof:

» Fully constructive and tighter translations in both directions

» We consider function on bitstrings instead of positive integers:
As in cryptography, we distinguish bitstrings such as 010 and 00010.

> Integration with Certicrypt

» Although Bellantoni-Cook is a purely syntactic
charaterization of polytime functions,
it lacks features as a programming language:
For example, for binary addition we would like to change the
carry bit in the recursive call.

Outline

SLR

SLR: Generalization to higher order

» SLR (Hofmann, 1997): a simply-typed lambda calculus with:

» an S4 modality [, and
» linear function spaces (—o).

> It generalizes Bellantoni and Cook's scheme to higher-order.
» A function with m normal and n safe variables has type:
(ON)" = N" = N
> It denotes a function f whose size is bounded:

f(x;3)| < P(Ix]) + max([al)

» Linear functions are not needed to characterize polytime:
They are an additional feature.

» Subtypinggt A—B <. A—-B < UOA—>B

> There is a type inference algorithm.

Examples of SLR functions and their inferred types

AxA x

AMAZTB AXAF x

AEAZB \xA f x

MEAZB A gAZANXA f(g x) -

A—oA

:(A—-B)—A—B

. (DA— B) - 0A— B

(DA—-B) -0OA—A) —-0OA—=B

Safe recursion in SLR

» SLR comes with a safe recursor:
saferecy, : ON - A— (ON—-A—-A) - A

Its semantics is:

v

safereca 0 g h = g
safereca n g h = h n (safereca |[n/2| g h) when n# 0

Example: sq x computes a value in the order of x?:

v

sq:ON = N = Xx".saferecy x 1 (AyM.Aq".s0(509))

We can iterate sq: MN.sq(sgx) : ON—= N

v

v

But the following exponentially-growing function is ill-typed:

MxN saferecy x 1 (Ay"N.Ax".sq x)

Relation between Bellantoni and Cook’s class and SLR

1. Define the category C of Bellantoni and Cook’s functions.

» Objects are pair of natural numbers
(meant to be numbers of normal and safe arguments)
» A morphisms from (m, n) to (m’,n’) is a pair of Bellantoni and

Cook’s functions ((flm’o, N A W A f,ﬁ”"))

2. Embed C in the category C of presheaves over C
(i.e., the category of contravariant functors from C to Set).

It is a standard application of Yoneda Lemma to
embed first-order functions into a model of
a higher-order typed language.

[N] = Home(—, (0,1))
[A— B]=[A— B] =[A] = [B]
[OA = B] = [0A — B] = O[A] = [B]
3. Theorem (Hofmann) There is a bijection between the set of
natural transformations from [N]™ x [N]" to [N] and the set
of (m, n)-ary functions in Bellantoni and Cook’s class.

SLR in Coq

Bellantoni-Cook's class and its
link to the complexity class FP

Yes (cf. Part 1)

SLR and its type system

Yes, but without linear types

Type inference

No

The category C of polytime | Yes
functions

Embedding of C into the cate- | Yes
gory C of presheaves

Set-theoretic semantics Yes
Presheaf semantics Yes

Logical relation between the
two semantics

In progress, but Coq is too slow

Lessons learned from the formalization

» Category theory provides a very concise and abstract language
for formal mathematics:

Abstraction allows to factorize and thus reduce the
development effort.

» When writing a statement in category theory, a lot of details
are omitted because they can be recovered by the reader
without ambiguity.

» Coq also can automatically recover the missing details thanks
to mechanisms such as: implicit arguments, coercions...

> However, with category theory you need to push Coq to its
limits:
» Concise terms on screen can give rise to huge terms internally
that will slow down Coq.
> In some cases, the coercion mechanism needs type annotations.

» You must keep track of universes to avoid universe
inconsistencies.

Outline

CSLR

Adding a 0,1-valued oracle

v

(Mitchell et al., 1998) extend SLR with a 0,1-valued oracle.

Another standard categorical technique is used:
The Kleisli construction

v

OSLR characterizes probabilistic polytime functions.

The oracle is a kind of side-effect:
The resulting value depends of the evaluation strategy.

v

v

It makes difficult to build a logic upon the language.

v

A standard solution used by (Zhang, 2009) is to hide the
side-effect with a monadic type.

CSLR

CSLR (Zhang, 2009) extend OSLR with monadic types:
Tu= | Tr

They distinguish at type level between
deterministic and probabilistic computations.

The type N is replaced by the type Bits for bitstrings.

» 0 and 00 (for example) are different bitstrings in CLSR
but were identified to the nu mber 0 in SLR.

Expressions are extended with probabilistic computations:
s
en= ---|rand | return(e) | x < e1; e

It allows to build a logic for reasoning about computational
indistinguishability.

An example of CSLR function

v

To ease the reading of CSLR terms, we use syntactic sugar

> In particular, a term F defined recursively by
An.rec,(e1, e, n) is written:

F Y X\n.if nZ nil then e else ex(n, F(tail(n))),

v

The random bitstring generation:

rs < An.if (nZnil)

then return(nil)
else b <& rand; u < rs(tail(n)); return(beu)

v

Input: a bitstring
Output: a random bitstring of the same length

One can check that rs : OBits — TBits

v

Pseudo-uniform sampling

> In theoretical proofs, arbitrary uniform sampling are used.
(for example, x €g Z})
» But in practice, computers are based on binary digits:
The cardinal of a uniform distribution has to be a power of 2.
» The complexity class PPT is defined with probabilistic Turing
machines.
But probabilistic Turing machines deal with random bits only.

» Pseudo-uniform sampling in CSLR:

zrand © An. At.if t L nil
then return(0")
else v & rs(n);
ifv>n
then zrand(n, tail(t))
else return(v)

Tries to sample a value between 0 and n.
After a timeout |¢|, it returns the default value 0!"l.

Indistinguishability

>

Two CSLR terms f; and f, are computationally
indistinguishable (written as fi ~ f,) if for every term A
such that - A : OBits — 7 — TBits and every positive
polynomial P, there exists some N € N such that for all
bitstring n with |n| > N

IPELAGE A ()] ~ 1] = PeLAGE B0 = 11| < 5y
\

Two CSLR terms g1 and g» are game indistinguishable
(written as g1 ~ g») if for every term A such that
F A : OBits — T, and every positive polynomial P, there
exists some N € N such that for all bitstring n with |77| >N,

Uniform sampling

We also show that the standard practice of cryptographers,
ignoring that polynomial-time Turing machines cannot generate all
uniform distributions, is actually sound.

» CSLR? extends CSLR with a uniform sampling primitive
sample of type Bits —o TBits.

» We prove that we can freely replace the approximate uniform
sampling zrand by the truly uniform sampling sample or vice
versa in sampling-based CSLR programs, without affecting the
computational indistinguishability.

Superpolynomial constants

» Game-hopping does not preclude the possibility of introducing
games that perform superpolynomial-time computations.

> They are just idealized constructions that are used to define
security notions but are not meant to make their way into
implementations.

> CSLR;S; extends CSLR® with a set 7 of superpolynomial-time
primitives.

Conclusions

> In Coq, we currently have:

» a formalization of Bellantoni-Cook, and
» an almost finished formalization of SLR.

» We propose an extension of CSLR into CSLR? [Nowak and
Zhang, 2013] that allows for convenient formalization of

game-hopping security proofs taking into account complexity
issues.

Thank you!

	Formal security proofs in the computational model
	Bellantoni-Cook
	SLR
	CSLR

