
Formal Security Proofs with ICC

David Nowak

LIFL, CNRS & Lille 1 University

Joint work with Sylvain Heraud and Yu Zhang

Shonan Meeting on
Implicit Computational Complexity and applications:
Resource control, security, real-number computation

November 4–7, 2013
http://shonan.nii.ac.jp/seminar/033/

http://shonan.nii.ac.jp/seminar/033/

Outline

Formal security proofs in the computational model

Bellantoni-Cook

SLR

CSLR

Outline

Formal security proofs in the computational model

Bellantoni-Cook

SLR

CSLR

The problem with security proofs in cryptography

I Wrong proofs often find their way into top-level conferences.

An infamous example: RSA-OAEP
Industry-wide standard (PKCS#1 V2, IEEE P1363)

I It was supposedly proved highly secure (Eurocrypt’94).
I In fact, the proof had important holes (Crypto’01).
I Those holes were finally(?) fixed by Pointcheval in 2005.

I Sometimes there are hidden assumption
used in the proofs, but not stated in the theorem

I Some other a subtle point is underestimated by an author:
“One sees that. . . ”, “trivial” or “The reader may easily
supply the details.”

Formal security proofs within a proof assistant

function v algorithm v program
true statement v proof v formal proof

I Formal security proofs in proof assistants:
I In Coq [Affeldt et al. 2007, Nowak 2007, 2008, Barthe et al.

2009]

Formal security proof for RSA-OAEP [Barthe et al., 2011]

I In Isabelle [Berg, 2013]

I But none of the above frameworks deals with complexity.

The proof assistant Coq

I Based on a kernel which checks that:
a given proof term p is really a proof of a given statement H.

I A tactic language (metalanguage) for building proofs
incrementically

I Decision procedures and heuristics

I Notations, implicit parameters, coercions. . . .

I A standard library:
arithmetic, analysis, polymorphic lists. . .

I The kernel is the only critical part:
it will reject wrong proof terms.

The computational model

I Cf. Tuesday’s talk by Bruce.

I Bruce’s talk on Tuesday was on the computational soundness:

Under which condition do we have the following?

security in the symbolic model (Dolev-Yao) by logicians
⇓

security in the computational model by cryptographers

I In this talk, I am talking about security proofs made directly
in the computational model by cryptographers.

Security in the computational model

I An adversary is a function computable in probabilistic
polynomial time (PPT),

i.e., executable on a Turing machine extended with a read-only
tape that has been filled with random bits, and working in
worst-case polynomial time.

I A cryptographic scheme is a set of PPT functions.
They are PPT:

I for usability,
I and also because they might be used by the adversary which

has to be PPT.

I A security property is modeled as a probabilistic algorithm,
i.e., a challenge that is to be solved by the adversary.

Example: ElGamal public-key encryption scheme

I ElGamal consists of the three following algorithms:

keygen() = x
R← Zq ; pk ← γx ; sk ← x ; return (sk , pk)

encrypt(pk,m) = y
R← Zq ; c ← (γy , pky ∗m) ; return c

decrypt(sk , (c1, c2)) = m ← c2

csk
1

; return m

I Correctness is obvious: decryption indeed undoes encryption.

I Security is not so obvious.
In fact, what do we mean by security?

Example: Semantic security

I In English: The challenger says to the adversary
“Give me two plaintexts; I will select one by flipping a coin,
encrypt it, and give you the resulting cyphertext; You must
then guess which of the two plaintexts I have encrypted.”

I As a probabilistic algorithm:

(pk , sk) ← keygen() ;

r
R← R ;

(m1,m2) ← A1(r , pk) ;

b
R← {1, 2} ;

c ← encrypt(pk,mb) ;

b̂ ← A2(r , pk, c) ;

return b̂
?
= b

The cryptographic scheme is said ”semantically secure” if for
any adversary (A1,A2), the probability that this game returns
true is negligibly close to 1

2 .

Security proofs in the computational model

I A security proof rely on a computational hypothesis,
i.e., a problem that is believed not to be solvable in
polynomial time.

Example: Decisional Diffie-Hellman (DDH)
No efficient algorithm can distinguish between triples of the
form (γx , γy , γxy) and (γx , γy , γz) where x , y and z are
chosen randomly in Zq.

I Security proofs are done by contradiction:

You assume an adversary A that can break the scheme (e.g.,
win the semantic security game).
And, by using A, you build (usually, by game-hopping) another
adversary that can break the computational hypothesis.

Why ICC?

I If you want to entirely formalize the proof in a proof assistant,
you must formally prove that the newly built adversary is PPT.

I We do not want to count explicitly the number of steps in a
precise execution model such as a Turing machine.

I We are interested in the complexity class, independently of
the execution model.

I The right approach is ICC:

Outline

Formal security proofs in the computational model

Bellantoni-Cook

SLR

CSLR

The complexity class FP

I A function problem:
Given an input x , output y such that x R y .

I A function problem is solvable in polynomial time if there
exists a deterministic Turing machine M and a polynomial p
such that:

I On an input x , machine M halts after at most p(|x |) steps, and

I M(x) = y iff x R y

I FP is the set of function problems that can be solved by a
deterministic Turing machine in polynomial time.

Turing machines in Coq?

I It is not difficult to define Turing machines in Coq.

I But it is difficult to find a definition that will be usable.

I Even on paper, authors adapt the definition to their purpose

I Moving head: {L,R} or {L,R,N}?
I One or more tapes?

I . . .

I We need an alternative definition of FP.

An alternative definition of FP

I FP by Cobham (1964):

i. Constant 0

ii. Projection πn
j (x1, . . . , xn) = xj

iii. Successors si (x) = xi for i ∈ {0, 1}
iv. smash 2|x1|.|x2|

v. Recursion f (0, x) = g(x)
f (yi , x) = hi (y , x , f (y , x)) for yi 6= 0
|f (y , x)|<=|j(y , x)| (rec_bounded)
where g , h0, h1 and j are in this class

vi. Composition f (x) = h(r(x))
where h and r are in this class

Cobham = FP

I This is exactly the class of functions computable in
polynomial time on a deterministic Turing machine.

I The proof by Cobham uses a particular class of Turing
machines but it is incidental. The results also holds with:

I more than one tape,

I multi-dimensional tapes,

I instruction to erase the whole tape,

I intruction to reset a scanning head.

I . . .

I We take Cobham’s definition for FP.

A syntactic characterization of FP

I FP by Bellantoni and Cook (1992):

i. Constant 0

ii. Projection πm,n
j (x1, . . . , xm; xm+1, . . . , xm+n) = xj

iii. Successors si (; a) = ai for i ∈ {0, 1}
iv. Predecessor p(; 0) = 0 and p(; ai) = a

v. Recursion f (0, x ; a)=g(x ; a)
f (yi , x ; a)=hi (y , x ; a, f (y , x ; a)) for yi 6= 0
where g , h0 and h1 are in this class

vi. Composition f (x ; a) = h(r(x ;); t(x ; a))
where h, r and t are in this class

I There are two kind of variables separated by a semicolon:

f (x1, . . . , xn︸ ︷︷ ︸
normal

; a1, . . . , as︸ ︷︷ ︸
safe

)

Why Bellantoni-Cook is more convenient than Cobham

I When defining a recursive function f with Cobham, one has
to exhibit a Cobham function j such that

|f (y , x)| <= |j(y , x)|

In other words, there is a proof obligation.

I No such bound has to be proved with Bellantoni-Cook:
This is a purely syntactic characterization of FP.

Bellantoni-Cook in Coq [Heraud and Nowak, 2011]

I Deep embedding of Cobham and Bellantoni-Cook classes

I Differences with the paper proof:

I Fully constructive and tighter translations in both directions

I We consider function on bitstrings instead of positive integers:
As in cryptography, we distinguish bitstrings such as 010 and 00010.

I Integration with Certicrypt

I Although Bellantoni-Cook is a purely syntactic
charaterization of polytime functions,
it lacks features as a programming language:
For example, for binary addition we would like to change the
carry bit in the recursive call.

Outline

Formal security proofs in the computational model

Bellantoni-Cook

SLR

CSLR

SLR: Generalization to higher order

I SLR (Hofmann, 1997): a simply-typed lambda calculus with:
I an S4 modality �, and
I linear function spaces (().

I It generalizes Bellantoni and Cook’s scheme to higher-order.

I A function with m normal and n safe variables has type:

(�N)m → Nn → N

I It denotes a function f whose size is bounded:

|f (x ; a)| ≤ P(|x |) + max(|a|)

I Linear functions are not needed to characterize polytime:
They are an additional feature.

I Subtyping: A(B <: A→ B <: �A→ B

I There is a type inference algorithm.

Examples of SLR functions and their inferred types

λxA.x : A(A
:

λf A→B .λxA.f x : (A→ B)(A→ B
:

λf �A→B .λxA.f x : (�A→ B)(�A→ B
:

λf �A→B .λgA→A.λxA.f (g x) : (�A→ B)(�(A→ A)→ �A→ B

Safe recursion in SLR

I SLR comes with a safe recursor:

saferecA : �N → A→ (�N → A→ A)→ A

I Its semantics is:

saferecA 0 g h = g
saferecA n g h = h n (saferecA bn/2c g h) when n 6= 0

I Example: sq x computes a value in the order of x2:

sq : �N → N = λxN .saferecN x 1 (λyN .λqN .s0(s0q))

I We can iterate sq: λxN .sq (sq x) : �N → N

I But the following exponentially-growing function is ill-typed:

λxN .saferecN x 1 (λyN .λxN .sq x)

Relation between Bellantoni and Cook’s class and SLR

1. Define the category C of Bellantoni and Cook’s functions.
I Objects are pair of natural numbers

(meant to be numbers of normal and safe arguments)
I A morphisms from (m, n) to (m′, n′) is a pair of Bellantoni and

Cook’s functions
(

(f m,0
1 , . . . , f m,0

m′), (f m,n
1 , . . . , f m,n

n′)
)

2. Embed C in the category Ĉ of presheaves over C
(i.e., the category of contravariant functors from C to Set).

It is a standard application of Yoneda Lemma to
embed first-order functions into a model of
a higher-order typed language.

JNK = HomC(−, (0, 1))
JA→ BK = JA(BK = JAK⇒ JBK

J�A→ BK = J�A(BK = �JAK⇒ JBK

3. Theorem (Hofmann) There is a bijection between the set of
natural transformations from JNKm × JNKn to JNK and the set
of (m, n)-ary functions in Bellantoni and Cook’s class.

SLR in Coq

Bellantoni-Cook’s class and its
link to the complexity class FP

Yes (cf. Part 1)

SLR and its type system Yes, but without linear types

Type inference No

The category C of polytime
functions

Yes

Embedding of C into the cate-
gory Ĉ of presheaves

Yes

Set-theoretic semantics Yes

Presheaf semantics Yes

Logical relation between the
two semantics

In progress, but Coq is too slow

Lessons learned from the formalization

I Category theory provides a very concise and abstract language
for formal mathematics:

Abstraction allows to factorize and thus reduce the
development effort.

I When writing a statement in category theory, a lot of details
are omitted because they can be recovered by the reader
without ambiguity.

I Coq also can automatically recover the missing details thanks
to mechanisms such as: implicit arguments, coercions...

I However, with category theory you need to push Coq to its
limits:

I Concise terms on screen can give rise to huge terms internally
that will slow down Coq.

I In some cases, the coercion mechanism needs type annotations.
I You must keep track of universes to avoid universe

inconsistencies.

Outline

Formal security proofs in the computational model

Bellantoni-Cook

SLR

CSLR

Adding a 0,1-valued oracle

I (Mitchell et al., 1998) extend SLR with a 0,1-valued oracle.

Another standard categorical technique is used:
The Kleisli construction

I OSLR characterizes probabilistic polytime functions.

I The oracle is a kind of side-effect:

The resulting value depends of the evaluation strategy.

I It makes difficult to build a logic upon the language.

I A standard solution used by (Zhang, 2009) is to hide the
side-effect with a monadic type.

CSLR

I CSLR (Zhang, 2009) extend OSLR with monadic types:

τ ::= · · · | Tτ

They distinguish at type level between
deterministic and probabilistic computations.

I The type N is replaced by the type Bits for bitstrings.
I 0 and 00 (for example) are different bitstrings in CLSR

but were identified to the nu mber 0 in SLR.

I Expressions are extended with probabilistic computations:

e ::= · · · | rand | return(e) | x
$← e1; e2

I It allows to build a logic for reasoning about computational
indistinguishability.

An example of CSLR function

I To ease the reading of CSLR terms, we use syntactic sugar

I In particular, a term F defined recursively by
λn . recτ (e1, e2, n) is written:

F
def
= λn . if n

?
= nil then e1 else e2(n,F (tailtailtail(n))),

I The random bitstring generation:

rsrsrs
def
= λn . if (n

?
= nil)

then return(nil)

else b
$← rand; u

$← rsrsrs(tailtailtail(n)); return(b•u)

I Input: a bitstring
Output: a random bitstring of the same length

I One can check that ` rsrsrs : �Bits→ TBits

Pseudo-uniform sampling

I In theoretical proofs, arbitrary uniform sampling are used.
(for example, x ∈R Z∗n)

I But in practice, computers are based on binary digits:
The cardinal of a uniform distribution has to be a power of 2.

I The complexity class PPT is defined with probabilistic Turing
machines.

But probabilistic Turing machines deal with random bits only.

I Pseudo-uniform sampling in CSLR:

zrandzrandzrand
def
= λn . λt . if t

?
= nil

then return(0|n|)

else v
$← rsrsrs(n);

if v ≥ n
then zrandzrandzrand(n, tailtailtail(t))
else return(v)

Tries to sample a value between 0 and n.
After a timeout |t|, it returns the default value 0|n|.

Indistinguishability

I Two CSLR terms f1 and f2 are computationally
indistinguishable (written as f1 ' f2) if for every term A
such that ` A : �Bits→ τ → TBits and every positive
polynomial P, there exists some N ∈ N such that for all
bitstring η with |η| ≥ N

|Pr[JA(η, f1(η))K 1]− Pr[JA(η, f2(η))K 1]| < 1
P(|η|)

⇓

I Two CSLR terms g1 and g2 are game indistinguishable
(written as g1 ≈ g2) if for every term A such that
` A : �Bits→ Tτ , and every positive polynomial P, there
exists some N ∈ N such that for all bitstring η with |η| ≥ N,

|Pr[Jg1(η,A)K 1]− Pr[Jg2(η,A)K 1]| < 1

P(|η|)

Uniform sampling

We also show that the standard practice of cryptographers,
ignoring that polynomial-time Turing machines cannot generate all
uniform distributions, is actually sound.

I CSLR$ extends CSLR with a uniform sampling primitive
sample of type Bits(TBits.

I We prove that we can freely replace the approximate uniform
sampling zrandzrandzrand by the truly uniform sampling sample or vice
versa in sampling-based CSLR programs, without affecting the
computational indistinguishability.

Superpolynomial constants

I Game-hopping does not preclude the possibility of introducing
games that perform superpolynomial-time computations.

I They are just idealized constructions that are used to define
security notions but are not meant to make their way into
implementations.

I CSLR$
π extends CSLR$ with a set π of superpolynomial-time

primitives.

Conclusions

I In Coq, we currently have:
I a formalization of Bellantoni-Cook, and
I an almost finished formalization of SLR.

I We propose an extension of CSLR into CSLR$
π [Nowak and

Zhang, 2013] that allows for convenient formalization of
game-hopping security proofs taking into account complexity
issues.

Thank you!

	Formal security proofs in the computational model
	Bellantoni-Cook
	SLR
	CSLR

